- Home
- A-Z Publications
- Publications
Publications
A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact
Nov 2023
Publication
This study emphasises the growing relevance of hydrogen as a green energy source in meeting the growing need for sustainable energy solutions. It foregrounds the importance of assessing the environmental consequences of hydrogen-generating processes for their long-term viability. The article compares several hydrogen production processes in terms of scalability costeffectiveness and technical improvements. It also investigates the environmental effects of each approach considering crucial elements such as greenhouse gas emissions water use land needs and waste creation. Different industrial techniques have distinct environmental consequences. While steam methane reforming is cost-effective and has a high production capacity it is coupled with large carbon emissions. Electrolysis a technology that uses renewable resources is appealing but requires a lot of energy. Thermochemical and biomass gasification processes show promise for long-term hydrogen generation but further technological advancement is required. The research investigates techniques for improving the environmental friendliness of hydrogen generation through the use of renewable energy sources. Its ultimate purpose is to offer readers a thorough awareness of the environmental effects of various hydrogen generation strategies allowing them to make educated judgements about ecologically friendly ways. It can ease the transition to a cleaner hydrogen-powered economy by considering both technological feasibility and environmental issues enabling a more ecologically conscious and climate-friendly energy landscape.
Literature Review on Life Cycle Assessment of Transportation Alternative Fuels
Aug 2023
Publication
Environmental concerns such as global warming and human health damage are intensifying and the transportation sector significantly contributes to carbon and harmful emissions. This review examines the life cycle assessment (LCA) of alternative fuels (AF) evaluating current research on fuel types LCA framework development life cycle inventory (LCI) and impact selection. The objectives of this paper are: (1) to compare various AF LCA frameworks and develop a comprehensive framework for the transportation sector; (2) to identify emission hotspots of different AFs through simulations and real-world cases; (3) to review AF LCA research; (4) to extract valuable information for potential future research directions. The analysis reveals that all stages except for hydrogen use have an environmental impact. LCA boundaries and LCIs vary considerably depending on the raw materials production processes and products involved leading to different emission hotspots. Due to knowledge or data limitations some stages remain uncalculated in the current study emphasizing the need for further refinement of the AF LCI. Future research should also explore the various impacts of widespread adoption of alternative fuels in transportation encompassing social economic and environmental aspects. Lastly the review provides structured recommendations for future research directions.
Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union
Jan 2023
Publication
Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries where Natural Gas is mostly imported from external producers the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified and in these cases synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.
Impact on Canadian Residential End Use Appliances with the Introduction of Hydrogen into the Natural Gas Stream - An Application
Sep 2023
Publication
Canada’s commitment to be net-zero by 2050 combined with ATCO’s own Environmental Social and Governance goals has led ATCO to pursue hydrogen blending within the existing natural gas system to reduce CO2 emissions while continuing to provide safe reliable energy service to customers. Utilization of hydrogen in the distribution system is the least-cost alternative for decarbonizing the heating loads in jurisdictions like Alberta where harsh winter climates are encountered and low-carbon hydrogen production can be abundant. ATCO’s own Fort Saskatchewan Hydrogen Blending Project began blending 5% hydrogen by volume to over 2100 customers in the Fall of 2022 and plans to increase the blend rates to 20% hydrogen in 2023. Prior to blending ATCO worked together with DNV to examine the impact of hydrogen blended natural gas to twelve Canadian appliances: range/stove oven garage heater high and medium efficiency furnaces conventional and on demand hot water heaters barbeque clothes dryer radiant heater and two gas fireplaces. The tests were performed not only within the planned blend rates of 0-20% hydrogen but also to higher percentages to determine how much hydrogen can be blended into a system before appliance retrofits would be required. The testing was designed to get insights on safety-related combustion issues such as flash-back burner overheating flame detection and other performance parameters such as emissions and burner power. The experimental results indicate that the radiant heater is the most sensitive appliance for flashback observed at 30 vol% hydrogen in natural gas. At 50% hydrogen the range and the radiant burner of the barbeque tested were found to be sensitive to flashback. All other 9 appliances were found to be robust for flashback with no other short-term issues observed. This paper will detail the findings of ATCO and DNV’s appliance testing program including results on failure mechanisms and sensitivities for each appliance.
The Global Shift to Hydrogen and Lessons from Outside Industry
Sep 2023
Publication
The recognition of hydrogen as a technically viable combustion fuel and as an alternative to more carbon intensive technologies for all forms of industrial applications has resulted in significant global interest leading to both public and private investment. As with most shifts in technology public acceptance and its safe production and handling will be key to its growth as a widespread energy vector. Specific properties of hydrogen that may prompt concern from the public and that need to be considered in terms of its use and safe handling include the following:<br/>• Hydrogen in its natural state is a colourless odourless and tasteless gas that is combustible with very low ignition energy burns nearly invisibly and is explosive at a very wide range of concentrations with an oxidate.<br/>• Hydrogen as any other gas except oxygen is an asphyxiant in a confined space.<br/>• Hydrogen is an extremely small molecule and interacts with many materials which over time can alter the physical properties and can lead to embrittlement and failure. Additionally due to the small molecular size its permeation and diffusion characteristics make it more difficult to contain compared to other gases.<br/>As hydrogen production use and storage increases these properties will come under greater scrutiny and may raise questions surrounding the cost/benefit of the technology. Understanding how the public sees this technology in relation to their safety and daily lives is important in hydrogen’s adoption as a low carbon alternative. A review of deployable experience relevant to the handling of hydrogen in other industries will help us to understand the technology and experience necessary for ensuring the success of the scaling up of a hydrogen economy. The social considerations of the impacts should also be examined to consider acceptance of the technology as it moves into the mainstream.
Hydrogen Dispersion in a Full-scale Road Tunnel: Experimental Results and CFD Analysis
Sep 2023
Publication
Hydrogen Fuel Cell Electric Vehicles (HFC EVs) represent an alternative to replace current internal combustion engine vehicles. The use of these vehicles with storage of compressed gaseous hydrogen (CGH2) in confined spaces such as tunnels underground car parks etc. creates new challenges to ensure the protection of people and property and to keep the risk at an acceptable level. The HYTUNNEL-CS project sponsored by the FCH-JU was launched to develop validated hazard and risk assessment tools for the behavior of hydrogen leaks in tunnels. Among the experiments carried out in support of the validation tools the CEA has conducted tests on gas dispersion in a full-scale tunnel geometry. In the tests carried out hydrogen is replaced by helium under a pressure of 70 MPa in a 78 liter tank. The car is simulated by a flat plate called chassis and the discharges are made either downwards under the chassis or upwards to take into account a rollover of the car during the accident. Different thermally activated pressure relief device (TPRD) diameters are examined as well as different orientations of the discharge. Finally the mixing transient of helium with air is measured for distances between -50 and +50m from the release. Performing CFD simulations of such an under-expanded jet in an environment as large as a road tunnel demands a compressible flow solver and so a large computational cost. To optimize this cost a notional nozzle approach is generally used to replace the under-expanded jet by a subsonic jet that has the same concentration dilution behavior. The physics at the injection point is then not resolved and a model of these boundary conditions has to be implemented. This article first reviews the main experimental results. Then a model of boundary conditions is proposed to have a subsonic hydrogen jet that matches the dilution characteristics of an under-expanded jet. Furthermore this model is implemented in the TRUST LES computer code and in the Neptune-CFD RANS computer code in order to simulate some helium dispersion experiments. Finally results from the CFD simulations are compared to the experimental results and the effect of the exact shape of the tunnel is also assessed by comparing simulations with idealized flat walls and real scanned walls.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
Towards Renewable Hydrogen-based Electrolysis: Alkaline vs Proton Exchange Membrane
Jul 2023
Publication
This paper focuses on the battle for a dominant design for renewable hydrogen electrolysis in which the designs alkaline and proton exchange membrane compete for dominance. First a literature review is performed to determine the most relevant factors that influence technology dominance. Following that a Best Worst Method analysis is conducted by interviewing multiple industry experts. The most important factors appear to be: Price Safety Energy consumption Flexibility Lifetime Stack size and Materials used. The opinion of experts on Proton Exchange Membrane and alkaline electrolyser technologies is slightly skewed in favour of alkaline technologies. However the margin is too small to identify a winner in this technology battle. The following paper contributes to the ongoing research on modelling the process of technology selection in the energy sector.
Carbon Dioxide Emission in Hydrogen Production Technology from Coke Oven Gas with Life Cycle Approach
Oct 2016
Publication
The analysis of Carbon Footprint (CF) for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas emission indicators of carbon dioxide (CF) were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant the process of coking coal purification and reforming of coke oven gas carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ). The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA).
A Non-dimensional Surrogate Model of Stratified Filling During Indoor, Plume-look Hydrogen Releases
Sep 2023
Publication
Hydrogen is commonly used as feedstock in industrial processes and is regarded as a potential future energy carrier. However its reactivity and low density make it difficult to handle and store safely. Indoor hydrogen dispersion can cause a fire or explosion hazard if encountering an ignition source. Safety practices often use time expensive modelling techniques to estimate risk associated with hydrogen. A neural network based surrogate model could efficiently replace Computational Fluid Dynamics (CFD) modelling in safety studies. To lower the dimensionality of this surrogate model a dimensional analysis based on Buckingham’s Pi-theorem is proposed. The dimensional analysis examines stratified filling and highlights the functional parameters involved in the process. Stratified filling occurs for buoyancy dominated releases and is characterized by layers of decreasing concentration starting at the ceiling of the enclosure and developing towards the bottom. The study involves four dimensional cases that were simulated using Computational Fluid Dynamics (CFD) to demonstrate the usefulness of the proposed dimensionless time and dimensionless volume. The setup considered in this paper consists of a parallelepiped enclosure with standard atmospheric conditions a single release source and one pressure outlet to ensure constant pressure during the release. The results of the CFD simulations show a distinct pattern in the relation of hydrogen molar fraction and dimensionless time. The pattern depends on the dimensionless height of the measurement location. A five-parameter logistic (5PL) function is proposed to fit the data from the CFD models. Overall the paper provides insights into the functional parameters involved in the evolution of hydrogen mass fractions during stratified filling. It provides a nondimensional surrogate model to compute the evolution of the local concentrations of hydrogen during the development of stratification layers.
Innovative Strategies for Combining Solar and Wind Energy with Green Hydrogen Systems
Oct 2024
Publication
The integration of wind and solar energy with green hydrogen technologies represents an innovative approach toward achieving sustainable energy solutions. This review examines state-ofthe-art strategies for synthesizing renewable energy sources aimed at improving the efficiency of hydrogen (H2 ) generation storage and utilization. The complementary characteristics of solar and wind energy where solar power typically peaks during daylight hours while wind energy becomes more accessible at night or during overcast conditions facilitate more reliable and stable hydrogen production. Quantitatively hybrid systems can realize a reduction in the levelized cost of hydrogen (LCOH) ranging from EUR 3.5 to EUR 8.9 per kilogram thereby maximizing the use of renewable resources but also minimizing the overall H2 production and infrastructure costs. Furthermore advancements such as enhanced electrolysis technologies with overall efficiencies rising from 6% in 2008 to over 20% in the near future illustrate significant progress in this domain. The review also addresses operational challenges including intermittency and scalability and introduces system topologies that enhance both efficiency and performance. However it is essential to consider these challenges carefully because they can significantly impact the overall effectiveness of hydrogen production systems. By providing a comprehensive assessment of these hybrid systems (which are gaining traction) this study highlights their potential to address the increasing global energy demands. However it also aims to support the transition toward a carbon-neutral future. This potential is significant because it aligns with both environmental goals and energy requirements. Although challenges remain the promise of these systems is evident.
Technical and Cost Analysis of Zero-emission High-speed Ferries: Retrofitting from Diesel to Green Hydrogen
Feb 2024
Publication
This paper proposes a technical and cost analysis model to assess the change in costs of a zeroemission high-speed ferry when retrofitting from diesel to green hydrogen. Both compressed gas and liquid hydrogen are examined. Different scenarios explore energy demand energy losses fuel consumption and cost-effectiveness. The methodology explores how variation in the ferry's total weight and equipment efficiency across scenarios impact results. Applied to an existing diesel high-speed ferry on one of Norway's longest routes the study under certain assumptions identifies compressed hydrogen gas as the current most economical option despite its higher energy consumption. Although the energy consumption of the compressed hydrogen ferry is slightly more than the liquid hydrogen counterpart its operating expenses are considerably lower and comparable to the existing diesel ferry on the route. However constructing large hydrogen liquefaction plants could reduce liquid hydrogen's cost and make it competitive with both diesel and compressed hydrogen gas. Moreover liquid hydrogen allows the use of a superconducting motor to enhance efficiency. Operating the ferry with liquid hydrogen and a superconducting motor besides its technical advantages offers promising economic viability in the future comparable to diesel and compressed hydrogen gas options. Reducing the ferry's speed and optimizing equipment improves fuel efficiency and economic viability. This research provides valuable insights into sustainable zero-emission high-speed ferries powered by green hydrogen.
Investigation of a New Holistic Energy System for a Sustainable Airport with Green Hydrogen Fuels
Jun 2024
Publication
The advancement of sustainable solutions through renewable energy sources is crucial to mitigate carbon emissions. This study reports a novel system for an airport utilizing geothermal biomass and PV solar energy sources. The proposed system is capable of producing five useful outputs including electrical power hot water hydrogen kerosene and space heating. In open literature there has been no system reported with these combination of energy sources and outputs. The system is considered for Vancouver Airport using the most recent statistics available. The geothermal sub-system introduced is also unique which utilizes carbon dioxide captured as the heat transfer medium for power generation and heating. The present system is considered using thermodynamic analysis through energetic and exergetic approaches to determine the variation in system performance based on different annual climate conditions. Biomass gasification and kerosene production are evaluated based on the Aspen Plus models. The efficiencies of the geothermal system with the carbon dioxide reservoir are found to have energetic and energetic efficiencies of 78 % and 37 % respectively. The total hydrogen production projection is obtained to be 452 tons on an annual basis. The kerosene production mass flow rate is reported as 0.112 kg/s. The overall energetic and exergetic efficiencies of the system are found to be 41.8 % and 32.9 % respectively. This study offers crucial information for the aviation sector to adopt sustainable solutions more effectively.
Strategic Deployment of Hydrogen Fuel Cell Buses and Fueling Stations: Insights from Fleet Transition Models
Oct 2024
Publication
Establishing new hydrogen value chains is challenging requiring economies of scale and balanced supplydemand dynamics. Municipalities can mitigate this risk through government support and deployment strategies. This study analyzes Edmonton’s transition to zero-emission buses (ZEBs) focusing on hydrogen fuel cell electric vehicles (HFCEVs) and hydrogen fueling stations (HFSs). Using scenario-based modeling and S-curve models for technology diffusion we project the adoption of battery electric vehicles (BEVs) and HFCEVs. Deploying over 1000 ZEBs by 2040 is necessary to meet Net-Zero targets with 310–760 HFCEVs required for the municipal bus inventory. This results in an estimated hydrogen demand of 6.2–14.5 t-H2/day and a reduction of 0.4–1.0 Mt-CO2 in tailpipe emissions by 2050. We use these scenario projections to develop a phased deployment strategy optimizing fleet operations to reduce HFS costs by 50–60% from 8 to 9 C$/kg-H2 to 3–4 C$/kg-H2. The study underscores the importance of strategic planning and infrastructure investment in realizing net-zero goals providing a model applicable globally.
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs: A Review
Mar 2024
Publication
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources. Underground hydrogen storage (UHS) in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources due to its capacity to address challenges associated with the intermittent nature of renewable energy sources ensuring a steady and reliable energy supply. Leveraging the existing infrastructure and well-characterized geological formations depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation. However significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation. Hydrogen deliverability hydrogen trapping and the equation of state are key areas with limited understanding. This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs; it then provides a high-level risk assessment and an overview of the techno-economics of UHS. The significance of this review lies in its consolidation of current knowledge highlighting unresolved issues and proposing areas for future research. Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape. Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier. In addition this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
Towards a Sustainable Future: Bio-hydrogen Production from Food Waste for Clean Energy Generation
Jan 2024
Publication
To address climate change energy security and waste management new sustainable energy sources must be developed. This study uses Aspen Plus software to extract bio-H2 from food waste with the goal of efficiency and environmental sustainability. Anaerobic digestion optimised to operate at 20-25°C and keep ammonia at 3% greatly boosted biogas production. The solvent [Emim][FAP] which is based on imidazolium had excellent performance in purifying biogas. It achieved a high level of methane purity while consuming a minimal amount of energy with a solvent flow rate of 13.415 m³/h. Moreover the utilization of higher temperatures (600-700°C) during the bio-H2 generation phase significantly enhanced both the amount and quality of hydrogen produced. Parametric and sensitivity assessments were methodically performed at every stage. This integrated method was practicable and environmentally friendly according to the economic assessment. H2 generation using steam reforming results in a TCC of 1.92×106 USD. The CO2 separation step has higher costs (TCC of 2.15×107 USD) due to ionic liquid washing and CO2 liquefaction. Compressor electricity consumption significantly impacts total operating cost (TOC) totaling 4.73×108 USD. showing its ability to reduce greenhouse gas emissions optimize resource utilization and promote energy sustainability. This study presents a sustainable energy solution that addresses climate and waste challenges.
Optimizing Green Hydrogen Strategies in Tunisia: A Combined SWOT-MCDM Approach
Oct 2024
Publication
Tunisia's rapid industrial expansion and population growth have created a pressing energy deficit despite the country's significant yet largely untapped renewable energy potential. This study addressed this challenge by developing a comprehensive framework to identify and evaluate strategies for promoting green hydrogen production from renewable energy sources in Tunisia. A Strength Weakness Opportunity and Threat (SWOT) analysis incorporating social economic and environmental dimensions was conducted to formulate potential solutions. The Step-wise Weight Assessment Ratio Analysis (SWARA) method facilitated the weighting of SWOT factors and subfactors. Subsequently a multi-criteria decision-making approach employing the gray technique for order preference by similarity to ideal solution (TOPSIS-G) method (validated by gray additive ratio assessment (ARAS-G) gray complex proportional assessment (COPRAS-G) and gray multi-objective optimization by ratio analysis (MOORA-G) was used to rank the identified strategies. The SWOT analysis revealed "Strengths" as the most influential factor with a relative weight of 47.3% followed by "Weaknesses" (26.5%) "Threats" (15.6%) and "Opportunities" (10.6%). Specifically experts emphasized Tunisia's renewable energy potential (21.89%) and robust power system (12.11%) as primary strengths. Conversely high investment costs (11.2%) and political instability (7.77%) posed substantial threat. Positive socio-economic impacts represented a key opportunity with a score of 5.2%. As for the strategies prioritizing criteria production cost ranked first with a score of 13.5% followed by environmental impact (12.8%) renewable energy potential (12.0%) and mitigation costs (11.3%). The gray TOPSIS analysis identified two key strategies: leveraging Tunisia's wind and solar resources and fostering regional cooperation for project implementation. The robustness of these strategies is confirmed by the strong correlation between TOPSIS-G ARAS-G COPRAS-G and MOORA-G results. Overall the study provides a comprehensive roadmap and expert-informed decision-support tools offering valuable insights for policymakers investors and stakeholders in Tunisia and other emerging economies facing similar energy challenges.
Tapping the Conversation on the Meaning of Decarbonization: Discourses and Discursive Agency in EU Politics on Low-Carbon Fuels for Maritime Shipping
Jun 2024
Publication
EU politics on decarbonizing shipping is an argumentative endeavor where different policy actors strive try to influence others to see problems and policy solutions according to their perspectives to gain monopoly on the framing and design of policies. This article critically analyzes by means of argumentative discourse analysis the politics and policy process related to the recent adoption of the FuelEU Maritime regulation the world’s first legislation to set requirements for decarbonizing maritime shipping. Complementing previous research focusing on the roles and agency of policy entrepreneurs and beliefs of advocacy coalitions active in the policy process this paper dives deeper into the politics of the new legislation. It aims to explore and explain the discursive framing and politics of meaning-making. By analyzing the political and social meaning-making of the concept “decarbonizing maritime shipping” this paper helps us understand why the legislation was designed in the way it was. Different narratives storylines and discourses defining different meanings of decarbonization are analyzed. So is the agency of policy actors trying to mutate the different meanings into a new meaning. Two discourses developed in dialectic conversation framed the policy proposals and subsequent debates in the policy process focusing on (i) incremental change and technology neutrality to meet moderate emission reductions and maintain competitiveness and (ii) transformative change and technology specificity to meet zero emissions and gain competitiveness and global leadership in the transition towards a hydrogen economy. Policy actors successfully used discursive agency strategies such as multiple functionality and vagueness to navigate between and resolve conflicts between the two discourses. Both discourses are associated with the overarching ecological modernization discourse and failed to include issue of climate justice and a just transition. The heritage of the ecological modernization discourse creates lock-ins for a broader decarbonization discourse thus stalling a just transition.
Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges
Dec 2023
Publication
The use of hydrogen as an energy carrier within the scope of the decarbonisation of the world’s energy production and utilisation is seen by many as an integral part of this endeavour. However the discussion around hydrogen technologies often lacks some perspective on the currently available technologies their Technology Readiness Level (TRL) scope of application and important performance parameters such as energy density or conversion efficiency. This makes it difficult for the policy makers and investors to evaluate the technologies that are most promising. The present study aims to provide help in this respect by assessing the available technologies in which hydrogen is used as an energy carrier including its main challenges needs and opportunities in a scenario in which fossil fuels still dominate global energy sources but in which renewables are expected to assume a progressively vital role in the future. The production of green hydrogen using water electrolysis technologies is described in detail. Various methods of hydrogen storage are referred including underground storage physical storage and material-based storage. Hydrogen transportation technologies are examined taking into account different storage methods volume requirements and transportation distances. Lastly an assessment of well-known technologies for harnessing energy from hydrogen is undertaken including gas turbines reciprocating internal combustion engines and fuel cells. It seems that the many of the technologies assessed have already achieved a satisfactory degree of development such as several solutions for high-pressure hydrogen storage while others still require some maturation such as the still limited life and/or excessive cost of the various fuel cell technologies or the suitable operation of gas turbines and reciprocating internal combustion engines operating with hydrogen. Costs below 200 USD/kWproduced lives above 50 kh and conversion efficiencies approaching 80% are being aimed at green hydrogen production or electricity production from hydrogen fuel cells. Nonetheless notable advances have been achieved in these technologies in recent years. For instance electrolysis with solid oxide cells may now sometimes reach up to 85% efficiency although with a life still in the range of 20 kh. Conversely proton exchange membrane fuel cells (PEMFCs) working as electrolysers are able to sometimes achieve a life in the range of 80 kh with efficiencies up to 68%. Regarding electricity production from hydrogen the maximum efficiencies are slightly lower (72% and 55% respectively). The combination of the energy losses due to hydrogen production compression storage and electricity production yields overall efficiencies that could be as low as 25% although smart applications such as those that can use available process or waste heat could substantially improve the overall energy efficiency figures. Despite the challenges the foreseeable future seems to hold significant potential for hydrogen as a clean energy carrier as the demand for hydrogen continues to grow particularly in transportation building heating and power generation new business prospects emerge. However this should be done with careful regard to the fact that many of these technologies still need to increase their technological readiness level before they become viable options. For this an emphasis needs to be put on research innovation and collaboration among industry academia and policymakers to unlock the full potential of hydrogen as an energy vector in the sustainable economy.
No more items...