Skip to content
1900

The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System

Abstract

Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors, energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region, generation costs of other emerging offshore renewable technologies remain high. Hence, it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments, which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses, leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First, offshore wind plays a crucial role in the North Sea power sector, where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030, contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings), when compared with the slow learning and constrained space use case. Second, floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also, the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided, while fixed-bottom offshore wind deployment remains unchanged. Lastly, the role of other emerging offshore renewables remains limited in all scenarios considered, as they are expensive compared to other technology choices in the system. However, around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.

Funding source: This study is part of a research project named ENergy SYStems in TRAnsition (https://ensystra.eu/). ENSYSTRA received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No: 765515.
Related subjects: Applications & Pathways
Countries: Netherlands
Loading

Article metrics loading...

/content/journal6022
2024-07-08
2024-11-22
/content/journal6022
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error