- Home
- A-Z Publications
- Publications
Publications
Investigation of a Community-based Clean Energy System Holistically with Renewable and Hydrogen Energy Options for Better Sustainable Development
Jan 2024
Publication
This study develops a novel community-based integrated energy system where hydrogen and a combination of renewable energy sources are considered uniquely for implementation. In this regard three different communities situated in Kenya the United States and Australia are studied for hydrogen production and meeting the energy demands. To provide a variety of energy demands this study combines a multigenerational geothermal plant with a hybrid concentrated solar power and photovoltaic solar plant. Innovations in hydrogen production and renewable energy are essential for reducing carbon emissions. By combining the production of hydrogen with renewable energy sources this system seeks to move away from the reliance on fossil fuels and toward sustainability. The study investigates various research subjects using a variety of methods. The performance of the geothermal source is considered through energetic and exergetic thermodynamic analysis. The software System Advisor Model (SAM) and RETscreen software packages are used to analyze the other sub-systems including Concentrate Solar PV solar and Combined Heat and Power Plant. Australian American and Kenyan communities considered for this study were found to have promising potential for producing hydrogen and electricity from renewable sources. The geothermal output is expected to be 35.83 MW 122.8 MW for space heating 151.9 MW for industrial heating and 64.25 MW for hot water. The overall geothermal energy and exergy efficiencies are reported as 65.15% and 63.54% respectively. The locations considered are expected to have annual solar power generation and hydrogen production capacities of 158MW 237MW 186MW 235 tons 216 tons and 313 tons respectively.
Hydrogen Energy Systems: Technologies, Trends, and Future Prospects
May 2024
Publication
This review critically examines hydrogen energy systems highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently electrolysis efficiencies range between 60 % and 80 % with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally hydrogen storage poses its own challenges requiring conditions of up to 700 bar or temperatures below −253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.
Research on Fast Frequency Response Control Strategy of Hydrogen Production Systems
Mar 2024
Publication
With the large-scale integration of intermittent renewable energy generation presented by wind and photovoltaic power the security and stability of power system operations have been challenged. Therefore this article proposes a control strategy of a hydrogen production system based on renewable energy power generation to enable the fast frequency response of a grid. Firstly based on the idea of virtual synchronous control a fast frequency response control transformation strategy for the grid-connected interface of hydrogen production systems for renewable energy power generation is proposed to provide active power support when the grid frequency is disturbed. Secondly based on the influence of VSG’s inertia and damping coefficient on the dynamic characteristics of the system a VSG adaptive control model based on particle swarm optimization is designed. Finally based on the Matlab/Simulink platform a grid-connected simulation model of hydrogen production systems for renewable energy power generation is established. The results show that the interface-transformed electrolytic hydrogen production device can actively respond to the frequency disturbances of the power system and participate in primary frequency control providing active support for the frequency stability of the power system under high-percentage renewable energy generation integration. Moreover the system with parameter optimization has better fast frequency response control characteristics.
Effect of Gas Composition and Initial Turbulence on the Propagation Dynamics of Premixed Flames of Hydrogen-blended Natural Gas Fuel
Jul 2024
Publication
In order to reduce carbon emissions the effects of gas composition and initial turbulence on the premixed flame dynamics of hydrogen-blended natural gas were investigated. The results show that an increase in hydrogen content leads to earlier formation of flame wrinkles. When the equivalence ratio is 1 and hydrogen blending ratio is below 20% Tulip flames appear approximately 2.25 m away from the ignition point. When hydrogen blending ratio exceeds 20% Tulip flames appear approximately 1.3 m away from the ignition point and twisted Tulip flames appear approximately 2.5 m away from the ignition position. During the 0.05 m process of flame propagation downstream from ignition point flame propagation velocity increases by about 2 m/s for every 10% increase in hydrogen content. The increase in hydrogen content has the most significant impact on the flame propagation velocity during the ignition stage. The average flame propagation velocity increases with the increase of hydrogen blending ratio. The greater the initial turbulence the more obvious the stretching deformation of flame front structure. With the increase of wind speed the flame propagation velocity first increases and then decreases. At a wind speed of 3 m/s the flame propagation velocity reaches its maximum value.
Comparative Study of Electric and Hydrogen Mobility Infrastructures for Sustainable Public Transport: A PyPSA Optimization for a Remote Island Context
Jul 2024
Publication
Decarbonizing road transportation is vital for addressing climate change given that the sector currently contributes to 16% of global GHG emissions. This paper presents a comparative analysis of electric and hydrogen mobility infrastructures in a remote context i.e. an off-grid island. The assessment includes resource assessment and sizing of renewable energy power plants to facilitate on-site self-production. We introduce a comprehensive methodology for sizing the overall infrastructure and carry out a set of techno-economic simulations to optimize both energy performance and cost-effectiveness. The levelized cost of driving at the hydrogen refueling station is 0.40 e/km i.e. 20% lower than the electric charging station. However when considering the total annualized cost the battery-electric scenario (110 ke/year) is more favorable compared to the hydrogen scenario (170 ke/year). To facilitate informed decision-making we employ a multi-criteria decision-making analysis to navigate through the techno-economic findings. When considering a combination of economic and environmental criteria the hydrogen mobility infrastructure emerges as the preferred solution. However when energy efficiency is taken into account electric mobility proves to be more advantageous.
Overview and Prospects of Low-emissions Hydrogen (H2) Energy Systems: Roadmap for a Sustainable H2 Economy
Jul 2024
Publication
Hydrogen (2 ) has a big role to play in energy transition to achieve net-zero carbon emissions by 2050. For 2 to compete with other fuels in the energy market more research is required to mitigate key issues like greenhouse gas (GHG) emissions safety and end-use costs. For these reasons a software-supported technical overview of 2 production storage transportation and utilisation is introduced. Drawbacks and mitigation approaches for 2 technologies were highlighted. The recommended areas include solar thermal or renewable-powered plasma systems for feedstock preheating and oxy-hydrogen combustion to meet operating temperatures and heat duties due to losses; integration of electrolysis of 2 into hydrocarbon reforming methods to replace air separation unit (ASU); use of renewable power sources for electrical units and the introduction of thermoelectric units to maximise the overall efficiency. Furthermore a battolyser system for small-scale energy storage; new synthetic hydrides with lower absorption and desorption energy; controlled parameters and steam addition to the combustor/cylinder and combustors with fitted heat exchangers to reduce emissions and improve the overall efficiency are also required. This work also provided detailed information on any of these systems implementations based on location factors and established a roadmap for 2 production and utilisation. The proposed 2 production technologies are hybrid pyrolysis-electrolysis and integrated AD-MEC and DR systems using renewable bioelectrochemical and low-carbon energy systems. Production and utilisation of synthetic natural gas (NG) using renewablepowered electrolysis of 2 oxy-fuel and direct air capture (DAC) is another proposed 2 energy system for a sustainable 2 economy. By providing these factors and information researchers can work towards pilot development and further efficiency enhancement.
Pressure Decline and Gas Expansion in Underground Hydrogen Storage: A Pore-scale Percolation Study
Aug 2024
Publication
Using high-resolution micro-CT imaging at 2.98 μm/voxel we compared the percolation of hydrogen in gas injection with gas expansion for a hydrogen-brine system in Bentheimer sandstone at 1 MPa and 20 ◦C representing hydrogen storage in an aquifer. We introduced dimensionless numbers to quantify the contribution of advection and expansion to displacement. We analysed the 3D spatial distribution of gas and its displacement in both cases and demonstrated that in gas injection hydrogen can only advance from a connected cluster in an invasion-percolation type process while in gas expansion hydrogen can access more of the pore space even from disconnected clusters. The average gas saturation in the sample increased from 30% to 50% by gas expansion and we estimated that 10% of the expanded volume is attributed to hydrogen exsolution from the brine. This work emphasises the importance of studying the combined effects of pressure decline and gas withdrawal in hydrogen storage to assess the influence of gas expansion on remobilising trapped gases.
Transitioning to a Renewable Hydrogen System: Optimal Infrastructure for Self-sufficient Hydrogen Supply in Austria by 2030
Aug 2024
Publication
In this study we employ an optimization model to optimally design a self-sufficient independent of any imports and exports hydrogen infrastructure for Austria by 2030. Our approach integrates key hydrogen technologies within a detailed spatial investment and operation model – coupled with a European scale electricity market model. We focus on optimizing diverse infrastructure componentsincluding trailers pipelines electrolyzers and storages to meet Austria's projected hydrogen demand. To accurately estimate this demand in hourly resolution we combine existing hydrogen strategies and projections to account for developments in various industrial sectors consider demand driven by the transport sector and integrate hydrogen demand arising from its use in gas-powered plants. Accounting for the inherent uncertainty linked to such projections we run the analysis for two complementary scenarios. Our approach addresses the challenges of integrating large quantities of renewable hydrogen into a future energy system by recognizing the critical role of domestic production in the early market stages. The main contribution of this work is to address the gap in optimizing hydrogen infrastructure for effective integration of domestic renewable hydrogen production in Austria by 2030 considering sector coupling potentials optimal electrolyzer placement and the design of local hydrogen networks.
Hydrogen Blending in Natural Gas Grid: Energy, Environmental, and Economic Implications in the Residential Sector
Jul 2024
Publication
The forthcoming implementation of national policies towards hydrogen blending into the natural gas grid will affect the technical and economic parameters that must be taken into account in the design of building heating systems. This study evaluates the implications of using hydrogenenriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs) in a residential building in Rome Italy. The analysis considers several parameters including nonrenewable primary energy consumption CO2 emissions Levelized Cost of Heat (LCOH) and Carbon Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy consumption reduction of 12.05% and 11.19% in boilers and GAHPs respectively. The presence of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary energy and CO2 emissions in condensing boilers as it enhances combustion efficiency. The GAHP system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs the LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies. At low hydrogen prices the CAC for boilers is lower than for GAHPs; therefore replacing boilers with other gas technologies rather than electric heat pumps increases the risk of creating stranded assets. In conclusion blending hydrogen into the gas grid can be a useful policy to reduce emissions from the overall natural gas consumption during the process of end-use electrification while stimulating the development of a hydrogen economy.
Forecasting the Development of Clean Energy Vehicles in Large Cities: A System Dynamics Perspective
Jan 2024
Publication
Clean energy vehicles (CEVs) e.g. battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are being adopted gradually to substitute for internal combustion engine vehicles (ICEVs) around the world. The fueling infrastructure is one of the key drivers for the development of the CEV market. When the government develops funding policies to support the fueling infrastructure development for FCEVs and BEVs it has to assess the effectiveness of different policy options and identify the optimal policy combination which is very challenging in transportation research. In this paper we develop a system dynamics model to study the feedback mechanism between the fueling infrastructure funding policies and the medium- to long-term diffusion of FCEVs and BEVs and the competition between FCEVs and BEVs based on relevant policy and market data in Guangzhou China. The results of the modeling analysis are as follows. (1) Funding hydrogen refueling stations and public charging piles has positive implications for achieving the substitution of CEVs for ICEVs. (2) Adjusting the funding ratio of hydrogen refueling stations and public charging piles or increasing the funding budget and extending the funding cycle does not have a significant impact on the overall substitution of CEVs for ICEVs but only impacts the relative competitive advantage between FCEVs and BEVs. (3) An equal share of funding for hydrogen refueling stations and public charging piles would have better strategic value for future net-zero-emissions urban transportation. (4) Making a moderate-level full investment in hydrogen refueling stations coupled with hydrogen refueling subsidies can provide the ideal conditions for FCEV diffusion.
Impact of Green Hydrogen on Climate Change in Peru: An Analysis of Perception, Policies, and Cooperation
Oct 2024
Publication
This research analyzed the impact of green hydrogen (GH) on the dynamics of combating climate change (CC) in Peru for the year 2024 contributing to Sustainable Development Goal 7 focused on affordable and clean energy. The study quantitative and non-experimental in nature used a cross-sectional design and focused on a sample composed of public and private sector officials energy experts and academics evaluating their perception and knowledge about GH and its application in climate policies. The data collection instrument showed good internal consistency with a Cronbach’s alpha value of 0.793. The results revealed that although the adoption of GH is in its early stages it is already considered a vital component in national CC mitigation strategies. A medium positive correlation was identified using the Spearman coefficient (0.418) between GH usage and the effectiveness of mitigation policies as well as its capacity to influence public awareness and promote interinstitutional cooperation. Furthermore it was concluded that the success of GH largely depends on the strengthening of regulatory frameworks investment in infrastructure and the promotion of strategic alliances to facilitate its integration into the national energy matrix. These findings highlight the importance of continuing to develop public policies that promote the use of GH ensuring its sustainability and effectiveness in the fight against climate change in Peru.
A Review of Hydrogen Leak Detection Regulations and Technologies
Aug 2024
Publication
Hydrogen (H2 ) is positioned as a key solution to the decarbonization challenge in both the energy and transportation sectors. While hydrogen is a clean and versatile energy carrier it poses significant safety risks due to its wide flammability range and high detonation potential. Hydrogen leaks can occur throughout the hydrogen value chain including production storage transportation and utilization. Thus effective leak detection systems are essential for the safe handling storage and transportation of hydrogen. This review aims to survey relevant codes and standards governing hydrogen-leak detection and evaluate various sensing technologies based on their working principles and effectiveness. Our analysis highlights the strengths and limitations of the current detection technologies emphasizing the challenges in achieving sensitive and specific hydrogen detection. The results of this review provide critical insights into the existing technologies and regulatory frameworks informing future advancements in hydrogen safety protocols.
Critical Perspective on Green Hydrogen-based Seasonal Operation of Energy-intensive Industry Sectors with Solid Products
Nov 2024
Publication
In the light of a future decarbonized power grid based primarily on non-dispatchable renewable energy sources the operation of industrial plants should be decarbonized and flexible. An innovative novel concept combining industrial plants with (i) a water electrolysis unit (ii) a hydrogen storage unit and (iii) a fuel cell unit would enable seasonal supply-demand balancing in the local power grid and storage of surplus energy in the form of stable solid products. The feasibility of this concept was demonstrated in a case study taking into account the overall energy balance and economics. The characteristics of the local power grid and the hydrogen round-trip efficiency must be carefully considered when dimensioning the hydrogen units. It was found that industries producing iron and steel cement ceramics glass aluminum paper and other metals have the potential for seasonal operation. Future research efforts in the fields of technology economics and social sciences should support the sustainable flexibility transition of energy-intensive industries with solid products.
Innovative Hybrid Energy Storage Systems with Sustainable Integration of Green Hydrogen and Energy Management Solutions for Standalone PV Microgrids Based on Reduced Fractional Gradient Descent Algorithm
Oct 2024
Publication
This paper investigates innovative solutions to enhance the performance and lifespan of standalone photovoltaic (PV)-based microgrids with a particular emphasis on off-grid communities. A major challenge in these systems is the limited lifespan of batteries. To overcome this issue researchers have created hybrid energy storage systems (HESS) along with advanced power management strategies. This study introduces innovative multi-level HESS approaches and a related energy management strategy designed to alleviate the charge/discharge stress on batteries. Comprehensive Matlab Simulink models of various HESS topologies within standalone PV microgrids are utilized to evaluate system performance under diverse weather conditions and load profiles for rural site. The findings reveal that the proposed HESS significantly extends battery life expectancy compared to existing solutions. Furthermore the paper presents a novel energy management strategy based on the Reduced Fractional Gradient Descent (RFGD) algorithm optimization tailored for hybrid systems that include photovoltaic fuel cell battery and supercapacitor components. This strategy aims to minimize hydrogen consumption of Fuel Cells (FCs) thereby supporting the production of green ammonia for local industrial use. The RFGD algorithm is selected for its minimal user-defined parameters and high convergence efficiency. The proposed method is compared with other algorithms such as the Lyrebird Optimization Algorithm (LOA) and Osprey Optimization Algorithm (OOA). The RFGD algorithm exhibits superior accuracy in optimizing energy management achieving a 15% reduction in hydrogen consumption. Its efficiency is evident from the reduced computational time compared to conventional algorithms. Although minor losses in computational resources were observed they were substantially lower than those associated with traditional optimization techniques. Overall the RFGD algorithm offers a robust and efficient solution for enhancing the performance of hybrid energy systems.
Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking
Jul 2024
Publication
As the main contributor of carbon emissions the low-carbon transition of the industrial sector is important for achieving the goal of carbon dioxide peaking. Hydrogen-enabled industrial energy systems (HIESs) are a promising way to achieve the low-carbon transition of industrial energy systems since the hydrogen can be well coordinated with renewable energy sources and satisfy the high and continuous industrial energy demand. In this paper the long-term capacity expansion planning problem of the HIES is formulated from the perspective of industrial parks and the targets of carbon dioxide peaking and the gradual decommissioning of existing equipment are considered as constraints. The results show that the targets of carbon dioxide peaking before different years or with different emission reduction targets can be achieved through the developed method while the economic performance is ensured to some extent. Meanwhile the overall cost of the strategy based on purchasing emission allowance is three times more than the cost of the strategy obtained by the developed method while the emissions of the two strategies are same. In addition long-term carbon reduction policies and optimistic expectations for new energy technologies will help industrial parks build more new energy equipment for clean transformation.
Closed Loop Model Predictive Control of a Hybrid Battery-Hydrogen Energy Storage System using Mixed-Integer Linear Programming
Mar 2024
Publication
The derivation of an efficient operational strategy for storing intermittent renewable energies using a hybrid battery-hydrogen energy storage system is a difficult task. One approach for deriving an efficient operational strategy is using mathematical optimization in the context of model predictive control. However mathematical optimization derives an operational strategy based on a non-exact mathematical system representation for a specified prediction horizon to optimize a specified target. Thus the resulting operational strategies can vary depending on the optimization settings. This work focuses on evaluating potential improvements in the operational strategy for a hybrid batteryhydrogen energy storage system using mathematical optimization. To investigate the operation a simulation model of a hybrid energy storage system and a tailor-made mixed integer linear programming optimization model of this specific system are utilized in the context of a model predictive control framework. The resulting operational strategies for different settings of the model predictive control framework are compared to a rule-based controller to show the potential benefits of model predictive control compared to a conventional approach. Furthermore an in-depth analysis of different factors that impact the effectiveness of the model predictive controller is done. Therefore a sensitivity analysis of the effect of different electricity demands and resource sizes on the performance relative to a rule-based controller is conducted. The model predictive controller reduced the energy consumption by at least 3.9 % and up to 17.9% compared to a rule-based controller. Finally Pareto fronts for multi-objective optimizations with different prediction and control horizons are derived and compared to the results of a rule-based controller. A cost reduction of up to 47 % is achieved by a model predictive controller with a prediction horizon of 7 days and perfect foresight. Keywords: Model Predictive Control Optimization Mixed Integer Linear Programming Hybrid Battery-Hydrogen Energy Storage System
Generalized Thermodynamic Modelling of Hydrogen Storage Tankes for Truck Application
Mar 2024
Publication
Hydrogen-driven heavy-duty trucks are a promising technology for reducing CO2 emissions in the transportation sector. Thus storing hydrogen efficiently onboard is vital. The three available or currently developed physical hydrogen storage technologies (compressed gaseous subcooled liquid and cryo-compressed hydrogen) are promising solutions. For a profound thermodynamic comparison of these storage systems a universally applicable model is required. Thus this article introduces a generalized thermodynamic model and conducts thermodynamic comparisons in terms of typical drive cycle scenarios. Therefore a model introduced by Hamacher et al. [1] for cryo-compressed hydrogen tanks is generalized by means of an explicit model formulation using the property ��2� from REFPROP [2] which is understood as a generic specific isochoric two-phase heat capacity. Due to an implemented decision logic minor changes to the equation system are automatically made whenever the operation mode or phase of the tank changes. The resulting model can simulate all three storage tank systems in all operating scenarios and conditions in the single- and two-phase region. Additionally the explicit model formulation provides deeper insights into the thermodynamic processes in the tank. The model is applied to the three physical hydrogen storage technologies to compare drive cycles heat requirement dormancy behavior and optimal usable density. The highest driving ranges were achieved with cryo-compressed hydrogen however it also comes with higher heating requirements compared to subcooled liquid hydrogen.
Shorter Message, Stronger Framing Increases Societal Acceptance for Hydrogen
Feb 2024
Publication
With the question of ‘can short messages be effective in increasing public support for a complex new technology (hydrogen)?‘ this study uses a representative national survey in Australia to analyze the differences and variations in subjective support for hydrogen in response to four differently framed short messages. The findings of this study show that short messages can increase social acceptance but the effects depend on how strongly the message is framed in terms of its alignment with either an economic or environmental values framework. Furthermore the effects depend on the social and cultural context of the receiver of the message.
The Technical and Economic Aspects of Integrating Energy Sectors for Climate Neutrality
Sep 2024
Publication
With the development of an energy sector based on renewable primary sources structural changes are emerging for the entire national energy system. Initially it was estimated that energy generation based on fossil fuels would decrease until its disappearance. However the evolution of CO2 capture capacity leads to a possible coexistence for a certain period with the renewable energy sector. The paper develops this concept of the coexistence of the two systems with the positioning of green hydrogen not only within the renewable energy sector but also as a transformation vector for carbon dioxide captured in the form of synthetic fuels such as CH4 and CH3OH. The authors conducted pilot-scale research on CO2 capture with green H2 both for pure (captured) CO2 and for CO2 found in combustion gases. The positive results led to the respective recommendation. The research conducted by the authors meets the strict requirements of the current energy phase with the authors considering that wind and solar energy alone are not sufficient to meet current energy demand. The paper also analyzes the economic aspects related to price differences for energy produced in the two sectors as well as their interconnection. The technical aspect as well as the economic aspect of storage through various other solutions besides hydrogen has been highlighted. The development of the renewable energy sector and its demarcation from the fossil fuel energy sector even with the transcendent vector represented by green hydrogen leads to the deepening of dispersion aspects between the electricity sector and the thermal energy sector a less commonly mentioned aspect in current works but of great importance. The purpose of this paper is to highlight energy challenges during the current transition period towards climate neutrality along with solutions proposed by the authors to be implemented in this phase. The current stage of combustion of the CH4 − H2 mixture imposes requirements for the capture of the resulting CO2.
Active Energy Management Based on Meta-Heuristic Algorithms of Fuel Cell/Battery/Supercapacitor Energy Storage System for Aircraft
Mar 2021
Publication
This paper presents the application of an active energy management strategy to a hybrid system consisting of a proton exchange membrane fuel cell (PEMFC) battery and supercapacitor. The purpose of energy management is to control the battery and supercapacitor states of charge (SOCs) as well as minimizing hydrogen consumption. Energy management should be applied to hybrid systems created in this way to increase efficiency and control working conditions. In this study optimization of an existing model in the literature with different meta-heuristic methods was further examined and results similar to those in the literature were obtained. Ant lion optimizer (ALO) moth-flame optimization (MFO) dragonfly algorithm (DA) sine cosine algorithm (SCA) multi-verse optimizer (MVO) particle swarm optimization (PSO) and whale optimization algorithm (WOA) meta-heuristic algorithms were applied to control the flow of power between sources. The optimization methods were compared in terms of hydrogen consumption and calculation time. Simulation studies were conducted in Matlab/Simulink R2020b (academic license). The contribution of the study is that the optimization methods of ant lion algorithm moth-flame algorithm and sine cosine algorithm were applied to this system for the first time. It was concluded that the most effective method in terms of hydrogen consumption and computational burden was the sine cosine algorithm. In addition the sine cosine algorithm provided better results than similar meta-heuristic algorithms in the literature in terms of hydrogen consumption. At the same time meta-heuristic optimization algorithms and equivalent consumption minimization strategy (ECMS) and classical proportional integral (PI) control strategy were compared as a benchmark study as done in the literature and it was concluded that meta-heuristic algorithms were more effective in terms of hydrogen consumption and computational time.
No more items...