- Home
- A-Z Publications
- Publications
Publications
Enhancing Waste-to-Energy and Hydrogen Production through Urban–Industrial Symbiosis: A Multi-Objective Optimisation Model Incorporating a Bayesian Best-Worst Method
Feb 2024
Publication
A surging demand for sustainable energy and the urgency to lower greenhouse gas emissions is driving industrial systems towards more eco-friendly and cost-effective models. Biogas from agricultural and municipal organic waste is gaining momentum as a renewable energy source. Concurrently the European Hydrogen Strategy focuses on green hydrogen for decarbonising the industrial and transportation sectors. This paper presents a multi-objective network design model for urban–industrial symbiosis incorporating anaerobic digestion cogeneration photovoltaic and hydrogen production technologies. Additionally a Bayesian best-worst method is used to evaluate the weights of the sustainability aspects by decision-makers integrating these into the mathematical model. The model optimises industrial plant locations considering economic environmental and social parameters including the net present value energy consumption and carbon footprint. The model’s functionalities are demonstrated through a real-world case study based in Emilia Romagna Italy. It is subject to sensitivity analysis to evaluate how changes in the inputs affect the outcomes and highlights feasible trade-offs through the exploration of the ϵ-constraint. The findings demonstrate that the model substantially boosts energy and hydrogen production. It is not only economically viable but also reduces the carbon footprint associated with fossil fuels and landfilling. Additionally it contributes to job creation. This research has significant implications with potential future studies intended to focus on system resilience plant location optimisation and sustainability assessment.
Liquid Hydrogen Pool Evaporation Above Four Different Substrates
Sep 2023
Publication
In the frame of the EC-funded project PRESLHY ten experiments on LH2-pool evaporation above four different substrates have been performed with the POOL-facility on a free field test site. Substrates to be investigated comprised concrete sand water and gravel. Four of the experiments were made with artificial side wind of known direction and known velocity to investigate the influence of side wind on hydrogen evaporation and cloud formation above the LH2-pool. The POOL-facility mainly consists of an insulated stainless-steel box with the dimensions 0.5 x 0.5 x 0.2 m³ that is filled up to half the height (0.1 m) with the respective substrate and LH2. The height of the LH2-pool that forms above the substrate can be determined using the weight of the complete facility which is positioned on a scale. Additionally six thermocouples are located in different heights above the substrate surface to indicate the LH2-level as soon as they are covered with LH2. Further measurement equipment used in the tests comprises temperature measurements inside the substrate and several thermocouples in the unconfined space above the pool where also H2-concentration measurements were performed. Using the sensor information pool evaporation rates for the different substrates were determined. The temperature and concentration measurements above the pool were mainly used to define promising ignition positions for subsequent combustion experiments in which the LH2-spills above the different substrates were ignited.
Look-ahead Scheduling of Energy-Water Nexus Integrated with Power2X Conversion Technologies under Multiple Uncertainties
Aug 2023
Publication
Co-optimizing energy and water resources in a microgrid can increase efficiency and improve economic performance. Energy-water storage (EWS) devices are crucial components of a high-efficient energy-water microgrid (EWMG). The state of charge (SoC) at the end of the first day of operation is one of the most significant variables in EWS devices since it is used as a parameter to indicate the starting SoC for the second day which influences the operating cost for the second day. Hence this paper examines the benefits and applicability of a lookahead optimization strategy for an EWMG integrated with multi-type energy conversion technologies and multienergy demand response to supply various energy-water demands related to electric/hydrogen vehicles and commercial/residential buildings with the lowest cost for two consecutive days. In addition a hybrid info-gap/robust optimization technique is applied to cover uncertainties in photovoltaic power and electricity prices as a tri-level optimization framework without generating scenarios and using the probability distribution functions. Duality theory is also used to convert the problem into a single-level MILP so that it can be solved by CPLEX. According to the findings the implemented energy-water storage systems and look-ahead strategy accounted for respectively 4.03% and 0.43% reduction in the total cost.
Multi-Objective Robust Optimization of Integrated Energy System with Hydrogen Energy Storage
Feb 2024
Publication
A novel multi-objective robust optimization model of an integrated energy system with hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon economy operation of the integrated energy system of a park. Firstly the lowest total system cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto front solution set of the objective function is applied by compromise planning and the optimal solution among them is obtained by the maximum–minimum fuzzy method. Furthermore the robust optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally it is demonstrated that the illustrated HIES can significantly reduce the total system cost carbon emissions and abandoned wind and solar power. Meanwhile the effectiveness of the proposed model and solution method is verified by analyzing the influence of multi-objective solutions and a robust coefficient on the Chongli Demonstration Project in Hebei Province.
Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production
Feb 2024
Publication
This research delineates a pivotal advancement in the domain of sustainable energy systems with a focused emphasis on the integration of renewable energy sources—predominantly wind and solar power—into the hydrogen production paradigm. At the core of this scientific endeavor is the formulation and implementation of a deep-learning-based framework for short-term localized weather forecasting specifically designed to enhance the efficiency of hydrogen production derived from renewable energy sources. The study presents a comprehensive evaluation of the efficacy of fully connected neural networks (FCNs) and convolutional neural networks (CNNs) within the realm of deep learning aimed at refining the accuracy of renewable energy forecasts. These methodologies have demonstrated remarkable proficiency in navigating the inherent complexities and variabilities associated with renewable energy systems thereby significantly improving the reliability and precision of predictions pertaining to energy output. The cornerstone of this investigation is the deployment of an artificial intelligence (AI)-driven weather forecasting system which meticulously analyzes data procured from 25 distinct weather monitoring stations across Latvia. This system is specifically tailored to deliver short-term (1 h ahead) forecasts employing a comprehensive sensor fusion approach to accurately predicting wind and solar power outputs. A major finding of this research is the achievement of a mean squared error (MSE) of 1.36 in the forecasting model underscoring the potential of this approach in optimizing renewable energy utilization for hydrogen production. Furthermore the paper elucidates the construction of the forecasting model revealing that the integration of sensor fusion significantly enhances the model’s predictive capabilities by leveraging data from multiple sources to generate a more accurate and robust forecast. The entire codebase developed during this research endeavor has been made available on an open access GIT server.
A Review of Gas Phase Inhibition of Gaseous Hydrogen Embrittlement in Pipeline Steels
Feb 2024
Publication
The addition of small amounts of certain gases such as O2 CO and SO2 may mitigate hydrogen embrittlement in high-pressure gas transmission pipelines that transport hydrogen. To practically implement such inhibition in gas transmission pipelines a comprehensive understanding and quantification of this effect are essential. This review examines the impact of various added gases to hydrogen including typical odorants on gaseous hydrogen embrittlement of steels and evaluates their inhibition effectiveness. O2 CO and SO2 were found to be effective inhibitors of hydrogen embrittlement. Yet the results in the literature have not always been consistent partly because of the diverse range of mechanical tests and their parameters. The absence of systematic studies hinders the evaluation of the feasibility of using gas phase inhibitors for controlling gaseous hydrogen embrittlement. A method to quantify the effectiveness of gas phase inhibition is proposed using gas phase permeation studies.
Real-Time Energy Management Strategy of Hydrogen Fuel Cell Hybrid Electric Vehicles Based on Power Following Strategy–Fuzzy Logic Control Strategy Hybrid Control
Nov 2023
Publication
Fuel cell hybrid electric vehicles have the advantages of zero emission high efficiency and fast refuelling etc. and are one of the key directions for vehicle development. The energy management problem of fuel cell hybrid electric vehicles is the key technology for power distribution. The traditional power following strategy has the advantage of a real-time operation but the power correction is usually based only on the state of charge of a lithium battery which causes the operating point of the fuel cell to be in the region of a low efficiency. To solve this problem this paper proposes a hybrid power-following-fuzzy control strategy where a fuzzy logic control strategy is used to optimise the correction module based on the power following strategy which regulates the state of charge while correcting the output power of the fuel cell towards the efficient operating point. The results of the joint simulation with Matlab + Advisor under the Globally Harmonised Light Vehicle Test Cycle Conditions show that the proposed strategy still ensures the advantages of real-time energy management and for the hydrogen fuel cell the hydrogen consumption is reduced by 13.5% and 4.1% compared with the power following strategy and the fuzzy logic control strategy and the average output power variability is reduced by 14.6% and 5.1% respectively which is important for improving the economy of the whole vehicle and prolonging the lifetime of fuel cell.
Calculating the Fundamental Parameters to Assess the Explosion Risk Due to Crossover in Electrolysers
Sep 2023
Publication
With the predicted high demand of hydrogen projected to support the neutral carbon society transition in the coming years the production of hydrogen is set to increase alongside the demand. As electrolysis is set to be amongst the main solutions for green hydrogen production ensuring the safety of electrolysers during operation will become a central concern. This is mainly due to the crossover risk (hydrogen into oxygen or the other way around) in the separators as throughout the years several cases of incidents have been reported. This study aims to evaluate the methodologies for calculating H2/O2 detonation cell size and laminar flame velocity using detailed kinetic mechanisms at the operating conditions of electrolysers (up to 35 bar and 360 K). Therefore the modeling of H2/O2 and H2/Air shock tube delay times and laminar flame speeds at initial different pressures and temperature based on the GRI mech 3.0 [1] Mevel et al.[2] Li et al.[3] Lutz et al. [4] and Burke et al. [5] kinetic mechanisms were performed and compared with the available experimental data in the literature. In each case a best candidate mechanism was then chosen to build a database for the detonation cell size then for the laminar flame speeds up to the operating conditions of electrolysers (293-360K and 1-35 bar).
A Review on the Research Progress and Application of Compressed Hydrogen in the Marine Hydrogen Fuel Cell Power System
Jan 2024
Publication
The urgency to mitigate greenhouse gas emissions from maritime vessels has intensified due to the increasingly stringent directives set forth by the International Maritime Organization (IMO). These directives specifically address energy efficiency enhancements and emissions reduction within the shipping industry. In this context hydrogen is the much sought after fuel for all the global economies and its applications for transportation and propulsion in particular is crucial for cutting down carbon emissions. Nevertheless the realization of hydrogen-powered vessels is confronted by substantial technical hurdles that necessitate thorough examination. This study undertakes a comprehensive analysis encompassing diverse facets including distinct variations of hydrogen fuel cells hydrogen internal combustion engines safety protocols associated with energy storage as well as the array of policies and commercialization endeavors undertaken globally for the advancement of hydrogen-propelled ships. By amalgamating insights from these multifaceted dimensions this paper adeptly encapsulates the myriad challenges intrinsic to the evolution of hydrogen-fueled maritime vessels while concurrently casting a forward-looking gaze on their prospective trajectory.
Modelling of Hydrogen Dispersion with Effects
Sep 2023
Publication
The paper shows the latest developments of Gexcon’s consequence modelling software EFFECTS with validation based on hydrogen experimental data for different storage conditions and scenarios including liquid hydrogen two-phase jet releases. The effect of atmospheric turbulence on the dispersion and potential worst-case scenarios of hydrogen which are very different from heavy gas releases are discussed. Beside validation for gaseous hydrogen releases a validation study for pressurised liquid hydrogen jet releases including a sensitivity analysis is performed and the results are compared with experimental data.
Comparative Life Cycle Greenhouse Gas Analysis of Clean Hydrogen Pathways: Assessing Domestic Production and Overseas Import in South Korea
Sep 2023
Publication
The development of a Clean Hydrogen Standard based on life-cycle greenhouse gas (GHG) emissions is gaining prominence on the international agenda. Thus a framework for assessing life-cycle GHG emissions for clean hydrogen pathways is necessary. In this study the comprehensive datasets and effects of various scenarios encompassing hydrogen production carriers (liquid hydrogen ammonia methylcyclohexane) carbon capture and storage (CCS) target analysis year (2021 2030) to reflect trends of greening grid electricity and potential import countries on aggregated life-cycle GHG emissions were presented. South Korea was chosen as a case study region and the low-carbon alternatives were suggested for reducing aggregated emissions to meet the Korean standard (5 kgCO2e/kgH2). First capturing and storing nearly entire (>90%) CO2 from fossil- and waste-based production pathways is deemed essential. Second when repurposing the use of hydrogen that was otherwise used internally applying a penalty for substitution is appropriate leading to results notably exceeding the standard. Third for electrolysis-based hydrogen using renewable or nuclear electricity is essential. Lastly when hydrogen is imported in a well-to-point-of-delivery (WtP) perspective using renewable electricity during hydrogen conversion into a carrier and reusing the produced hydrogen for endothermic reconversion reaction are recommended. By implementing the developed calculation framework to other countries' cases it was observed that importing hydrogen to regions having scope of WtP or above (e.g. well-to-wheel) might not meet the threshold due to additional emissions from importation processes. Additionally for hydrogen carriers undergoing the endothermic reconversion the approach to reduce WtP emissions (reusing produced hydrogen) may conflict with the approach to reduce well-to-gate (WtG) emission (using external fossilbased fuel). The discrepancy highlights the need to set a broader scope of emissions assessment to effectively promote the life-cycle emission reduction efforts of hydrogen importers. This study contributes to the field of clean hydrogen GHG emission assessment offering a robust database and calculation framework while addressing the effects of greening grid electricity and CCS implementation proposing low-carbon alternatives and GHG assessment scope to achieve global GHG reduction.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Modelling the Non-adiabatic Blowdown of Pressurised Cryogenic Hydrogen Storage Tank
Sep 2023
Publication
This paper describes a model of hydrogen blowdown dynamics for storage tanks needed for hydrogen safety engineering to accurately represent incident scenarios. Heat transfer through a tank wall affects the temperature and pressure dynamics inside the storage vessel and therefore the characteristics of the resulting hydrogen jet in case of loss of containment. Available non-adiabatic blowdown models are validated only against experiments on hydrogen storages at ambient temperature. Effect of heat transfer for cryo-compressed hydrogen can be more significant due to a larger temperature difference between the stored hydrogen and surrounding atmosphere especially in case of failure of equipment insulation. Previous work by the authors demonstrated that the heat transfer through a discharge pipe wall can significantly affect the mass flow rate of cryogenic hydrogen releases. To the authors’ knowledge thoroughly validated models of non-adiabatic blowdown dynamics for cryo-compressed hydrogen are currently missing. The present work further develops the non-adiabatic blowdown model at ambient temperature using the under-expanded jet theory developed at Ulster University to expand it to cryo-compressed hydrogen storages. The non-ideal behaviour of cryo-compressed hydrogen is accounted through the high-accuracy Helmholtz energy formulations. The developed model includes effect of heat transfer at both the tank and discharge pipe wall. The model is thoroughly validated against sixteen tests performed by Pro-Science on blowdown of hydrogen storage tanks with initial pressure 0.5-20 MPa and temperature 80-310 K through release nozzle of diameter 0.5-4.0 mm. The model well reproduces the experimental pressure and temperature dynamics during the entire blowdown duration.
Energy Sustainability: A Pragmatic Approach and Illustrations
Mar 2009
Publication
Many factors to be appropriately addressed in moving towards energy sustainability are examined. These include harnessing sustainable energy sources utilizing sustainable energy carriers increasing efficiency reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability economic affordability and equity lifestyles land use and aesthetics. Numerous illustrations demonstrate measures consistent with the approach put forward and options for energy sustainability and the broader objective of sustainability. Energy sustainability is of great importance to overall sustainability given the pervasiveness of energy use its importance in economic development and living standards and its impact on the environment.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
QRA of Hydrogen Vehicles in a Road Tunnel
Sep 2023
Publication
Hydrogen energy is recognized by many European governments as an important part of the development to achieve a more sustainable energy infrastructure. Great efforts are spent to build up a hydrogen supply chain to support the increasing number of hydrogen-powered vehicles. Naturally these vehicles will use the common traffic infrastructure. Thus it has to be ensured these infrastructures are capable to withstand the hazards and associated risks that may arise from these new technologies. In order to have an appropriate assessment tool for hydrogen vehicles transport through tunnels a new QRA methodology is developed and presented here. In Europe the PIARC is a very common approach. It is therefore chosen as a starting point for the new methodology. It provides data on traffic statistics accident frequencies tunnel geometries including certain prevention and protection measures. This approach is enhanced by allowing better identification of hazards and their respective sources for hydrogen vehicles. A detailed analysis of the accident scenarios that are unique for hydrogen vehicles hereunder the initiating events severity of collision types that may result in a release of hydrogen gas in a tunnel and the location of such an accident are included. QRA enables the assessment and evaluation of scenarios involving external fires or vehicles that burst into fire because of an accident or other fire sources. Event Tree Analysis is the technique used to estimate the event frequencies. The consequence analysis includes the hazards from blast waves hydrogen jet fires DDT.
An Overview of Hydrogen Valleys: Current Status, Challenges and their Role in Increased Renewable Energy Penetration
Sep 2024
Publication
Renewable hydrogen is a flexible and versatile energy vector that can facilitate the decarbonization of several sectors and simultaneously ease the stress on the electricity grids that are currently being saturated with intermittent renewable power. But hydrogen technologies are currently facing limitations related to existing infrastructure limitations available markets as well as production storage and distribution costs. These challenges will be gradually addressed through the establishment operation and scaling-up of hydrogen valleys. Hydrogen valleys are an important stepping stone towards the full-scale implementation of the hydrogen economy with the target to foster sustainability lower carbon emissions and derisk the associated hydrogen technologies. These hydrogen ecosystems integrate renewable energy sources efficient hydrogen production storage transportation technologies as well as diverse end-users within a defined geographical region. This study offers an overview of the hydrogen valleys concept analyzing the critical aspects of their design and the key segments that constitute the framework of a hydrogen valley. А holistic overview of the key characteristics of a hydrogen valley is provided whereas an overview of key on-going hydrogen valley projects is presented. This work underscores the importance of addressing challenges related to the integration of renewable energy sources into electricity grids as well as scale-up challenges associated with economic and market conditions society awareness and political decision-making.
GT Enclosure Dispersion Analysis with Different CFD Tools
Sep 2023
Publication
A gas turbine is usually installed inside an acoustic enclosure where the fuel gas supply system is also placed. It is common practice using CFD analysis to simulate the accidental fuel gas release inside the enclosure and the consequent dispersion. These numerical studies are used to properly design the gas detection system according to specific safety criteria which are well defined when the fuel gas is a conventional natural gas. Package design is done to prevent that any sparking items and hot surfaces higher than auto-ignition temperature could be a source of ignition in case of leak. Nevertheless it is not possible to exclude that a leakage from a theoretical point of view could be ignited and for this reason a robust design requires that the enclosure structure is able to withstand the overpressure generated by a gas cloud ignition. Moving to hydrogen as fuel gas makes this design constraint much more relevant for its known characteristics of reactiveness large range of flammability maximum burning velocity etc. In such context gas leak and dispersion analysis become even more crucial because a correct prediction of these scenarios can guide the design to a safe configuration. The present work shows a comparison of the dispersion of different leakages inside a gas turbine enclosure carried out with two different CFD tools Ansys CFX and FLACS. This verification is considered essential since dispersion analysis results are used as initial conditions for gas cloud ignition simulations strictly necessary to predict the consequence in term of overpressure without doing experimental tests.
Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station
Jun 2024
Publication
With the rapid development of hydrogen energy worldwide the number of hydrogen energy facilities such as hydrogen refueling stations has grown rapidly in recent years. However hydrogen is prone to leakage accidents during use which could lead to hazards such as fires and explosions. Therefore research on the safety of hydrogen energy facilities is crucial. In this paper a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.
No more items...