- Home
- A-Z Publications
- Publications
Publications
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
Mar 2023
Publication
The development of innovative technologies based on employing green energy carriers such as hydrogen is becoming high in demand especially in the automotive sector as a result of the challenges associated with sustainable mobility. In the present review a detailed overview of the entire hydrogen supply chain is proposed spanning from its production to storage and final use in cars. Notably the main focus is on Polymer Electrolyte Membrane Fuel Cells (PEMFC) as the fuel-cell type most typically used in fuel cell electric vehicles. The analysis also includes a cost assessment of the various systems involved; specifically the materials commonly employed to manufacture fuel cells stacks and hydrogen storage systems are considered emphasizing the strengths and weaknesses of the selected strategies together with assessing the solutions to current problems. Moreover as a sought-after parallelism a comparison is also proposed and discussed between traditional diesel or gasoline cars battery-powered electric cars and fuel cell electric cars thus highlighting the advantages and main drawbacks of the propulsion systems currently available on the market.
Public Facing Safety and Education for Hydrogen Fueling Infrastructure
Sep 2023
Publication
Building safe and convenient fuelling stations is key to deploying the arrival of commercial/public-use fuel cell electric vehicles (FCEVs). As the most public-facing hydrogen applications second only to the FCEVs hydrogen stations are an efficient tool to educate the public about hydrogen safety and normalize its use to fill up our vehicles. However as an emerging technology it is the industry’s responsibility to ensure that fuelling infrastructures are designed and maintained in accordance with established safety standards and thus that the fuelling process is inherently safe for all users. On the other end it is essential that consumers have all the necessary information at reach to help them feel safe while fuelling their zero-emission vehicles.<br/>This paper will provide a snapshot of the safety systems used to help protect members of the public using hydrogen fueling stations as well as the information used to educate people using this equipment. This will cover the different processes involved in hydrogen fueling stations the dangers that are present to customers and members of the public at these sites and the engineering design choices and equipment used to mitigate these dangers or prevent them from happening. Finally this paper will discuss the crucial role of understanding the dangers of hydrogen at a public level and showing the importance of educating the public about hydrogen infrastructure so that people will feel comfortable using it in their everyday lives.
Hydrogenerally - Episode 9: Nuclear Hydrogen
Jan 2023
Publication
In this episode of the podcast Debra Jones Chemistry Knowledge Transfer Manager and Ray Chegwin Nuclear Knowledge Transfer Manager from Innovate UK KTN talk about nuclear uses for hydrogen with special guest Allan Simpson Technical Lead at the National Nuclear Laboratory.
The podcast can be found on their website.
The podcast can be found on their website.
The European Hydrogen Policy Landscape
Apr 2024
Publication
This report aims to summarise the status of the European hydrogen policies and standards landscape. It is based on the information available at the European Hydrogen Observatory (EHO) platform the leading source of data and information on hydrogen in Europe (EU27 EFTA and the UK) providing an overview of the European and national policies legislations strategies and codes and standards which impact the deployment of hydrogen technologies and infrastructures. The EHO database covers a total of 29 EU policies and legislations that directly or indirectly affect the development and deployment of hydrogen technologies. To achieve its net zero ambitions the EU started with cross-cutting strategies such as the EU Green Deal and the EU Hydrogen Strategy setting forward roadmaps and targets that are to be achieved in the near future. As a next step the EU has developed legislations such as those bundled in the Fit for 55 package to meet the targets they have put forward. The implemented legislations including funding vehicles and initiatives have an impact on the whole value chain of hydrogen including production transport storage and distribution and end-uses. At national level as of July 2023 63% of the European countries have successfully published their national strategies in the hydrogen sector while 6% of the countries are currently in the draft stage. Several European countries have strategically incorporated quantitative indicators within their national strategies outlining their targets and estimates across the hydrogen value chain. This deliberate approach reflects a commitment to providing clear and measurable goals within their hydrogen strategies. A target often used in the national strategies is on electrolyser capacity as an effort to enhance the domestic renewable hydrogen production. Germany took the lead with an ambitious goal of achieving 10 GW by 2030 followed by France (6.5 GW) and Denmark (4 - 6 GW). Other targets that some of the countries use in their strategies are on the number of hydrogen refuelling stations fuel cell electric vehicles and total (renewable) hydrogen demand. A few countries also have targets on renewable hydrogen uptake in industry and hydrogen injection limit in the transmission grid. To monitor the policies and legislation that are adopted on a national level across the hydrogen value chain a survey was launched with national experts which was validated by Hydrogen Europe. In total 28 European countries have participated to the survey. On production the survey revealed that 61% of country specialists report that their country provides support for capital expenditure (CAPEX) in the development of renewable or low-carbon hydrogen production plants. Moreover 7 countries also provide support for operational expenditure (OPEX). Furthermore 8 countries have instituted official 6 permitting guidelines for hydrogen production projects while 5 countries have enacted a legal act or established an agency serving as a single point of contact for hydrogen project developers. For transmission only two countries reported to provide support schemes for hydrogen injection. Several countries have policies in place that clearly define the hydrogen limit in their transmission grid for now and in the future ranging from 0.02% up to 15% while a few countries define within their policies the operation of hydrogen storage facilities. On end-use the majority of countries totalling 71% reported to have implemented support schemes aimed at promoting the adoption of hydrogen in the mobility sector. Purchase subsidies stand out as the predominant form of support for fuel cell electric vehicles (FCEVs) with implementation observed in 17 countries. In the context of support schemes for stationary fuel applications for heating or power generation only two countries have adopted such measures. A slightly larger group of four countries do provide support for the deployment of residential and commercial heating systems utilizing hydrogen. For hydrogen end-use in industry a total of 9 countries reported to provide support schemes with a major focus on ammonia production (8) and the chemicals industry (7). On the topic of technology manufacturing 7 countries have reported to have support schemes of which grants emerge as the mainly used method (4). Exploring the latest advancements into European codes and standards relevant to the deployment of hydrogen technologies and infrastructures a total of 11 standards have been revised and developed between January 2022 and September 2023. This includes standards covering the following areas: 6 for fuel cell technologies 2 for gas cylinders 2 for road vehicles and 1 for hydrogen refuelling. Moreover 5 standards were published since September 2023 which will be added to the EHO database in its next update. This includes ISO/TS 19870:2023 which sets a methodology for determining the greenhouse gas emissions associated with the production conditioning and transport of hydrogen to consumption gate. This landmark standard which was unveiled at COP28 aims to act as a foundation for harmonization safety interoperability and sustainability across the hydrogen value chain.
Study on Hydrogen in Ports and Industrial Coastal Areas - Report 1
Jan 2023
Publication
The study feeds into the work of the Global Hydrogen Ports Coalition launched at the latest Clean Energy Ministerial (CEM12). This important international initiative brings together ports from around the world to work together on hydrogen technologies. The planned study will be a comprehensive assessment of the hydrogen demand in ports and industrial coastal areas enabling the creation of a 'European Hydrogen Ports Roadmap'. It will also feature clear economic forecasts based on a variety of business models for the transition to renewable hydrogen in ports while presenting new case studies and project concepts. “The objective is to provide new directions for research and innovation guidance for regulation codes and standards and proposals on policy and regulation. The forthcoming study will also help create impetus for stakeholders to come together and take a long term perspective on the hydrogen transition in ports. Finally the study will be a centralized resource It will form a Europe wide hydrogen ports ' when combined with roadmaps and other materials created by individual ports.
Hydrogen Production Using Advanced Reactors by Steam Methane Reforming: A Review
Apr 2023
Publication
The present review focuses on the current progress on harnessing the potential of hydrogen production by Methane Steam Reforming (MSR). First based on the prominent literature in last few years the overall research efforts of hydrogen production using different feed stocks like ethanol ammonia glycerol methanol and methane is presented. The presented data is based on reactor type reactor operating conditions catalyst used and yield of hydrogen to provide a general overview. Then the most widely used process [steam methane reforming (SMR)/ methane steam reforming (MSR)] are discussed. Major advanced reactors the membrane reactors Sorption Enhanced methane steam reforming reactors and micro-reactors are evaluated. The evaluation has been done based on parameters like residence time surface area scale-up coke formation conversion space velocity and yield of hydrogen. The kinetic models available in recently published literature for each of these reactors have been presented with the rate constants and other parameters. The mechanism of coke formation and the rate expressions for the same have also been presented. While membrane reactors and sorption enhanced reactors have lot of advantages in terms of process intensification scale-up to industrial scale is still a challenge due to factors like membrane stability and fouling (in membrane reactors) decrease in yield with increasing WHSV (in case of Sorption Enhanced Reactors). Micro-reactors pose a higher potential in terms of higher yield and very low residence time in seconds though the volumes might be substantially lower than present industrial scale conventional reactors.
Spatiotemporal Analysis of Hydrogen Requirement to Minimize Seasonal Variability in Future Solar and Wind Energy in South Korea
Nov 2022
Publication
Renewable energy supply is essential for carbon neutrality; however technologies aiming to optimally utilize renewable energy sources remain insufficient. Seasonal variability in renewable energy is a key issue which many studies have attempted to overcome through operating systems and energy storage. Currently hydrogen is the only technology that can solve this seasonal storage problem. In this study the amount of hydrogen required to circumvent the seasonal variability in renewable energy supply in Korea was quantified. Spatiotemporal analysis was conducted using renewable energy resource maps and power loads. It was predicted that 50% of the total power demand in the future will be met using solar and wind power and a scenario was established based on the solar-to-wind ratio. It was found that the required hydrogen production differed by approximately four-times depending on the scenarios highlighting the importance of supplying renewable energy at an appropriate ratio. Spatially wind power was observed to be unsuitable for the physical transport of hydrogen because it has a high potential at mountain peaks and islands. The results of this study are expected to aid future hydrogen research and solve renewable energy variability problems.
Techno-economic Analysis of Developing an Underground Hydrogen Storage Facility in Depleted Gas Field: A Dutch Case Study
Apr 2023
Publication
Underground hydrogen storage will be an essential part of the future hydrogen infrastructure to provide flexibility and security of supply. Storage in porous reservoirs should complement storage in salt caverns to be able to meet the projected high levels of required storage capacities. To assess its techno-economic feasibility a case study of hydrogen storage in a depleted gas field in the Netherlands is developed. Subsurface modelling is performed and various surface facility design concepts are investigated to calculate the levelized cost of hydrogen storage (LCOHS). Our base case with hydrogen as cushion gas results in an LCOHS of 0.79 EUR/kg (range of 0.58–1.04 EUR/kg). Increasing the number of full-cycle equivalents from 1 to 6 lowers the storage cost to 0.25 EUR/kg. The investment cost of the cushion gas represents 76% of the total cost. With nitrogen as cushion gas LCOHS is reduced to 0.49 EUR/kg (range of 0.42–0.56 EUR/kg).
Techno-economic Assessment of Green Ammonia Production with Different Wind and Solar Potentials
Nov 2022
Publication
This paper focuses on developing a fast-solving open-source model for dynamic power-to-X plant techno-economic analysis and analysing the method bias that occurs when using other state-of-the-art power-to-X cost calculation methods. The model is a least-cost optimisation of investments and operation-costs taking as input techno-economic data varying power profiles and hourly grid prices. The fuel analysed is ammonia synthesised from electrolytic hydrogen produced with electricity from photovoltaics wind turbines or the grid. Various weather profiles and electrolyser technologies are compared. The calculated costs are compared with those derived using methods and assumptions prevailing in most literature. Optimisation results show that a semi-islanded set-up is the cheapest option and can reduce the costs up to 23% compared to off-grid systems but leads to e-fuels GHG emissions similar to fossil fuels with today’s electricity blend. For off-grid systems estimating costs using solar or wind levelized cost of electricity and capacity factors to derive operating hours leads to costs overestimation up to 30%. The cheapest off-grid configuration reaches production costs of 842 e/t3 . For comparison the "grey" ammonia price was 250 e/t3 in January 2021 and 1500 e/t3 in April 2022 (Western Europe). The optimal power mix is found to always include photovoltaic with 1-axis tracking and sometimes different types of onshore wind turbines at the same site. For systems fully grid connected approximating a highly fluctuating electricity price by a yearly average and assuming a constant operation leads to a small cost.
Hydrogen Micro-Systems: Households’ Preferences and Economic Futility
Mar 2024
Publication
This study examines the potential market for residential hydrogen systems in light of the trends towards digitalisation and environmental awareness. Based on a survey of 350 participants the results indicate that although energy experts are sceptical about the benefits of residential hydrogen systems due to their high costs households are highly interested in this technology. The sample shows a willingness to invest in hydrogen applications with some households willing to pay an average of 24% more. An economic assessment compared the cost of a residential hydrogen system with conventional domestic energy systems revealing significant additional costs for potential buyers interested in hydrogen applications.
2021 Hydrogen Supply and Demand
Sep 2021
Publication
Purpose: The purpose of the hydrogen supply and demand data stream is to track changes in the structure of hydrogen supply capacity and demand in Europe. This report is mainly focused on presenting the current landscape that will allow for future year-on-year comparisons to assess the progress Europe is making with regards to deployment of clean hydrogen production capacity as well as development of demand for clean hydrogen from emerging new hydrogen applications in industry or mobility sectors. Scope: The following report contains data about hydrogen production capacity and consumption in EU countries together with Switzerland Norway Iceland and the United Kingdom. Hydrogen production capacity is presented by country and by production technology whereas the hydrogen consumption data is presented by country and by end-use sector. The analysis undertaken for this report was completed using data reflecting end of 2019. Key Findings: The current hydrogen market (on both the demand and supply side) is dominated by ammonia and refining industries with three countries (DE NL PL) responsible for almost half of hydrogen consumption. Hydrogen is overwhelmingly produced by reforming of fossil fuels (mostly natural gas). Clean hydrogen production capacities are currently insignificant with hydrogen produced from natural gas coupled with carbon capture at 0.5% and hydrogen produced from water electrolysis at 0.14% of total production capacity.
Potential of Producing Green Hydrogen in Jordan
Nov 2022
Publication
Green hydrogen is becoming an increasingly important energy supply source worldwide. The great potential for the use of hydrogen as a sustainable energy source makes it an attractive energy carrier. In this paper we discuss the potential of producing green hydrogen in Jordan. Aqaba located in the south of Jordan was selected to study the potential for producing green hydrogen due to its proximity to a water source (i.e. the Red Sea). Two models were created for two electrolyzer types using MATLAB. The investigated electrolyzers were alkaline water (ALK) and polymeric electrolyte membrane (PEM) electrolyzers. The first model was used to compare the required capacity of the PV solar system using ALK and PEM from 2022 to 2025 depending on the learning curves for the development of these technologies. In addition this model was used to predict the total investment costs for the investigated electrolyzers. Then a techno-economic model was constructed to predict the feasibility of using this technology by comparing the use of a PV system and grid electricity as sources for the production of hydrogen. The net present value (NPV) and levelized cost of hydrogen (LCOH) were used as indicators for both models. The environmental effect according to the reduction of CO2 emissions was also taken into account. The annual production of hydrogen was 70.956 million kg. The rate of hydrogen production was 19.3 kg/s and 1783 kg/s for ALK and PEM electrolyzers respectively. The LCOH was 4.42 USD/kg and 3.13 USD/kg when applying electricity from the grid and generated by the PV system respectively. The payback period to cover the capital cost of the PV system was 11 years of the project life with a NPV of USD 441.95 million. Moreover CO2 emissions can be reduced by 3042 tons/year by using the PV as a generation source instead of fossil fuels to generate electricity. The annual savings with respect to the reduction of CO2 emissions was USD 120135.
Market Uptake and Impact of Key Green Aviation Technologies
Jan 2023
Publication
Steer was appointed by the Directorate-General of Research and Innovation (DG RTD) to undertake an overview of key green aviation technologies and conditions for their market uptake. Steer is being supported in delivery by the Institute of Air Transport and Airport Research of the German Aerospace Centre DLR. The study was undertaken in the context of the Clean Aviation Partnership’s Strategic Research and Innovation Agenda (SRIA) for the period 2030-2050. The objective of the project is to identify the prerequisites for the market entry of climate-neutral aviation technologies as well as the flanking measures required for this to be successful. The scope of the study is hydrogen and electrically powered aircraft in the regional and short/medium range categories taking a holistic view on the technological development and keeping the economic context in mind. The outcome of the study will serve as guidance for the Commission and other actors with regard to further policy or industry initiatives such as in the context of Horizon Europe or the Alliance Zero Emission Aviation.
Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model—A Comparative Study
Apr 2021
Publication
Facing global warming and recent bans on the use of diesel in vehicles there is a growing need to develop vehicles powered by renewable energy sources to mitigate greenhouse gas and pollutant emissions. Among the various forms of non-fossil energy for vehicles hydrogen fuel is emerging as a promising way to combat global warming. To date most studies on vehicle carbon emissions have focused on diesel and electric vehicles (EVs). Emission assessment methodologies are usually developed for fast-moving consumer goods (FMCG) which are non-durable household goods such as packaged foods beverages and toiletries instead of vehicle products. There is an increase in the number of articles addressing the product carbon footprint (PCF) of hydrogen fuel cell vehicles in the recent years while relatively little research focuses on both vehicle PCF and fuel cycle. Zero-emission vehicles initiative has also brought the importance of investigating the emission throughout the fuel cycle of hydrogen fuel cell and its environmental impact. To address these gaps this study uses the life-cycle assessment (LCA) process of GREET (greenhouse gases regulated emissions and energy use in transportation) to compare the PCF of an EV (Tesla Model 3) and a hydrogen fuel cell car (Toyota MIRAI). According to the GREET results the fuel cycle contributes significantly to the PCF of both vehicles. The findings also reveal the need for greater transparency in the disclosure of relevant information on the PCF methodology adopted by vehicle manufacturers to enable comparison of their vehicles’ emissions. Future work will include examining the best practices of PCF reporting for vehicles powered by renewable energy sources as well as examining the carbon footprints of hydrogen production technologies based on different methodologies.
Greenhouse Gas Reduction Potential and Cost-effectiveness of Economy-wide Hydrogen-natural Gas Blending for Energy End Uses
Sep 2022
Publication
North American and European jurisdictions are considering repurposing natural gas infrastructure to deliver a lower carbon blend of natural gas and hydrogen; this paper evaluates the greenhouse gas reduction potential and cost-effectiveness of the repurposing. The analysis uses a bottom-up economy-wide energy-systems model of an emission-intensive jurisdiction Alberta Canada to evaluate 576 long-term scenarios from 2026 to 2050. Many scenarios were included to give the analysis broad international applicability and differ by sector hydrogen blending intensity carbon policy and hydrogen infrastructure development. Twelve hydrogen production technologies are compared in a long-term greenhouse gas and cost analysis including advanced technologies. Autothermal reforming with carbon capture provides both lower-carbon and lower-cost hydrogen compared to most other technologies in most futures even with high fugitive natural gas production emissions. Using hydrogen-natural gas blends for end-use energy applications eliminates 1–2% of economy-wide GHG emissions and marginal GHG abatement costs become negative at carbon prices over $300/tonne. The findings are useful for stakeholders expanding the international low-carbon hydrogen economy and governments engaged in formulating decarbonization policies and are considering hydrogen as an option.
Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China
Mar 2023
Publication
The transition towards low-carbon energy and power has been extensively studied by research institutions and scholars. However the investment demand during the transition process has received insufficient attention. To address this gap an energy investment estimation method is proposed in this paper which takes the unit construction costs and potential development of major technology in the energy and power sector as input. The proposed estimation method can comprehensively assess the investment demand for various energy sources in different years including coal oil natural gas biomass power and hydrogen energy. Specifically we applied this method to estimate the investment demand of China’s energy and power sector from 2020 to 2060 at five year intervals. The results indicate that China’s cumulative energy investment demand over this period is approximately 127 trillion CNY with the power sector accounting for the largest proportion at 92.35% or approximately 117 trillion CNY. The calculated cumulative investment demand is consistent with the findings of several influential research institutions providing validation for the proposed method.
Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends
Jan 2020
Publication
Ammonia a chemical that contains high hydrogen quantities has been presented as a candidate for the production of clean power generation and aerospace propulsion. Although ammonia can deliver more hydrogen per unit volume than liquid hydrogen itself the use of ammonia in combustion systems comes with the detrimental production of nitrogen oxides which are emissions that have up to 300 times the greenhouse potential of carbon dioxide. This factor combined with the lower energy density of ammonia makes new studies crucial to enable the use of the molecule through methods that reduce emissions whilst ensuring that enough power is produced to support high-energy intensive applications. Thus this paper presents a numerical study based on the use of novel reaction models employed to characterize ammonia combustion systems. The models are used to obtain Reynolds Averaged Navier-Stokes (RANS) simulations via Star-CCM+ with complex chemistry of a 70%–30% (mol) ammonia–hydrogen blend that is currently under investigations elsewhere. A fixed equivalence ratio (1.2) medium swirl (0.8) and confined conditions are employed to determine the flame and species propagation at various operating atmospheres and temperature inlet values. The study is then expanded to high inlet temperatures high pressures and high flowrates at different confinement boundary conditions. The results denote how the production of NOx emissions remains stable and under 400 ppm whilst higher concentrations of both hydrogen and unreacted ammonia are found in the flue gases under high power conditions. The reduction of heat losses (thus higher temperature boundary conditions) has a crucial impact on further destruction of ammonia post-flame with a raise in hydrogen water and nitrogen through the system thus presenting an opportunity of combustion efficiency improvement of this blend by reducing heat losses. Final discussions are presented as a method to raise power whilst employing ammonia for gas turbine systems.
Advances in Hydrogen Production from Natural Gas Reforming
Jun 2021
Publication
Steam natural gas reforming is the preferred technique presently used to produce hydrogen. Proposed in 1932 the technique is very well established but still subjected to perfections. Herein first the improvements being sought in catalysts and processes are reviewed and then the advantage of replacing the energy supply from burning fuels with concentrated solar energy is discussed. It is especially this advance that may drastically reduce the economic and environmental cost of hydrogen production. Steam reforming can be easily integrated into concentrated solar with thermal storage for continuous hydrogen production.
Refuelling Infrastructure Requirements for Renewable Hydrogen Road Fuel through the Energy Transition
Nov 2022
Publication
Current commercially available options for decarbonisation of road transport are battery electric vehicles or hydrogen fuel cell electric vehicles. BEVs are increasingly deployed while hydrogen is in its infancy. We examine the infrastructure necessary to support hydrogen fuelling to various degrees of market penetration. Scotland makes a good exemplar of transport transition with a world leading Net-Zero ambition and proven pathways for generating ample renewable energy. We identified essential elements of the new transport systems and the associated capital expenditure. We developed nine scenarios based on the pace of change and the ultimate market share of hydrogen and constructed a model to analyse their infrastructure requirements. This is a multi-period model incorporating Monte Carlo and Markov Chain elements. A “no-regrets” initial action is rapid deployment of enough hydrogen infrastructure to facilitate the early years of a scenario where diesel fuel becomes replaced with hydrogen. Even in a lower demand scenario of only large and heavy goods vehicles using hydrogen the same infrastructure would be required within a further two years. Subsequent investment in infrastructure could be considered in the light of this initial development.
Ammonia as a Suitable for Fuel Cells
Aug 2014
Publication
Ammonia an important basic chemical is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen ammonia has many advantages. In this mini-review the suitability of ammonia as fuel for fuel cells the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.
No more items...