- Home
- A-Z Publications
- Publications
Publications
Performance and Failure Analysis of a Retrofitted Cessna Aircraft with a Fuel Cell Power System Fuelled with Liquid Hydrogen
Jan 2022
Publication
Proton-Exchange Membrane-Fuel Cells (PEM-FC) are regarded as one of the prime candidates to provide emissions-free electricity for propulsion systems of aircraft. Here a turbocharged Fuel Cell Power System (FCPS) powered with liquid H2 (LH2) is designed and modelled to provide a primary power source in retrofitted Cessna 208 Caravan aircraft. The proposed FCPS comprises multiple PEM-FCs assembled in stacks two single-stage turbochargers to mitigate the variation of the ambient pressure with altitude two preheaters two humidifiers and two combustors. Interlinked component sub-models are constructed in MATLAB and referenced to commercially available equipment. The FCPS model is used to simulate steady-state responses in a proposed 1.5 h (∼350 km) mission flight determining the overall efficiency of the FCPS at 43% and hydrogen consumption of ∼28 kg/h. The multi-stack FCPS is modelled applying parallel fluidic and electrical architectures analysing two power-sharing methods: equally distributed and daisy-chaining. The designed LH2-FCPS is then proposed as a power system to a retrofitted Cessna 208 Caravan and with this example analysed for the probability of failure occurrence. The results demonstrate that the proposed “dual redundant” FCPS can reach failure rates comparable to commercial jet engines with a rate below 1.6 failures per million hours.
Risk Perception of an Emergent Technology: The Case of Hydrogen Energy
Jan 2006
Publication
Although hydrogen has been used in industry for many years as a chemical commodity its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS) Genetically Modified Organisms and Food (GM) and Nanotechnology (NT)—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this because the framing of risks and benefits is necessarily embedded in a cultural and ideological context and is subject to change as experience of the emergent technology unfolds.
Experimental Study for Thermal Methane Cracking Reaction to Generate Very Pur Hydrogen in Small or Medium Scales by Using Regenrative Reactor
Sep 2022
Publication
Non-catalytic thermal methane cracking (TMC) is an alternative for hydrogen manufacturing and traditional commercial processes in small-scale hydrogen generation. Supplying the high-level temperatures (850–1800°C) inside the reactors and reactor blockages are two fundamental challenges for developing this technology on an industrial scale (Mahdi Yousefi and Donne 2021). A regenerative reactor could be a part of a solution to overcome these obstacles. This study conducted an experimental study in a regenerative reactor environment between 850 and 1170°C to collect the conversion data and investigate the reactor efficiency for TMC processes. The results revealed that the storage medium was a bed for carbon deposition and successfully supplied the reaction’s heat with more than 99.7% hydrogen yield (at more than 1150°C). Results also indicated that the reaction rate at the beginning of the reactor is much higher and the temperature dependence in the early stages of the reaction is considerably higher. However after reaching a particular concentration of Hydrogen at each temperature the influence of temperature on the reaction rate decreases and is almost constant. The type of produced carbon in the storage medium and its auto-catalytic effect on the reactions were also investigated. Results showed that carbon black had been mostly formed but in different sizes from 100 to 2000 nm. Increasing the reactor temperature decreased the size of the generated carbon. Pre-produced carbon in the reactor did not affect the production rate and is almost negligible at more than 850°C.
Operation of a Circular Economy, Energy, Environmental System at a Wastewater Treatment Plant
Oct 2022
Publication
Decarbonising economies and improving environment can be enhanced through circular economy energy and environmental systems integrating electricity water and gas utilities. Hydrogen production can facilitate intermittent renewable electricity through reduced curtailment of electricity in periods of over production. Positioning an electrolyser at a wastewater treatment plant with existing sludge digesters offers significant advantages over stand-alone facilities. This paper proposes co-locating electrolysis and biological methanation technologies at a wastewater treatment plant. Electrolysis can produce oxygen for use in pure or enhanced oxygen aeration offering a 40% reduction in emissions and power demand at the treatment facility. The hydrogen may be used in a novel biological methanation system upgrading carbon dioxide (CO2)in biogas from sludge digestion yielding a 54% increase in biomethane production. A 10MW electrolyser operating at 80% capacity would be capable of supplying the oxygen demand for a 426400 population equivalent wastewater treatment plant producing 8500 tDS/a of sludge. Digesting the sludge could generate 1409000 m 3 CH4/a and 776000 m 3 CO2/a. Upgrading the CO2 to methane would consume 22.2% of the electrolyser generated hydrogen and capture 1.534 ktCO2e/a. Hydrogen and methane are viable advanced transport fuels that can be utilised in decarbonising heavy transport. In the proposed circular economy energy and environment system sufficient fuel would be generated annually for 94 compressed biomethane gas (CBG) heavy goods vehicles (HGV) and 296 compressed hydrogen gas fuel cell (CHG) HGVs. Replacement of the equivalent number of diesel HGVs would offset approximately 16.1 ktCO2e/a.
Everything About Hydrogen Podcast: Manufacturing the Components of a Hydrogen Economy
Dec 2022
Publication
On today’s episode Alicia Chris and Patrick are chatting with Vonjy Rakajoba UK Managing Director at Robert Bosch. The Bosch Group is a leading global supplier of technology and services and employs roughly 402600 associates worldwide. Its operations are divided into four business sectors: Mobility Solutions Industrial Technology Consumer Goods and Energy and Building Technology. Bosch believes that hydrogen has a bright future as an energy carrier and is making considerable upfront investments in this area. From 2021 to 2024 the company plans to invest around 600 million euros in mobile fuel-cell applications and a further 400 million euros in stationary ones for the generation of electricity and heat. Vonjy is here with us to discuss more about what Bosch’s expansion into the hydrogen energy sector will look like and how the company expects the market to grow moving forward.
The podcast can be found on their website.
The podcast can be found on their website.
Derivation and Validation of a Reference Data-based Real Gas Model for Hydrogen
Mar 2023
Publication
Hydrogen plays an important role for the decarbonization of the energy sector. In its gaseous form it is stored at pressures of up to 1000 bar at which real gas effects become relevant. To capture these effects in numerical simulations accurate real gas models are required. In this work new correlation equations for relevant hydrogen properties are developed based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Within the regarded temperature (150e400 K) and pressure (0.1e1000 bar) range this approach yields a substantially improved accuracy compared to other databased correlations. Furthermore the developed equations are validated in a numerical simulation of a critical flow Venturi nozzle. The results are in much better accordance with experimental data compared to a cubic equation of state model. In addition the simulation is even slightly faster.
A Flexible Techno-economic Analysis Tool for Regional Hydrogen Hubs - A Case Study for Ireland
Apr 2023
Publication
The increasing urgency with which climate change must be addressed has led to an unprecedented level of interest in hydrogen as a clean energy carrier. Much of the analysis of hydrogen until this point has focused predominantly on hydrogen production. This paper aims to address this by developing a flexible techno-economic analysis (TEA) tool that can be used to evaluate the potential of future scenarios where hydrogen is produced stored and distributed within a region. The tool takes a full year of hourly data for renewables availability and dispatch down (the sum of curtailment and constraint) wholesale electricity market prices and hydrogen demand as well as other user-defined inputs and sizes electrolyser capacity in order to minimise cost. The model is applied to a number of case studies on the island of Ireland which includes Ireland and Northern Ireland. For the scenarios analysed the overall LCOH ranges from V2.75e3.95/kgH2. Higher costs for scenarios without access to geological storage indicate the importance of cost-effective storage to allow flexible hydrogen production to reduce electricity costs whilst consistently meeting a set demand.
The Potential for Hydrogen Ironmaking in New Zealand
Oct 2022
Publication
Globally iron and steel production is responsible for approximately 6.3% of global man-made carbon dioxide emissions because coal is used as both the combustion fuel and chemical reductant. Hydrogen reduction of iron ore offers a potential alternative ‘near-zero-CO2’ route if renewable electrical power is used for both hydrogen electrolysis and reactor heating. This paper discusses key technoeconomic considerations for establishing a hydrogen direct reduced iron (H2-DRI) plant in New Zealand. The location and availability of firm renewable electricity generation is described the experimental feasibility of reducing locally-sourced titanomagnetite irons and in hydrogen is shown and a high-level process flow diagram for a counter-flow electrically heated H2-DRI process is developed. The minimum hydrogen composition of the reactor off-gas is 46% necessitating the inclusion of a hydrogen recycle loop to maximise chemical utilisation of hydrogen and minimize costs. A total electrical energy requirement of 3.24 MWh per tonne of H2-DRI is obtained for the base-case process considered here. Overall a maximum input electricity cost of no more than US$80 per MWh at the plant is required to be cost-competitive with existing carbothermic DRI processes. Production cost savings could be achieved through realistic future improvements in electrolyser efficiency (∼ US$5 per tonne of H2-DRI) and heat exchanger (∼US$3 per tonne). We conclude that commercial H2-DRI production in New Zealand is entirely feasible but will ultimately depend upon the price paid for firm electrical power at the plant.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
A Justice and Responsible Research and Innovation Exploration of Marine Renewables and Green Hydrogen in Island Communities
Oct 2022
Publication
Both marine renewables and hydrogen are being tested by the European Marine Energy Centre in the Orkney Islands Scotland. Given their emerging nature there is opportunity and risk pertaining to their development and deployment. This research will contribute conceptually and methodologically through the integration of energy justice and RRI conceptual frameworks strengthening justice analyses in relation to emerging energy technologies. This integrated model will be mobilized to critically scrutinize marine energy and green hydrogen as two future energy sources within the energy system. Following a technology-centered exploration of these technologies this work will then contextualise them into place-based considerations of Orkney’s just energy futures. Placing the technologies at the centre of the justice analysis insights will have the potential to inform their development and deployment in other locations. Exploring them within the local Orkney context will initiate an essential and important discussion of energy futures in this specific location. This presentation sets out the empirical and conceptual context for this work and presents a novel conceptual and methodological model combining energy justice and RRI frameworks. Moreover preliminary methods are discussed including methods and outcomes from co-creation workshops held at research design phase.
Green Hydrogen Driven by Wind and Solar—An Australian Case Study
Apr 2024
Publication
The energy transition to wind and solar opens up opportunities for green hydrogen as wind and solar generation tend to bring electricity prices down to very low levels. We evaluate whether green hydrogen can integrate well with wind and solar PVs to improve the South Australian electricity grid. Green hydrogen can use membrane electrolysis plants during periods of surplus renewable energy. This hydrogen can then be electrified or used in industry. The green hydrogen system was analysed to understand the financial viability and technical impact of integrating green hydrogen. We also used system engineering techniques to understand the system holistically including the technical social environmental and economic impacts. The results show opportunities for the system to provide seasonal storage grid firming and reliability services. Financially it would need changes to electricity rules to be viable so at present it would not be viable without subsidy.
Hydrogen-powered Aviation in Germany: A Macroeconomic Perspective and Methodological Approach of Fuel Supply Chain Integration into an Economy-wide Dataset
Oct 2022
Publication
The hydrogen (H2) momentum affects the aviation sector. However a macroeconomic consideration is currently missing. To address this research gap the paper derives a methodology for evaluating macroeconomic effects of H2 in aviation and applies this approach to Germany. Three goals are addressed: (1) Construction of a German macroeconomic database. (2) Translation of H2 supply chains to the system of national accounts. (3) Implementation of H2-powered aviation into the macroeconomic data framework. The article presents an economy-wide database for analyzing H2-powered aviation. Subsequently the paper highlights three H2 supply pathways provides an exemplary techno-economic cost break-down for ten H2 components and translates them into the data framework. Eight relevant macroeconomic sectors for H2-powered aviation are identified and quantified. Overall the paper contributes on a suitable foundation to apply the macroeconomic dataset to and conduct macroeconomic analyses on H2-powered aviation. Finally the article highlights further research potential on job effects related to future H2 demand.
A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty
Mar 2024
Publication
: In the last decade with the increased concerns about the global environment attempts have been made to promote the replacement of fossil fuels with sustainable sources. For transport which accounts for around a quarter of total greenhouse gas emissions meeting climate neutrality goals will require replacing existing fleets with electric or hydrogen-propelled vehicles. However the lack of adequate decision support approach makes the introduction of new propulsion technologies in the transportation sector a complex strategic decision problem where distorted non-optimal decisions may easily result in long-term negative effects on the performance of logistic operators. This research addresses the problem of transport fleet renewal by proposing a multi-criteria decision-making approach and takes into account the multiple propulsion technologies currently available and the objectives of the EU Green Deal as well as the inherent scenario uncertainty. The proposed approach based on the TOPSIS model involves a novel decision framework referred to as a generalized life cycle evaluation of the environmental and cost objectives which is necessary when comparing green and traditional propulsion systems in a long-term perspective to avoid distorted decisions. Since the objective of the study is to provide a practical methodology to support strategic decisions the framework proposed has been validated against a practical case referred to the strategic fleet renewal decision process. The results obtained demonstrate how the decision maker’s perception of the technological evolution of the propulsion technologies influences the decision process thus leading to different optimal choices.
Benefits of an Integrated Power and Hydrogen Offshore Grid in a Net-zero North Sea Energy System
Jun 2022
Publication
The North Sea Offshore Grid concept has been envisioned as a promising alternative to: 1) ease the integration of offshore wind and onshore energy systems and 2) increase the cross-border capacity between the North Sea region countries at low cost. In this paper we explore the techno-economic benefits of the North Sea Offshore Grid using two case studies: a power-based offshore grid where only investments in power assets are allowed (i.e. offshore wind HVDC/HVAC interconnectors); and a power-and-hydrogen offshore grid where investments in offshore hydrogen assets are also permitted (i.e. offshore electrolysers new hydrogen pipelines and retrofitted natural gas pipelines). In this paper we present a novel methodology in which extensive offshore spatial data is analysed to define meaningful regions via data clustering. These regions are incorporated to the Integrated Energy System Analysis for the North Sea region (IESA-NS) model. In this optimization model the scenarios are run without any specific technology ban and under open optimization. The scenario results show that the deployment of an offshore grid provides relevant cost savings ranging from 1% to 4.1% of relative cost decrease (2.3 bn € to 8.7 bn €) in the power-based and ranging from 2.8% to 7% of relative cost decrease (6 bn € to 14.9 bn €) in the power-and-hydrogen based. In the most extreme scenario an offshore grid permits to integrate 283 GW of HVDC connected offshore wind and 196 GW of HVDC meshed interconnectors. Even in the most conservative scenario the offshore grid integrates 59 GW of HVDC connected offshore wind capacity and 92 GW of HVDC meshed interconnectors. When allowed the deployment of offshore electrolysis is considerable ranging from 61 GW to 96 GW with capacity factors of around 30%.
Towards Climate-neutral Aviation: Assessment of Maintenance Requirements for Airborne Hydrogen Storage and Distribution Systems
Apr 2023
Publication
Airlines are faced with the challenge of reducing their environmental footprint in an effort to push for climate-neutral initiatives that comply with international regulations. In the past the aviation industry has followed the approach of incremental improvement of fuel efficiency while simultaneously experiencing significant growth in annual air traffic. With the increase in air traffic negating any reduction in Greenhouse Gas (GHG) emissions more disruptive technologies such as hydrogen-based onboard power generation are required to reduce the environmental impact of airline operations. However despite initial euphoria and first conceptual studies for hydrogen-powered aircraft several decades ago there still has been no mass adoption to this day. Besides the challenges of a suitable ground infrastructure this can partly be attributed to uncertainties with the associated maintenance requirements and the expected operating costs to demonstrate the economic viability of this technology. With this study we address this knowledge gap by estimating changes towards scheduled maintenance activities for an airborne hydrogen storage and distribution system. In particular we develop a detailed system design for a hydrogen-powered fuel-cell-based auxiliary power generation and perform a comparative analysis with an Airbus A320 legacy system. That analysis allows us to (a) identify changes for the expected maintenance effort to enhance subsequent techno-economic assessments (b) identify implications of specific design assumptions with corresponding maintenance activities while ensuring regulatory compliance and (c) describe the impact on the resulting task execution. The thoroughly examined interactions between system design and subsequent maintenance requirements of this study can support practitioners in the development of prospective hydrogen-powered aircraft. In particular it allows the inclusion of maintenance implications in early design stages of corresponding system architectures. Furthermore since the presented methodology is transferable to different design solutions it provides a blueprint for alternative operating concepts such as the complete substitution of kerosene by hydrogen to power the main engines.
Alternative Sources of Energy in Transport: A Review
May 2023
Publication
Alternative sources of energy are on the rise primarily because of environmental concerns in addition to the depletion of fossil fuel reserves. Currently there are many alternatives approaches and attempts to introduce alternative energy sources in the field of transport. This article centers around the need to explore additional energy sources beyond the current ones in use. It delves into individual energy sources that can be utilized for transportation including their properties production methods and the advantages and disadvantages associated with their use across different types of drives. The article not only examines the situation in the Czech Republic but also in other nations. In addition to addressing future mobility the thesis also considers how the utilization of new energy sources may impact the environment.
Hydrogen Emissions from a Hydrogen Economy and their Potential Global Warming Impact
Aug 2022
Publication
Hydrogen (H2) is expected to be a key instrument to meet the European Union (EU) Green Deal main objective: i.e. climate neutrality by 2050. Renewable hydrogen deployment is expected to significantly reduce EU greenhouse gas (GHG) emissions by displacing carbon-intensive sources of energy. However concerns have been raised recently regarding the potential global warming impact caused by hydrogen emissions. Although hydrogen is neither intentionally emitted to the atmosphere when used nor a direct greenhouse gas hydrogen losses affect atmospheric chemistry indirectly contributing to global warming. To better understand the potential environmental impact of a hydrogen economy and to assess the need for action in this respect the Clean Hydrogen Joint Undertaking and the U.S. Department of Energy jointly organised with the support of the European Commission Hydrogen Europe Hydrogen Europe Research the Hydrogen Council and the International Partnership for Hydrogen and Fuel Cells in the Economy a 2-day expert workshop. Experts agreed that a low-carbon and in particular a renewable hydrogen economy would significantly reduce the global warming impact compared to a fossil fuel economy. However hydrogen losses to the atmosphere will impact the lifetime of other greenhouse gases namely methane ozone and water vapour indirectly contributing to the increase of the Earth’s temperature in the near-term. To minimise the climate impact of a hydrogen economy losses should therefore be minimised prevented and monitored. Unfortunately current loss rates along the hydrogen supply chain are not well constrained and are currently estimated to go from few percents for compressed hydrogen (1-4%) up to 10-20% for liquefied hydrogen. Both the global warming impact of hydrogen emissions and the leakage rates from a developed hydrogen economy are subject to a high level of uncertainty. It is therefore of paramount importance to invest in developing the ability to accurately quantify hydrogen emissions as well as engage in more research on hydrogen leakage prevention and monitoring systems. More data from the hydrogen industry and improved observational capacity are needed to improve the accuracy of the global hydrogen budget. Finally it is recommended to always report the amount and location of hydrogen emissions when environmental assessments are performed. There is a range of emission metrics and time scales that are designed to evaluate the climate impacts of short-lived GHG emissions compared to CO2 (i.e. CO2 equivalents). The metric choice must depend on the specific policy goal as they can provide very different perspectives on the relative importance of H2 emissions on the climate depending on the time horizon of concern. These differences need to be viewed in the context of the specific policy objectives.
Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System
Apr 2023
Publication
This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 ◦C preferably 1.5 ◦C target set in the Paris Agreement. For this purpose TIMES Integrated Assessment Model (TIAM) a global energy system model is used. In order to investigate global hydrogen and synfuel flows cost potential curves are aggregated and implemented into TIAM as well as demand technologies for the end use sectors. Furthermore hydrogen and synfuel trades are established using liquid hydrogen transport (LH2 ) and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity while certain demand technologies (e.g. aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies the global allocation of hydrogen and synfuel production and exports is shifting while the 1.5 ◦C target remains feasible in the different climate policy scenarios. Considering climate policy Middle East Asia is the preferred region for hydrogen export. For synfuel production several regions are competitive including Middle East Asia Mexico Africa South America and Australia. In the case of security of supply policies Middle East Asia is sharing the export volume with Africa while only minor changes can be seen in the synfuel supply.
Hydrogen Internal Combustion Engine Vehicles: A Review
Nov 2022
Publication
Motor vehicles are the backbone of global transport. In recent years due to the rising costs of fossil fuels and increasing concerns about their negative impact on the natural environment the development of low-emission power supply systems for vehicles has been observed. In order to create a stable and safe global transport system an important issue seems to be the diversification of propulsion systems for vehicles which can be achieved through the simultaneous development of conventional internal combustion vehicles electric vehicles (both battery and fuel cell powered) as well as combustion hydrogen-powered vehicles. This publication presents an overview of commercial vehicles (available on the market) powered by internal combustion hydrogen engines. The work focuses on presenting the development of technology from the point of view of introducing ready-made hydrogen-powered vehicles to the market or technical solutions enabling the use of hydrogen mixtures in internal combustion engines. The study covers the history of the technology dedicated hydrogen and bi-fuel vehicles and vehicles with an engine powered by a mixture of conventional fuels and hydrogen. It presents basic technology parameters and solutions introduced by leading vehicle manufacturers in the vehicle market.
Low-Carbon Economic Dispatch of Integrated Energy Systems in Industrial Parks Considering Comprehensive Demand Response and Multi-Hydrogen Supply
Mar 2024
Publication
To address the increasing hydrogen demand and carbon emissions of industrial parks this paper proposes an integrated energy system dispatch strategy considering multi-hydrogen supply and comprehensive demand response. This model adopts power-to-gas technology to produce green hydrogen replacing a portion of gray hydrogen and incorporates a carbon capture system to effectively reduce the overall carbon emissions of the industrial park. Meanwhile incentive-based and price-based demand response strategies are implemented to optimize the load curve. A scheduling model is established targeting the minimization of procurement operation carbon emission and wind curtailment costs. The case study of a northern industrial park in China demonstrates that the joint supply of green and gray hydrogen reduces carbon emissions by 40.98% and costs by 17.93% compared to solely using gray hydrogen. The proposed approach successfully coordinates the economic and environmental performance of the integrated energy system. This study provides an effective scheduling strategy for industrial parks to accommodate high shares of renewables while meeting hydrogen needs and carbon reduction targets.
No more items...