- Home
- A-Z Publications
- Publications
Publications
An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System
Sep 2021
Publication
The hydrogen fuel cell (HFC) vehicle is an important clean energy vehicle which has prospects for development. The behavior of the hydrogen fuel cell (HFC) vehicle power system and in particular the proton-exchange membrane fuel cell has been extensively studied as of recent. The development of the dynamic system modeling technology is of paramount importance for HFC vehicle studies; however it is hampered by the separation of the electrochemical properties and dynamic properties. In addition the established model matching the follow-up control method lacks applicability. In attempts to counter these obstructions we proposed an improved fuzzy (Proportional Integral Derivative) PID control method considering HFC voltage-output characteristics. By developing both the electrochemical and dynamic model for HFC vehicle we can realize the coordinated control of HFC and power cell. The simulation results are in good agreement with the experimental results in the two models. The proposed control algorithm has a good control effect in all stages of HFC vehicle operation.
Experimental Study and Thermodynamic Analysis of Hydrogen Production through a Two-Step Chemical Regenerative Coal Gasification
Jul 2019
Publication
Hydrogen as a strategy clean fuel is receiving more and more attention recently in China in addition to the policy emphasis on H2. In this work we conceive of a hydrogen production process based on a chemical regenerative coal gasification. Instead of using a lumped coal gasification as is traditional in the H2 production process herein we used a two-step gasification process that included coking and char-steam gasification. The sensible heat of syngas accounted for 15–20% of the total energy of coal and was recovered and converted into chemical energy of syngas through thermochemical reactions. Moreover the air separation unit was eliminated due to the adoption of steam as oxidant. As a result the efficiency of coal to H2 was enhanced from 58.9% in traditional plant to 71.6% in the novel process. Further the energy consumption decreased from 183.8 MJ/kg in the traditional plant to 151.2 MJ/kg in the novel process. The components of syngas H2 and efficiency of gasification are herein investigated through experiments in fixed bed reactors. Thermodynamic performance is presented for both traditional and novel coal to hydrogen plants.
Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent
Apr 2023
Publication
There exists no single optimal way for transporting hydrogen and other hydrogen carriers from one port to the other globally. Its delivery depends on several factors such as the quantity distance economics and the availability of the required infrastructure for its transportation. Europe has a strategy to invest in the production of green hydrogen in Africa to meet its needs. This study assessed the economic viability of shipping liquefied hydrogen (LH2 ) and hydrogen carriers to Germany from six African countries that have been identified as countries with great potential in the production of hydrogen. The results obtained suggest that the shipping of LH2 to Europe (Germany) will cost between 0.47 and 1.55 USD/kg H2 depending on the distance of travel for the ship. Similarly the transportation of hydrogen carriers could range from 0.19 to 0.55 USD/kg H2 for ammonia 0.25 to 0.77 USD/kg H2 for LNG 0.24 to 0.73 USD/kg H2 for methanol and 0.43 to 1.28 USD/kg H2 for liquid organic hydrogen carriers (LOHCs). Ammonia was found to be the ideal hydrogen carrier since it recorded the least transportation cost. A sensitivity analysis conducted indicates that an increase in the economic life by 5 years could averagely decrease the cost of LNG by some 13.9% NH3 by 13.2% methanol by 7.9% LOHC by 8.03% and LH2 by 12.41% under a constant distance of 6470 nautical miles. The study concludes with a suggestion that if both foreign and local participation in the development of the hydrogen market is increased in Africa the continent could supply LH2 and other hydrogen carriers to Europe at a cheaper price using clean fuel.
Optimal Operation and Market Integration of a Hybrid Farm with Green Hydrogen and Energy Storage: A Stochastic Approach Considering Wind and Electricity Price Uncertainties
Mar 2024
Publication
In recent years growing interest has emerged in investigating the integration of energy storage and green hydrogen production systems with renewable energy generators. These integrated systems address uncertainties related to renewable resource availability and electricity prices mitigating profit loss caused by forecasting errors. This paper focuses on the operation of a hybrid farm (HF) combining an alkaline electrolyzer (AEL) and a battery energy storage system (BESS) with a wind turbine to form a comprehensive HF. The HF operates in both hydrogen and day-ahead electricity markets. A linear mathematical model is proposed to optimize energy management considering electrolyzer operation at partial loads and accounting for degradation costs while maintaining a straightforward formulation for power system optimization. Day-ahead market scheduling and real-time operation are formulated as a progressive mixed-integer linear program (MILP) extended to address uncertainties in wind speed and electricity prices through a two-stage stochastic optimization model. A bootstrap sampling strategy is introduced to enhance the stochastic model’s performance using the same sampled data. Results demonstrate how the strategies outperform traditional Monte Carlo and deterministic approaches in handling uncertainties increasing profits up to 4% per year. Additionally a simulation framework has been developed for validating this approach and conducting different case studies.
Performance and Emission Optimisation of an Ammonia/ Hydrogen Fuelled Linear Joule Engine Generator
Mar 2024
Publication
This paper presents a Linear Joule Engine Generator (LJEG) powered by ammonia and hydrogen co-combustion to tackle decarbonisation in the electrification of transport propulsion systems. A dynamic model of the LJEG which integrates mechanics thermodynamics and electromagnetics sub-models as well as detailed combustion chemistry analysis for emissions is presented. The dynamic model is integrated and validated and the LJEG performance is optimised for improved performance and reduced emissions. At optimal conditions the engine could generate 1.96 kWe at a thermal efficiency of 34.3% and an electrical efficiency of 91%. It is found that the electromagnetic force of the linear alternator and heat addition from the external combustor and engine valve timing have the most significant influences on performance whereas the piston stroke has a lesser impact. The impacts of hydrogen ratio oxygen concentration inlet pressure and equivalence ratio of ammonia-air on nitric oxide (NO) formation and reduction are revealed using a detailed chemical kinetic analysis. Results indicated that rich combustion and elevated pressure are beneficial for NO reduction. The rate of production analysis indicates that the equivalence ratio significantly changes the relative contribution among the critical NO formation and reduction reaction pathways.
Fuelling the Transition Podcast: The Future of Electrolysers and Hydrogen in the UK
Nov 2021
Publication
ITM Power is a leading electrolyser manufacturer and is a globally recognised expert in hydrogen technologies. In this episode Graham Cooley Chief Executive Officer at ITM Power and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss ITM’s recent announcements. This includes raising £250 million to scale up its electrolyser manufacturing capacity to 5GW per annum by 2024 and forming a partnership with Linde to halve electrolyser manufacturing costs within five years. The episode also explores the UK hydrogen strategy how blue hydrogen compares with green hydrogen the role of electrolysers in hydrogen production and providing flexibility to power grids.
The podcast can be found on their website.
The podcast can be found on their website.
Economic Evaluation of a Power-to-hydrogen System Providing Frequency Regulation Reserves: A Case Study of Denmark
Mar 2023
Publication
Operating costs are dominant in the hydrogen production of a power-to-hydrogen system. An optimal operational strategy or bidding framework is effective in reducing these costs. However it is still found that the production cost of hydrogen is high. As the electrolysis unit is characterized by high flexibility providing ancillary service to the grid becomes a potential pathway for revenue stacking. Recent research has demonstrated the feasibility of providing such a service but the related economics have not been well evaluated. In this work we propose a comprehensive operation model to enable participation in the day-head balancing and reserve markets. Three types of reserves are considered by using different operational constraints. Based on the proposed operation framework we assess the economic performance of a power-to-hydrogen system in Denmark using plentiful actual market data. The results reveal that providing frequency containment reserve and automatic frequency restoration reserve efficiently raises the operational contribution margins. In parallel by investing in the cash flows net present value and break-even hydrogen prices we conclude that providing reserves makes the power-to-hydrogen project more profitable in the studied period and region.
The Role of Hydrogen and Batteries in Delivering Net Zero in the UK by 2050
Apr 2023
Publication
This report presents an analysis of how hydrogen and battery technologies are likely to be utilised in different sectors within the UK including transportation manufacturing the built environment and power. In particular the report compares the use of hydrogen and battery technology across these sectors. In addition it evaluates where these technologies will be in competition where one technology will dominate and where a combination of the two may be used. This sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries along with a review of studies available in the public domain. The analysis has been incorporated into DNV’s Energy Transition Outlook model an integrated system-dynamics simulation model covering the energy system which provides an independent view of the energy outlook from now until 2050. The modelling which includes data on costs demand supply policy population and economic indicators enables the non-linear interdependencies between different parameters to be considered so that decisions made in one sector influence the decision made in another.
Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power
Apr 2023
Publication
Using photovoltaic (PV) energy to produce hydrogen through water electrolysis is an environmentally friendly approach that results in no contamination making hydrogen a completely clean energy source. Alkaline water electrolysis (AWE) is an excellent method of hydrogen production due to its long service life low cost and high reliability. However the fast fluctuations of photovoltaic power cannot integrate well with alkaline water electrolyzers. As a solution to the issues caused by the fluctuating power a hydrogen production system comprising a photovoltaic array a battery and an alkaline electrolyzer along with an electrical control strategy and energy management strategy is proposed. The energy management strategy takes into account the predicted PV power for the upcoming hour and determines the power flow accordingly. By analyzing the characteristics of PV panels and alkaline water electrolyzers and imposing the proposed strategy this system offers an effective means of producing hydrogen while minimizing energy consumption and reducing damage to the electrolyzer. The proposed strategy has been validated under various scenarios through simulations. In addition the system’s robustness was demonstrated by its ability to perform well despite inaccuracies in the predicted PV power.
Lab-Scale Investigation of the Integrated Backup/Storage System for Wind Turbines Using Alkaline Electrolyzer
Apr 2023
Publication
The depletion of fossil fuel sources has encouraged the authorities to use renewable resources such as wind energy to generate electricity. A backup/storage system can improve the performance of wind turbines due to fluctuations in power demand. The novelty of this study is to utilize a hybrid system for a wind farm using the excess electricity generated by the wind turbines to produce hydrogen in an alkaline electrolyzer (AEL). The hydrogen storage tank stores the produced hydrogen and provides hydrogen to the proton-exchange membrane fuel cell (PEMFC) to generate electricity once the power demand is higher than the electricity generated by the wind turbines. The goal of this study is to use the wind profile of a region in Iran namely the Cohen region to analyze the performance of the suggested integrated system on a micro scale. The output results of this study can be used as a case study for construction in the future based on the exact specification of NTK300 wind turbines. The results indicate that with the minimum power supply of 30 kW from the wind turbines on a lab scale the generated power by the PEMFC will be 1008 W while the maximum generated hydrogen will be 304 mL/h.
Optimal Design of a Hydrogen-powered Fuel Cell System for Aircraft Applications
Mar 2024
Publication
Recently hydrogen and fuel cells have gained interest as an emerging technology to mitigate the effects of climate change caused by the aviation sector. The aim of this work is to evaluate the applicability of this technology to an existing regional aircraft in order to assess its electrification with the aim of reducing greenhouse gas emissions and achieving sustainability goals. The design of a proton-exchange membrane fuel cell system (PEMFC) with the inclusion of liquid hydrogen storage is carried out. Specifically a general mathematical model is developed which involves multiple scales ranging from individual cells to aircraft scale. First the fuel cell electrochemical model is developed and validated against published polarization curves. Then different sizing approaches are used to compute the overall weight of the hydrogen-based propulsion system in order to optimize the system and minimize its weight. Crucially this work underscores that the feasibility of hydrogenbased fuel cell systems relies not only on hydrogen storage but especially on the electrochemical cell performance which influences the size of the balance of plant and especially its thermal management section. In particular the strategic significance of working with fuel cells at partial loads is demonstrated. This entails achieving an optimal balance between the stacks oversizing and the weights of both hydrogen storage and balance of plant thereby minimizing the overall weight of the system. It is thus shown that an integrated approach is imperative to guide progress towards efficient and implementable hydrogen technology in regional aviation. Furthermore a high-performance PEMFC is analyzed resulting in an overall weight reduction up to nearly 10% compared to the baseline case study. In this way it is demonstrated as technological advancements in PEMFCs can offer further prospects for improving system efficiency.
Blue, Green, and Turquoise Pathways for Minimizing Hydrogen Production Costs from Steam Methane Reforming with CO2 Capture
Nov 2022
Publication
Rising climate change ambitions require large-scale clean hydrogen production in the near term. “Blue” hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 €/ton but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 €/ton. Thus post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore an advanced heat integration scheme that recovers most of the steam condensation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First a “blue-green” hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second a “blue turquoise” configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hydrocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy and it can be tailored to various market conditions with respect to CO2 electricity and pure carbon prices.
Underground Hydrogen Storage to Balance Seasonal Variations in Energy Demand: Impact of Well Configuration on Storage Performance in Deep Saline Aquifers
Mar 2023
Publication
Grid-scale underground hydrogen storage (UHS) is essential for the decarbonization of energy supply systems on the path towards a zero-emissions future. This study presents the feasibility of UHS in an actual saline aquifer with a typical dome-shaped anticline structure to balance the potential seasonal mismatches between energy supply and demand in the UK domestic heating sector. As a main requirement for UHS in saline aquifers we investigate the role of well configuration design in enhancing storage performance in the selected site via numerical simulation. The results demonstrate that the efficiency of cyclic hydrogen recovery can reach around 70% in the short term without the need for upfront cushion gas injection. Storage capacity and deliverability increase in successive storage cycles for all scenarios with the co-production of water from the aquifer having a minimal impact on the efficiency of hydrogen recovery. Storage capacity and deliverability also increase when additional wells are added to the storage site; however the distance between wells can strongly influence this effect. For optimum well spacing in a multi-well storage scenario within a dome-shaped anticline structure it is essential to attain an efficient balance between well pressure interference effects at short well distances and the gas uprising phenomenon at large distances. Overall the findings obtained and the approach described can provide effective technical guidelines pertaining to the design and optimization of hydrogen storage operations in deep saline aquifers.
Impact of Climate and Geological Storage Potential on Feasibility of Hydrogen Fuels
Apr 2023
Publication
Electrofuels including hydrogen methane and ammonia have been suggested as one pathway in achieving net-zero greenhouse gas energy systems. They can play a role in providing an energy storage and fuel or feedstock to hard-to-abate sectors. In future energy systems their role is often studied in case studies adhering to specific region. In this study we study their role by defining multiple archetypal energy systems which represent approximations of real systems in different regions. Comparing the role of electrofuels across the cost-optimized systems relying only on renewable energy in power generation we found that hydrogen was a significant energy vector in all systems with its annual quantity approaching the classic electricity demand. The role of renewable methane was very limited. Electrofuel storages were needed in all systems and their capacity was the highest in the northern Hemiboreal system. Absence of cavern storage potential did not hamper the significance of electrofuels but increased the role of ammonia and led to average 5.5 % systemic cost increase. Systems where reservoir hydropower was scarce or level of electricity consumption was high needed more fuel storages. The findings of this study can help for better understanding of what kind of storage and generation technologies will be most useful in future carbon-neutral systems in different types of regions.
Is Greece Ready for a Hydrogen Energy Transition?—Quantifying Relative Costs in Hard to Abate Industries
Apr 2024
Publication
During the past few years hydrogen use has come to be considered as an alternative energy carrier in a future decarbonized world. Many developed nations are undergoing a shift towards low-carbon energy sources driven by the excessive reliance on fossil fuels and the detrimental effects of climate change. This study aims to investigate the potential for hydrogen deployment in the Greek energy market during the next few decades. In this context green hydrogen’s potential application in the Greek market is being assessed employing an integrated techno-economic model grounded in worldwide trends and localized expenses. The forthcoming years will see an analysis of both the challenges and opportunities surrounding the integration and implementation of hydrogen in new and existing processes within Greece. Many alternative ways to produce hydrogen in Greece are investigated contemplating different production paths. We evaluate how fluctuations in hydrogen oil and carbon prices affect the economics of green hydrogen adoption in oil refining as is detailed in the draft of the European Union delegated act published in May 2022. The Levelized Cost of Hydrogen (LCOH) for different scenarios is calculated for the time frame up until 2050. A sensitivity analysis reveals that investment costs electricity prices electrolyzer efficiency and carbon taxes significantly influence the LCOH ultimately impacting the economic competitiveness of hydrogen production. These findings underscore the importance of aligning public–private partnership agendas in hydrogen production to create optimal conditions for investment attraction and development.
Portable Prototype of Hydrogen Fuel Cells for Educational Training
Jan 2023
Publication
This paper presents an experimental prototype of hydrogen fuel cells suitable for training engineering students. The presented system is designed to teach students the V-I characteristics of the fuel cells and how to record the V-I characteristics curve in the case of a single or multiple fuel cells. The prototype contains a compact electrolyzer to produce hydrogen and oxygen to the fuel cell. The fuel cell generates electricity to supply power to various types of loads. The paper also illustrates how to calculate the efficiency of fuel cells in series and parallel modes of operation. In the series mode of operation it is mathematically proven that the efficiency is higher at lower currents. Still the fuel cell operating area is required where the power is the highest. According to experimental results the efficiency in the case of series connection is approximately 25% while in parallel operation mode the efficiency is about 50%. Thus a parallel connection is recommended in the high current applications because the efficiency is higher than the one resulted from series connection. As explained later in the study plan several other experiments can be performed using this educational kit.
Techno-economic Model and Feasibility Assessment of Green Hydrogen Projects Based on Electrolysis Supplied by Photovoltaic PPAs
Nov 2022
Publication
The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects.
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4 -air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations namely thermofluidodynamic properties and flame characteristics (i.e. time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results in the H2 -air mixture case the time delay decreases and heat release rate increases with respect to the CH4 -air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2 -air mixture on thermoacoustic instability of the burner. Finally an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2 -air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4 -air due to the change in flame topology and variation of the heat release rate and time delay fields.
Efficient Use of Low-Emission Power Supply for Means of Transport
Apr 2023
Publication
The paper presents the possibilities of low-emission-powered vehicles based mainly on compressed hydrogen. It shows currently used forms of powering vehicles based on their genesis process of obtention and popularity. They are also compared to each other presenting the advantages and disadvantages of a given solution. The share of electricity in transport its forecasts for the future and the possibilities of combination with conventional energy sources are also described. Based on current technological capabilities hydrogen plays a crucial role as presented in the above work constituting a fundamental basis for future transport solutions.
Fuel Cells and Hydrogen Observatory Report: Technology and Market
Mar 2022
Publication
The information in this report covers the period January 2021 – December 2021. The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. This includes statistical information on the size of the global fuel cell market including number and capacity of fuel cell systems shipped in a calendar year. For this edition data to the end of 2021 is presented where possible alongside analysis of key sector developments. Fuel cell system shipments for each calendar year are presented both as numbers of units and total system megawatts. The data are further divided and subdivided by: Application: Total system shipments are divided into Transport Stationary and Portable applications Fuel cell type: Numbers are provided for each of the different fuel cell chemistry types Region of integration: Region where the final manufacturer – usually the system integrator – integrates the fuel cell into the final product Region of deployment: Region where the final product was shipped to for deployment The data is sourced directly from industry players as well as other relevant sources including press releases associations and other industry bodies. This year the report also includes data relating to electrolysers commissioned within Europe. Information is presented on the number of hydrogen refuelling stations (HRS) deployed since 2014 with detailed information on HRS in operation including pressure capacity etc. In parallel the observatory provides data on the registered fuel cell electric vehicles (FCEVs) on European roads providing an indication of the speed of adoption of hydrogen in the transport sector. This annual report is an enrichment analysis of the data available on the FCHO providing global context and insights on trends observed year-over-year. Electrolyser systems commissioned for each calendar year within Europe are presented as both the number of units and the total system power rating in megawatts (MW). The data is further divided by: Number of Electrolyser Units Commissioned: The number of units brought online each year in Europe from 2000 until 2021. Application: Total systems commissioned are divided in Transport Fuel Industry Feedstock Steel Making Industrial Heat Power Generation Export Grid Injection and Sector Coupling. Electrolyser Type: Number for each of the different electrolyser types commissioned are provided. Region of deployment: Region where the electrolyser was commissioned. All sections in the Technology & Market module are updated following an annual data collection and validation cycle and the annual report is published the following Spring.
No more items...