China, People’s Republic
Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling
Jun 2024
Publication
To further optimize the low-carbon economy of the integrated energy system (IES) this paper establishes a two-stage P2G hydrogen-coupled electricity–heat–hydrogen–gas IES with carbon capture (CCS). First this paper refines the two stages of P2G and introduces a hydrogen fuel cell (HFC) with a hydrogen storage device to fully utilize the hydrogen energy in the first stage of power-to-gas (P2G). Then the ladder carbon trading mechanism is considered and CCS is introduced to further reduce the system’s carbon emissions while coupling with P2G. Finally the adjustable thermoelectric ratio characteristics of the combined heat and power unit (CHP) and HFC are considered to improve the energy utilization efficiency of the system and to reduce the system operating costs. This paper set up arithmetic examples to analyze from several perspectives and the results show that the introduction of CCS can reduce carbon emissions by 41.83%. In the CCS-containing case refining the P2G two-stage and coupling it with HFC and hydrogen storage can lead to a 30% reduction in carbon emissions and a 61% reduction in wind abandonment costs; consideration of CHP and HFC adjustable thermoelectric ratios can result in a 16% reduction in purchased energy costs.
Operation Optimization of Regional Integrated Energy Systems with Hydrogen by Considering Demand Response and Green Certificate–Carbon Emission Trading Mechanisms
Jun 2024
Publication
Amidst the growing imperative to address carbon emissions aiming to improve energy utilization efficiency optimize equipment operation flexibility and further reduce costs and carbon emissions of regional integrated energy systems (RIESs) this paper proposes a low-carbon economic operation strategy for RIESs. Firstly on the energy supply side energy conversion devices are utilized to enhance multi-energy complementary capabilities. Then an integrated demand response model is established on the demand side to smooth the load curve. Finally consideration is given to the RIES’s participation in the green certificate–carbon trading market to reduce system carbon emissions. With the objective of minimizing the sum of system operating costs and green certificate–carbon trading costs an integrated energy system optimization model that considers electricity gas heat and cold coupling is established and the CPLEX solver toolbox is used for model solving. The results show that the coordinated optimization of supply and demand sides of regional integrated energy systems while considering multi-energy coupling and complementarity effectively reduces carbon emissions while further enhancing the economic efficiency of system operations.
Review of Hydrogen-Driven Power-to-X Technology and Application Status in China
Jul 2024
Publication
Given China’s ambition to realize carbon peak by 2030 and carbon neutralization by 2060 hydrogen is gradually becoming the pivotal energy source for the needs of energy structure optimization and energy system transformation. Thus hydrogen combined with renewable energy has received more and more attention. Nowadays power-to-hydrogen power-to-methanol and power-to-ammonia are regarded as the most promising three hydrogen-driven power-to-X technologies due to the many commercial or demonstration projects in China. In this paper these three hydrogen-driven power-to-X technologies and their application status in China are introduced and discussed. First a general introduction of hydrogen energy policies in China is summarized and then the basic principles technical characteristics trends and challenges of the three hydrogen-driven power-to-X technologies are reviewed. Finally several typical commercial or demonstration projects are selected and discussed in detail to illustrate the development of the power-to-X technologies in China.
A Review of Hydrogen Storage and Transportation: Progresses and Challenges
Aug 2024
Publication
This review aims to summarize the recent advancements and prevailing challenges within the realm of hydrogen storage and transportation thereby providing guidance and impetus for future research and practical applications in this domain. Through a systematic selection and analysis of the latest literature this study highlights the strengths limitations and technological progress of various hydrogen storage methods including compressed gaseous hydrogen cryogenic liquid hydrogen organic liquid hydrogen and solid material hydrogen storage as well as the feasibility efficiency and infrastructure requirements of different transportation modes such as pipeline road and seaborne transportation. The findings reveal that challenges such as low storage density high costs and inadequate infrastructure persist despite progress in high-pressure storage and cryogenic liquefaction. This review also underscores the potential of emerging technologies and innovative concepts including metal–organic frameworks nanomaterials and underground storage along with the potential synergies with renewable energy integration and hydrogen production facilities. In conclusion interdisciplinary collaboration policy support and ongoing research are essential in harnessing hydrogen’s full potential as a clean energy carrier. This review concludes that research in hydrogen storage and transportation is vital to global energy transformation and climate change mitigation.
Optimal Operation Strategy for Wind–Photovoltaic Power-Based Hydrogen Production Systems Considering Electrolyzer Start-Up Characteristics
Aug 2024
Publication
Combining electrolytic hydrogen production with wind–photovoltaic power can effectively smooth the fluctuation of power and enhance the schedulable wind–photovoltaic power which provides an effective solution to solve the problem of wind–photovoltaic power accommodation. In this paper the optimization operation strategy is studied for the wind–photovoltaic power-based hydrogen production system. Firstly to make up for the deficiency of the existing research on the multi-state and nonlinear characteristics of electrolyzers the three-state and power-current nonlinear characteristics of the electrolyzer cell are modeled. The model reflects the difference between the cold and hot starting time of the electrolyzer and the linear decoupling model is easy to apply in the optimization model. On this basis considering the operation constraints of the electrolyzer hydrogen storage tank battery and other equipment the optimization operation model of the wind–photovoltaic power-based hydrogen production system is developed based on the typical scenario approach. It also considers the cold and hot starting time of the electrolyzer with the daily operation cost as the goal. The results show that the operational benefits of the system can be improved through the proposed strategy. The hydrogen storage tank capacity will have an impact on the operation income of the wind–solar hydrogen coupling system and the daily operation income will increase by 0.32% for every 10% (300 kg) increase in the hydrogen storage tank capacity.
CO2 Effect on the Fatigue Crack Growth of X80 Pipeline Steel in Hydrogen-Enriched Natural Gas: Experiment vs Density Functional Theory Calculation
Sep 2023
Publication
The influence of hydrogen-enriched natural gas (HENG) and CO2 on the mechanical property of X80 pipeline steel were investigated via fatigue crack growth rate (FCGR) tests and density functional theory (DFT) calculations. The results show that the FCGR in H2 was slightly faster than that in HENG while it was slower than that in the N2/CO2/H2 mixtures. The enhanced FCGR by CO2 further increased with the increasing CO2 content. DFT calculation results show that the adsorbed CO2 on the iron surface significantly increased the migration rate of H atoms from surface to subsurface. This promotes the entry of hydrogen into the steel.
CFD Simulation and ANN Prediction of Hydrogen Leakage and Diffusion Behavior in a Hydrogen Refuelling Station
Sep 2023
Publication
Hydrogen refuelling stations are an important part of the infrastructure for promoting the hydrogen economy. Since hydrogen is a flammable and explosive gas hydrogen released from high-pressure hydrogen storage equipment in hydrogen refuelling stations will likely cause combustion or explosion accidents. Studying high-pressure hydrogen leakage in hydrogen refuelling stations is a prerequisite for promoting hydrogen fuel cell vehicles and hydrogen refuelling stations. In this work an actual-size hydrogen refuelling station model was established on the ANSYS FLUENT software platform. The computational fluid dynamics (CFD) models for hydrogen leakage simulation were validated by comparing the simulation results with experimental data in the literature. The effects of ambient wind speed wind direction leakage rate and leakage direction on the diffusion behaviors of the released hydrogen were investigated. The spreading distances of the flammable hydrogen cloud were predicted using an artificial neural network for horizontal leakage. The results show that the leak direction strongly affected the flammable cloud flow. The ambient wind speed has complicated effects on spreading the flammable cloud. The wind makes the flammable cloud move in certain directions and the higher wind speed accelerates the diffusion of the flammable gas in the air. The results of the study can be used as a reference for the study of high-pressure hydrogen leakage in hydrogen refuelling stations.
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
Comprehensive Review of Development and Applications of Hydrogen Energy Technologies in China for Carbon Neutrality: Technology Advances and Challenges
Jul 2024
Publication
Concerning the transition from a carbon-based energy economy to a renewable energy economy hydrogen is considered an essential energy carrier for efficient and broad energy systems in China in the near future. China aims to gradually replace fossil fuel-based power generation with renewable energy technologies to achieve carbon neutrality by 2060. This ambitious undertaking will involve building an industrial production chain spanning the production storage transportation and utilisation of hydrogen energy by 2030 (when China’s carbon peak will be reached). This review analyses the current status of technological R&D in China’s hydrogen energy industry. Based on published data in the open literature we compared the costs and carbon emissions for grey blue and green hydrogen production. The primary challenges concerning hydrogen transportation and storage are highlighted in this study. Given that primary carbon emissions in China are a result of power generation using fossil fuels we provide an overview of the advances in hydrogen-to-power industry technology R&D including hydrogen-related power generation technology hydrogen fuel cells hydrogen internal combustion engines hydrogen gas turbines and catalytic hydrogen combustion using liquid hydrogen carriers (e.g. ammonia methanol and ethanol).
Path Analysis of Using Hydrogen Energy to Reduce Greenhouse Gas Emissions in Global Aviation
Jul 2024
Publication
The rapid growth of global aviation emissions has significantly impacted the environment leading to an urgent need to use carbon reduction methods. This paper analyzes global aviation’s carbon dioxide (CO2) N2O and CH4 emission changes under different hydrogen energy application paths. The global warming potential over a 100-year period (GWP100) method is used to convert the emissions of N2O and CH4 into CO2-equivalent. Here we report the results: if the global aviation industry begins using hydrogen turbine engines by 2040 it could reduce cumulative CO2-equivalent emissions by 2.217E+10 tons by 2080 which is 2.12% higher than starting hydrogen fuel cell engines in 2045. However adopting hydrogen fuel cell engines 10 years earlier shows greater reduction capabilities than hydrogen turbine engines achieving an accumulated reduction of 3.006E+10 tons of CO2-equivalent emissions. Therefore the timing of adoption notably affects hydrogen fuel cell engines more than hydrogen turbine engines. Delaying adoption makes hydrogen fuel cell engines’ performance lag hydrogen turbine engines.
Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources
Jul 2024
Publication
With the increasingly severe climate change situation and the trend of green energy transformation the development and utilization of hydrogen energy has attracted extensive attention from government industry and academia in the past few decades. Renewable energy electrolysis stands out as one of the most promising hydrogen production routes enabling the storage of intermittent renewable energy power generation and supplying green fuel to various sectors. This article reviews the evolution and development of green hydrogen policies in the United States the European Union Japan and China and then summarizes the key technological progress of renewable energy electrolysis while introducing the progress of hydrogen production from wind and photovoltaic power generation. Furthermore the environmental social and economic benefits of different hydrogen production routes are analyzed and compared. Finally it provides a prospective analysis of the potential impact of renewable energy electrolysis on the global energy landscape and outlines key areas for future research and development.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System
Jul 2024
Publication
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines for example high-voltage direct current the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue firstly an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly the sensitivity of the total return on investment to wind speed parameters was investigated and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419% and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.
Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking
Jul 2024
Publication
As the main contributor of carbon emissions the low-carbon transition of the industrial sector is important for achieving the goal of carbon dioxide peaking. Hydrogen-enabled industrial energy systems (HIESs) are a promising way to achieve the low-carbon transition of industrial energy systems since the hydrogen can be well coordinated with renewable energy sources and satisfy the high and continuous industrial energy demand. In this paper the long-term capacity expansion planning problem of the HIES is formulated from the perspective of industrial parks and the targets of carbon dioxide peaking and the gradual decommissioning of existing equipment are considered as constraints. The results show that the targets of carbon dioxide peaking before different years or with different emission reduction targets can be achieved through the developed method while the economic performance is ensured to some extent. Meanwhile the overall cost of the strategy based on purchasing emission allowance is three times more than the cost of the strategy obtained by the developed method while the emissions of the two strategies are same. In addition long-term carbon reduction policies and optimistic expectations for new energy technologies will help industrial parks build more new energy equipment for clean transformation.
Life-cycle Carbon-intensity Mapping for Hydrogen-driven Energy and Economy
Aug 2024
Publication
Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.
Hydrogen Energy in Electrical Power Systems: A Review and Future Outlook
Aug 2024
Publication
Hydrogen energy as a zero-carbon emission type of energy is playing a significant role in the development of future electricity power systems. Coordinated operation of hydrogen and electricity will change the direction and shape of energy utilization in the power grid. To address the evolving power system and promote sustainable hydrogen energy development this paper initially examines hydrogen preparation and storage techniques summarizes current research and development challenges and introduces several key technologies for hydrogen energy application in power systems. These include hydrogen electrification technology hydrogen-based medium- and long-term energy storage and hydrogen auxiliary services. This paper also analyzes several typical modes of hydrogen–electricity coupling. Finally the future development direction of hydrogen energy in power systems is discussed focusing on key issues such as cost storage and optimization.
Review on the Thermal Neutrality of Application-orientated Liquid Organic Hydrogen Carrier for Hydrogen Energy Storage and Delivery
Aug 2023
Publication
The depletion and overuse of fossil fuels present formidable challenge to energy supply system and environment. The human society is in great need of clean renewable and sustainable energy which can guarantee the long-term utilization without leading to escalation of greenhouse effect. Hydrogen as an extraordinary secondary energy is capable of realizing the target of environmental protection and transferring the intermittent primary energy to the application terminal while its nature of low volumetric energy density and volatility need suitable storage method and proper carrier. In this context liquid organic hydrogen carrier (LOHC) among a series of storage methods such as compressed and liquefied hydrogen provokes a considerable amount of research interest since it is proven to be a suitable carrier for hydrogen with safety and stability. However the dehydrogenation of hydrogen-rich LOHC materials is an endothermic process and needs large energy consumption which hampers the scale up of the LOHC system. The heat issue is thus essential to be addressed for fulfilling the potential of LOHC. In this work several strategies of heat intensification and management for LOHC system including the microwave irradiation circulation of exhaust heat and direct LOHC fuel cell are summarized and analyzed to provide suggestions and directions for future research.
Forecasting the Development of Clean Energy Vehicles in Large Cities: A System Dynamics Perspective
Jan 2024
Publication
Clean energy vehicles (CEVs) e.g. battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are being adopted gradually to substitute for internal combustion engine vehicles (ICEVs) around the world. The fueling infrastructure is one of the key drivers for the development of the CEV market. When the government develops funding policies to support the fueling infrastructure development for FCEVs and BEVs it has to assess the effectiveness of different policy options and identify the optimal policy combination which is very challenging in transportation research. In this paper we develop a system dynamics model to study the feedback mechanism between the fueling infrastructure funding policies and the medium- to long-term diffusion of FCEVs and BEVs and the competition between FCEVs and BEVs based on relevant policy and market data in Guangzhou China. The results of the modeling analysis are as follows. (1) Funding hydrogen refueling stations and public charging piles has positive implications for achieving the substitution of CEVs for ICEVs. (2) Adjusting the funding ratio of hydrogen refueling stations and public charging piles or increasing the funding budget and extending the funding cycle does not have a significant impact on the overall substitution of CEVs for ICEVs but only impacts the relative competitive advantage between FCEVs and BEVs. (3) An equal share of funding for hydrogen refueling stations and public charging piles would have better strategic value for future net-zero-emissions urban transportation. (4) Making a moderate-level full investment in hydrogen refueling stations coupled with hydrogen refueling subsidies can provide the ideal conditions for FCEV diffusion.
Operation Optimization of Wind/Battery Storage/Alkaline Electrolyzer System Considering Dynamic Hydrogen Production Efficiency
Aug 2023
Publication
Hydrogen energy is regarded as a key path to combat climate change and promote sustainable economic and social development. The fluctuation of renewable energy leads to frequent start/stop cycles in hydrogen electrolysis equipment. However electrochemical energy storage with its fast response characteristics helps regulate the power of hydrogen electrolysis enabling smooth operation. In this study a multi-objective constrained operation optimization model for a wind/battery storage/alkaline electrolyzer system is constructed. Both profit maximization and power abandonment rate minimization are considered. In addition some constraints such as minimum start/stop times upper and lower power limits and input fluctuation limits are also taken into account. Then the non-dominated sorting genetic algorithm II (NSGA-II) algorithm and the entropy method are used to optimize the operation strategy of the hybrid energy system by considering dynamic hydrogen production efficiency and through optimization to obtain the best hydrogen production power of the system under the two objectives. The change in dynamic hydrogen production efficiency is mainly related to the change in electrolyzer power and the system can be better adjusted according to the actual supply of renewable energy to avoid the waste of renewable energy. Our results show that the distribution of Pareto solutions is uniform which indicates the suitability of the NSGA-II algorithm. In addition the optimal solution indicates that the battery storage and alkaline electrolyzer can complement each other in operation and achieve the absorption of wind power. The dynamic hydrogen production efficiency can make the electrolyzer operate more efficiently which paves the way for system optimization. A sensitivity analysis reveals that the profit is sensitive to the price of hydrogen energy.
No more items...