Skip to content
1900

Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects

Abstract

Hydrogen, globally recognized as the most efficient and clean energy carrier, holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release, challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods, emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes, including metal hydrides, complex hydrides, carbon materials, metal-organic frameworks (MOFs), and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally, the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated, with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms, particularly subcritical crack growth, and examines the advantages and limitations of different materials for various applications, supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials, highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety, providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.

Funding source: Dr. Ahmed I. Osman and Prof. David W. Rooney wish to acknowledge the support of The Bryden Centre project (Project ID VA5048), which was awarded by The European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB), with match funding provided by the Department for the Economy in Northern Ireland and the Department of Business, Enterprise, and Innovation in the Republic of Ireland. Dr. Mohamed Farghali wishes to acknowledge the support from Grant-in-Aid for JSPS Fellows Grant Number JP22KF0257.
Loading

Article metrics loading...

/content/journal6033
2024-07-03
2024-11-21
/content/journal6033
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error