China, People’s Republic
A Model for Assessing the Potential Impact Radius of Hydrogen Pipelines Based on Jet Fire Radiation
Jan 2024
Publication
The accurate determination of the potential impact radius is crucial for the design and risk assessment of hydrogen pipelines. The existing methodologies employ a single point source model to estimate radiation and the potential impact radius. However these approaches overlook the jet fire shape resulting from high-pressure leaks leading to discrepancies between the calculated values and real-world incidents. This study proposes models that account for both the mass release rate while considering the pressure drop during hydrogen pipeline leakage and the radiation while incorporating the flame shape. The analysis encompasses 60 cases that are representative of hydrogen pipeline scenarios. A simplified model for the potential impact radius is subsequently correlated and its validity is confirmed through comparison with actual cases. The proposed model for the potential impact radius of hydrogen pipelines serves as a valuable reference for the enhancement of the precision of hydrogen pipeline design and risk assessment.
CFD Analysis of Hydrogen Leakage from a Small Hole in a Sloping Roof Hydrogen Refueling Station
Sep 2023
Publication
As a key link in the application of hydrogen energy hydrogen refueling stations are significant for their safe operation. This paper established a three-dimensional 1:1 model for a seaport hydrogen refueling station in Ningbo City. In this work the CFD software FLUENT was used to study the influence of leakage angles on the leakage of high-pressure hydrogen through a small hole. Considering the calculation accuracy and efficiency this paper adopted the pseudo-diameter model. When the obstacle was far from the leakage hole it had almost no obstructive effect on the jet's main body. Still it affected the hydrogen whose momentum in the outer layer of the jet has been significantly decayed. In this condition there would be more hydrogen in stagnation. Thus the volume of the flammable hydrogen cloud was hardly affected while there was a significant increase in the volume of the hazardous hydrogen cloud. When the obstacle was close to the leakage hole it directly affected the jet's main body. Therefore the volume of the flammable hydrogen cloud increased. However the air impeded the hydrogen jet relatively less because the hydrogen jet contacted the obstacle more quickly. The hydrogen jet blocked by the obstacle still has some momentum. Therefore there was no more hydrogen in stagnation and no significant increase in the volume of the hazardous hydrogen cloud.
Gas Crossover Predictive Modelling Using Artificial Neural Networks Based on Original Dataset Through Aspen Custom Modeler for Proton Exchange Membrane Electrolyte System
Sep 2023
Publication
Proton exchange membrane electrolyzer cell (PEMEC) will play a central role in future power-to-H2 plants. Current research focuses on the materials and operation parameters. Setting up experiments to explore operational accident scenarios about safety feasibility is not always practical. This paper focuses on building mathematical and prediction models of hydrogen and oxygen mixing scenarios of PEMEC. A mathematical model of the PEMEC device was customized in the Aspen Custom Model (ACM) software and integrated various critical Physico-chemical phenomena as the original data set for the prediction model. The results of the mathematical simulation verified the experimental results. The prediction model proposes an artificial neural network (ANN) framework to predict component distribution in the gas stream to prevent hydrogen-oxygen explosion scenarios. The presented approach by training ANN to 1000 sets of hydrogen-oxygen mixing simulation data from ACM is applicable to bypass tedious and non-smooth systems of equations for PEMEC.
Effect of Wall Friction on Shock-flame Interactions in a Hydrogen-air Mixture
Sep 2023
Publication
Shock-flame interactions (SFI) occur in a variety of combustion scenarios of scientific and engineering interest which can distort the flame extend the flame surface area and subsequently enhance heat release. This process is dominated by Richtmyer-Meshkov instability (RMI) that features the perturbation growth of a density-difference interface (flame) after the shock passage. The main mechanism of RMI is the vorticity deposition results from a misalignment between pressure and density gradients. This paper focuses on the multi-dimensional interactions between shock wave and flame in a hydrogen-air mixture. The simulations of this work were conducted by solving three-dimensional fully-compressible reactive Navier-Stokes equations using a high-order numerical method on a dynamically adapting mesh. The effect of wall friction on the SFI was examined by varying wall boundary condition (free-slip/no-slip) on sidewall. The results show that the global flame perturbation grows faster with the effect of wall friction in the no-slip case than that in the free-slip case in the process of SFI. Two effects of wall friction on SFI were found: (1) flame stretching close to the no-slip wall and (2) damping of local flame perturbation at the no-slip wall. The flame stretch effect leads to a significantly higher growth rate in the global flame perturbation. By contrast the damping effect locally moderates the flame perturbation induced by RMI in close proximity to the no-slip wall because less vorticity is deposited on this part of flame during SFI.
Analytical Model of Cryogenic Hydrogen Releases
Sep 2023
Publication
Hydrogen is one of the most promising alternative sources to relieve the energy crisis and environmental pollution. Hydrogen can be stored as cryogenic compressed hydrogen (CcH2) to achieve high volumetric energy densities. Reliable safety codes and standards are needed for hydrogen production delivery and storage to promote hydrogen commercialization. Unintended hydrogen releases from cryogenic storage systems are potential accident scenarios that are of great interest for updating safety codes and standards. This study investigated the behavior of CcH2 releases and dispersion. The extremely low-temperature CcH2 jets can cause condensation of the air components including water vapor nitrogen and oxygen. An integral model considering the condensation effects was developed to predict the CcH2 jet trajectories and concentration distributions. The thermophysical properties were obtained from the COOLPROP database. The model divides the CcH2 jet into the underexpanded initial entrainment and heating flow establishment and established flow zones. The condensation effects on the heat transfer and flow were included in the initial entrainment and heating zones. The empirical coefficients in the integral model were then modified based on measured concentration results. Finally the analytical model predictions are shown to compare well with measured data to verify the model accuracy. The present study can be used to develop quantitative risk assessment models and update safety codes and standards for cryogenic hydrogen facilities.
Numerical Simulation of Underexpanded Cryogenic Hydrogen Jets
Sep 2023
Publication
As a clean and renewable energy carrier hydrogen is one of the most promising alternative fuels. Cryogenic compressed hydrogen can achieve high storage density without liquefying hydrogen which has good application prospects. Investigation of the safety problems of cryogenic compressed hydrogen is necessary before massive commercialization. The present study modeled the instantaneous flow field using the Large Eddy Simulation (LES) for cryogenic (50 and 100 K) underexpanded hydrogen jets released from a round nozzle of 1.5 mm diameter at pressures of 0.5-5.0 MPa. The simulation results were compared with the experimental data for validation. The axial and radial concentration and velocity distributions were normalized to show the self-similar characteristics of underexpanded cryogenic jets. The shock structures near the nozzle were quantified to correlate the shock structure sizes to the source pressure and nozzle diameter. The present study on the concentration and velocity distributions of underexpanded cryogenic hydrogen jets is useful for developing safety codes and standards.
Hydrogen Release Modelling for Analysis Using Data-driven Autoencoder with Convolutional Neural Networks
Sep 2023
Publication
High-accuracy gas dispersion models are necessary for predicting hydrogen movement and for reducing the damage caused by hydrogen release accidents in chemical processes. In urban areas where obstacles are large and abundant computational fluid dynamics (CFD) would be the best choice for simulating and analyzing scenarios of the accidental release of hydrogen. However owing to the large computation time required for CFD simulation it is inappropriate in emergencies and real-time alarm systems. In this study a non-linear surrogate model based on deep learning is proposed. Deep convolutional layer data-driven autoencoder and batch normalized deep neural network is used to analyze the effects of wind speed wind direction and release degree on hydrogen concentration in real-time. The typical parameters of hydrogen diffusion accidents at hydrogen refuelling stations were acquired by CFD numerical simulation approach and a database of hydrogen diffusion accident parameters is established. By establishing an appropriate neural network structure and associated activation function a deep learning framework is created and then a deep learning model is constructed. The accuracy and timeliness of the model are assessed by comparing the results of the CFD simulation with those of the deep learning model. To develop a dynamic reconfiguration prediction model for the hydrogen refuelling station diffusion scenario the algorithm is continuously enhanced and the model is improved. After training is finished the model's prediction time is measured in seconds which is 105 times quicker than field CFD simulations. The deep learning model of hydrogen release in hydrogen refuelling stations is established to realize timely and accurate prediction and simulation of accident consequences and provide decision-making suggestions for emergency rescue and personnel evacuation which is of great significance for the protection of human life health and property safety.
Examining the Nature of Two-dimensional Transverse Waves in Marginal Hydrogen Detonations using Boundary Layer Loss Modeling with Detailed Chemistry
Sep 2023
Publication
Historically it has been a challenge to simulate the experimentally observed cellular structures and marginal behavior of multidimensional hydrogen-oxygen detonations in the presence of losses even with detailed chemistry models. Very recently a quasi-two-dimensional inviscid approach was pursued where losses due to viscous boundary layers were modeled by the inclusion of an equivalent mass divergence in the lateral direction using Fay’s source term formulation with Mirels’ compressible boundary layer solutions. The same approach was used for this study along with the inclusion of thermally perfect detailed chemistry in order to capture the correct ignition sensitivity of the gas to dynamic changes in the thermodynamic state behind the detonation front. In addition the strength of transverse waves and their impact on the detonation front was investigated. Here the detailed San Diego mechanism was applied and it has been found that the detonation cell sizes can be accurately predicted without the need to prescribe specific parameters for the combustion model. For marginal cases where the detonation waves approach their failure limit quasi-stable mode behavior was observed where the number of transverse waves monotonically decreased to a single strong wave over a long enough distance. The strong transverse waves were also found to be slightly weaker than the detonation front indicating that they are not overdriven in agreement with recent studies.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Sep 2023
Publication
A wireless near-field hydrogen gas sensor is proposed which detects the leaking hydrogen near its source to achieve fast response and high reliability. The proposed sensor can detect leaking hydrogen in 100ms with nearly no delay due to hydrogen diffusion in space. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results. Over 1 year of maintenance interval is empowered by wireless design based on Bluetooth low energy protocol.
Improvement of MC Method in SAE J2601 Hydrogen Refuelling Protocol Using Dual-zone Dual-Temperature Model
Sep 2023
Publication
The MC method refuelling protocol in SAE J2601 has been published by the Society of Automotive Engineers (SAE) in order to safely and quickly refuel hydrogen vehicles. For the calculation method of the pressure target to control the refuelling stop we introduced a dual-zone dual-temperature model that distinguishes the hydrogen temperature in the tank from the wall temperature to replace the dual-zone single-temperature model of the original MC method. The total amount of heat transferred by convection between hydrogen and the inner tank wall during the filling process was expressed as an equation of final hydrogen temperature final wall temperature final refuelling time tank inner surface area and the correction factor. The correction factor equations were determined by fitting simulation data from the 0D1D model where hydrogen inside the tank is lumped parameter model (0D) and the tank wall is a one-dimensional model (1D). For the correction factor of the linear equation its first-order coefficient and constant term have a linear relationship with the initial pressure of the storage tank and their R2 values obtained from the fitting are greater than 0.99. Finally we derived a new equation to calculate the final hydrogen temperature which can be combined with the 100% SOC inside the vehicle tank to determine the pressure target. The simulation results show that the final SOC obtained are all greater than 96% using the modified pressure target and the correction factor of the linear equation.
Study on the Inherent Safety of On-board Methanol Reforming Hydrogen Production Fuel Cell System
Sep 2023
Publication
Methanol as a liquid phase hydrogen storage carrier has broad prospects. Although the on-board methanol reforming hydrogen fuel cell system (MRFC) has long been proposed to replace the traditional hydrogen fuel cell vehicle the inherent safety of the system itself has rarely been studied. This paper adopted the improved method of Inherently Safer Process Piping (ISPP) to evaluate the pipeline inherent safety of MRFC. The process data such as temperature pressure viscosity and density were obtained by simulating the MRFC in ASPEN HYSYS. The Process Stream Characteristic Index (PSCI) and risk assessment of jet fire and vapor cloud explosion was carried out for the key streams with those simulated data. The results showed the risk ranks of different pipelines in the MRFC and the countermeasures were given according to different risk ranks. Through the in-depth study of the evaluation results this paper demonstrates the risk degree of the system in more detail and reduces the fuzziness of risk rating. By applying ISPP to the small integrated system of MRFC this paper realizes the leap of inherent safety assessment method in the object and provides a reference for the inherent safety assessment of relevant objects in the future.
Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables
Jul 2024
Publication
Integrating carbon capture and storage (CCS) technology into an integrated energy system (IES) can reduce its carbon emissions and enhance its low-carbon performance. However the full CCS of flue gas displays a strong coupling between lean and rich liquor as carbon dioxide liquid absorbents. Its integration into IESs with a high penetration level of renewables results in insufficient flexibility and renewable curtailment. In addition integrating split-flow CCS of flue gas facilitates a short capture time giving priority to renewable energy. To address these limitations this paper develops a carbon capture utilization and storage (CCUS) method into which storage tanks for lean and rich liquor and a two-stage power-to-gas (P2G) system with multiple utilizations of hydrogen including a fuel cell and a hydrogen-blended CHP unit are introduced. The CCUS is integrated into an IES to build an electricity–heat–hydrogen–gas IES. Accordingly a deep low-carbon economic optimization strategy for this IES which considers stepwise carbon trading coal consumption renewable curtailment penalties and gas purchasing costs is proposed. The effects of CCUS the twostage P2G system and stepwise carbon trading on the performance of this IES are analyzed through a case-comparative analysis. The results show that the proposed method allows for a significant reduction in both carbon emissions and total operational costs. It outperforms the IES without CCUS with an 8.8% cost reduction and a 70.11% reduction in carbon emissions. Compared to the IES integrating full CCS the proposed method yields reductions of 6.5% in costs and 24.7% in emissions. Furthermore the addition of a two-stage P2G system with multiple utilizations of hydrogen further amplifies these benefits cutting costs by 13.97% and emissions by 12.32%. In addition integrating CCUS into IESs enables the full consumption of renewables and expands hydrogen utilization and the renewable consumption proportion in IESs can reach 69.23%.
The Progress of Autoignition of High-Pressure Hydrogen Gas Leakage: A Comprehensive Review
Aug 2024
Publication
As a paradigm of clean energy hydrogen is gradually attracting global attention. However its unique characteristics of leakage and autoignition pose significant challenges to the development of high-pressure hydrogen storage technologies. In recent years numerous scholars have made significant progress in the field of high-pressure hydrogen leakage autoignition. This paper based on diffusion ignition theory thoroughly explores the mechanism of high-pressure hydrogen leakage autoignition. It reviews the effects of various factors such as gas properties burst disc rupture conditions tube geometric structure obstacles etc. on shock wave growth patterns and autoignition characteristics. Additionally the development of internal flames and propagation characteristics of external flames after ignition kernels generation are summarized. Finally to promote future development in the field of high-pressure hydrogen energy storage and transportation this paper identifies deficiencies in the current research and proposes key directions for future research.
Techno‐Economic Analysis of Hydrogen as a Storage Solution in an Integrated Energy System for an Industrial Area in China
Jun 2024
Publication
This study proposes four kinds of hybrid source–grid–storage systems consisting of pho‐ tovoltaic and wind energy and a power grid including different batteries and hydrogen storage systems for Sanjiao town. HOMER‐PRO was applied for the optimal design and techno‐economic analysis of each case aiming to explore reproducible energy supply solutions for China’s industrial clusters. The results show that the proposed system is a fully feasible and reliable solution for in‐ dustry‐based towns like Sanjiao in their pursuit of carbon neutrality. In addition the source‐side price sensitivity analysis found that the hydrogen storage solution was cost‐competitive only when the capital costs on the storage and source sides were reduced by about 70%. However the hydro‐ gen storage system had the lowest carbon emissions about 14% lower than the battery ones. It was also found that power generation cost reduction had a more prominent effect on the whole system’s NPC and LCOE reduction. This suggests that policy support needs to continue to push for genera‐ tion‐side innovation and scaling up while research on different energy storage types should be en‐ couraged to serve the needs of different source–grid–load–storage systems.
A Study on the Promoting Role of Renewable Hydrogen in the Transformation of Petroleum Refining Pathways
Jun 2024
Publication
The refining industry is shifting from decarbonization to hydrogenation for processing heavy fractions to reduce pollution and improve efficiency. However the carbon footprint of hydrogen production presents significant environmental challenges. This study couples refinery linear programming models with life cycle assessment to evaluate from a long-term perspective the role of low-carbon hydrogen in promoting sustainable and profitable hydrogenation refining practices. Eight hydrogen-production pathways were examined including those based on fossil fuels and renewable energy providing hydrogen for three representative refineries adopting hydrogenation decarbonization and co-processing routes. Learning curves were used to predict future hydrogen cost trends. Currently hydrogenation refineries using fossil fuels benefit from significant cost advantages in hydrogen production demonstrating optimal economic performance. However in the long term with increasing carbon taxes hydrogenation routes will be affected by the high carbon emissions associated with fossil-based hydrogen losing economic advantages compared to decarbonization pathways. With increasing installed capacity and technological advancements low-carbon hydrogen is anticipated to reach cost parity with fossil-based hydrogen before 2060. Coupling renewable hydrogen is expected to yield the most significant economic advantages for hydrogenation refineries in the long term. Renewable hydrogen drives the transition of refining processing routes from a decarbonization-oriented approach to a hydrogenation-oriented paradigm resulting in cleaner refining processes and enhanced competitiveness under emission-reduction pressures.
Study on Liquid Hydrogen Leakage and Diffusion Behavior in a Hydrogen Production Station
Jun 2024
Publication
Liquid hydrogen storage is an important way of hydrogen storage and transportation which greatly improves the storage and transportation efficiency due to the high energy density but at the same time brings new safety hazards. In this study the liquid hydrogen leakage in the storage area of a hydrogen production station is numerically simulated. The effects of ambient wind direction wind speed leakage mass flow rate and the mass fraction of gas phase at the leakage port on the diffusion behavior of the liquid hydrogen leakage were investigated. The results show that the ambient wind direction directly determines the direction of liquid hydrogen leakage diffusion. The wind speed significantly affects the diffusion distance. When the wind speed is 6 m/s the diffusion distance of the flammable hydrogen cloud reaches 40.08 m which is 2.63 times that under windless conditions. The liquid hydrogen leakage mass flow rate and the mass fraction of the gas phase have a greater effect on the volume of the flammable hydrogen cloud. As the leakage mass flow rate increased from 5.15 kg/s to 10 kg/s the flammable hydrogen cloud volume increased from 5734.31 m3 to 10305.5 m3 . The installation of a barrier wall in front of the leakage port can limit the horizontal diffusion of the flammable hydrogen cloud elevate the diffusion height and effectively reduce the volume of the flammable hydrogen cloud. This study can provide theoretical support for the construction and operation of hydrogen production stations.
Numerical Simulation and Field Experimental Study of Combustion Characteristics of Hydrogen-Enriched Natural Gas
Jun 2024
Publication
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly a field experimental study was carried out based on the WNS2- 1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency heat loss and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio with the hydrogen blending ratio increasing from 0% to 25% the laminar flame propagation speed of the fuel increases the extinction strain rate rises and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0 and the combustion intensity of the flame is the highest at this time. In the field tests as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.
Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station
Jun 2024
Publication
With the rapid development of hydrogen energy worldwide the number of hydrogen energy facilities such as hydrogen refueling stations has grown rapidly in recent years. However hydrogen is prone to leakage accidents during use which could lead to hazards such as fires and explosions. Therefore research on the safety of hydrogen energy facilities is crucial. In this paper a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.
Optimization of the Joint Operation of an Electricity–Heat– Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power
Jun 2024
Publication
With the continuous development of hydrogen storage systems power-to-gas (P2G) and combined heat and power (CHP) the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally multiple scenarios are set up and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the twostage P2G the system emissions reduction can be 5.97% and 23.07% respectively and the total cost of operation can be reduced by 7.5% and 14.5% respectively.
Enhanced Management of Unified Energy Systems Using Hydrogen Fuel Cell Combined Heat and Power with a Carbon Trading Scheme Incentivizing Emissions Reduction
Jun 2024
Publication
In the quest to achieve “double carbon” goals the urgency to develop an efficient Integrated Energy System (IES) is paramount. This study introduces a novel approach to IES by refining the conventional Power-to-Gas (P2G) system. The inability of current P2G systems to operate independently has led to the incorporation of hydrogen fuel cells and the detailed investigation of P2G’s dual-phase operation enhancing the integration of renewable energy sources. Additionally this paper introduces a carbon trading mechanism with a refined penalty–reward scale and a detailed pricing tier for carbon emissions compelling energy suppliers to reduce their carbon footprint thereby accelerating the reduction in system-wide emissions. Furthermore this research proposes a flexible adjustment mechanism for the heat-to-power ratio in cogeneration significantly enhancing energy utilization efficiency and further promoting conservation and emission reductions. The proposed optimization model in this study focuses on minimizing the total costs including those associated with carbon trading and renewable energy integration within the combined P2G-Hydrogen Fuel Cell (HFC) cogeneration system. Employing a bacterial foraging optimization algorithm tailored to this model’s characteristics the study establishes six operational modes for comparative analysis and validation. The results demonstrate a 19.1% reduction in total operating costs and a 22.2% decrease in carbon emissions confirming the system’s efficacy low carbon footprint and economic viability.
No more items...