China, People’s Republic
Optimization of Hydrogen Production System Performance Using Photovoltaic/Thermal-Coupled PEM
Oct 2024
Publication
A proton exchange membrane electrolyzer can effectively utilize the electricity generated by intermittent solar power. Different methods of generating electricity may have different efficiencies and hydrogen production rates. Two coupled systems namely PV/T- and CPV/T-coupling PEMEC respectively are presented and compared in this study. A maximum power point tracking algorithm for the photovoltaic system is employed and simulations are conducted based on the solar irradiation intensity and ambient temperature of a specific location on a particular day. The simulation results indicate that the hydrogen production is relatively high between 11:00 and 16:00 with a peak between 12:00 and 13:00. The maximum hydrogen production rate is 99.11 g/s and 29.02 g/s for the CPV/T-PEM and PV/T-PEM systems. The maximum energy efficiency of hydrogen production in CPV/T-PEM and PV/T-PEM systems is 66.7% and 70.6%. Under conditions of high solar irradiation intensity and ambient temperature the system demonstrates higher total efficiency and greater hydrogen production. The CPV/T-PEM system achieves a maximum hydrogen production rate of 2240.41 kg/d with a standard coal saving rate of 15.5 tons/day and a CO2 reduction rate of 38.0 tons/day. Compared to the PV/T-PEM system the CPV/T-PEM system exhibits a higher hydrogen production rate. These findings provide valuable insights into the engineering application of photovoltaic/thermal-coupled hydrogen production technology and contribute to the advancement of this field.
Spatial Optimization Strategies for China's Hydrogen Infrastructure Industry Chain
Oct 2024
Publication
Promoting the development of China’s hydrogen energy industry is crucial for achieving green energy transition. However existing research lacks systematic studies on the spatial layout of the hydrogen industry chain. This study constructed a comprehensive theoretical framework encompassing hardware infrastructure software systems and soft power. Using multi-source heterogeneous data GIS analysis and NVivo text coding methods the current regional layout and challenges of China’s hydrogen infrastructure industry chain were systematically evaluated. The findings determined that economically developed eastern regions lead in infrastructure and soft power while central and western regions leverage their resource and manufacturing advantages. Major challenges include regional imbalances in hardware infrastructure uneven distribution of soft power and misalignment between software systems and actual needs. Analysis of the “14th Five-Year Plan” of various regions elucidated deep insights into the diversity of local hydrogen energy development strategies identifying five types of hydrogen cities: resource-advantaged market-oriented regionally collaborative innovation-driven and policy-supported. Accordingly strategies to enhance industry chain synergy clarify city roles and optimize regional ecosystems were proposed. It is recommended to integrate hydrogen infrastructure with urban planning and incorporate environmental impact assessments into spatial optimization decisions. This study provides a systematic analytical framework and progressive policy recommendations for the efficient and green layout of China’s hydrogen infrastructure offering important implications for the sustainable development of the hydrogen industry and other rapidly developing economies.
The Role of Hydrogen in the Energy Transition of the Oil and Gas Industry
May 2024
Publication
Hydrogen primarily produced from steam methane reforming plays a crucial role in oil refining and provides a solution for the oil and gas industry's long-term energy transition by reducing CO2 emissions. This paper examines hydrogen’s role in this transition. Firstly experiences from oil and gas exploration including in-situ gasification can be leveraged for hydrogen production from subsurface natural hydrogen reservoirs. The produced hydrogen can serve as fuel for generating steam and heat for thermal oil recovery. Secondly hydrogen can be blended into gas for pipeline transportation and used as an alternative fuel for oil and gas hauling trucks. Additionally hydrogen can be stored underground in depleted gas fields. Lastly oilfield water can be utilized for hydrogen production using geothermal energy from subsurface oil and gas fields. Scaling up hydrogen production faces challenges such as shared use of oil and gas infrastructures increased carbon tax for promoting blue hydrogen and the introduction of financial incentives for hydrogen production and consumption hydrogen leakage prevention and detection.
Optimizing Alkaline Water Electrolysis: A Dual-Model Approach for Enhanced Hydrogen Production Efficiency
Nov 2024
Publication
This study develops a semi-empirical model of an alkaline water electrolyzer (AWE) based on thermodynamic and electrochemical principles to investigate cell voltage behavior during electrolysis. By importing polarization curve test data under specific operational conditions eight undefined parameters are precisely fitted demonstrating the model’s high accuracy in describing the voltage characteristics of alkaline electrolyzers. Additionally an AWE system model is introduced to examine the influence of various operational parameters on system efficiency. This innovative approach not only provides detailed insights into the operational dynamics of AWE systems but also offers a valuable tool for optimizing performance and enhancing efficiency advancing the understanding and optimization of AWE technologies.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
Feasibility of Scaling Up the Cost-Competitive and Clean Electrolytic Hydrogen Supply in China
May 2024
Publication
Scaling up clean hydrogen supply in the near future is critical to achieving China’s hydrogen development target. This study established an electrolytic hydrogen development mechanism considering the generation mix and operation optimization of power systems with access to hydrogen. Based on the incremental cost principle we quantified the provincial and national clean hydrogen production cost performance levels in 2030. The results indicated that this mechanism could effectively reduce the production cost of clean hydrogen in most provinces with a national average value of less than 2 USD·kg−1 at the 40-megaton hydrogen supply scale. Provincial cooperation via power transmission lines could further reduce the production cost to 1.72 USD·kg−1. However performance is affected by the potential distribution of hydrogen demand. From the supply side competitiveness of the mechanism is limited to clean hydrogen production while from the demand side it could help electrolytic hydrogen fulfil a more significant role. This study could provide a solution for the ambitious development of renewables and the hydrogen economy in China.
A Review of Hydrogen Production via Seawater Electrolysis: Current Status and Challenges
Oct 2024
Publication
Seawater electrolysis represents a promising green energy technology with significant potential for efficient energy conversion. This study provides an in-depth examination of the key scientific challenges inherent in the seawater-electrolysis process and their potential solutions. Initially it analyzes the potential issues of precipitation and aggregation at the cathode during hydrogen evolution proposing strategies such as self-cleaning cathodes and precipitate removal to ensure cathode stability in seawater electrolysis. Subsequently it addresses the corrosion challenges faced by anode catalysts in seawater introducing several anti-corrosion strategies to enhance anode stability including substrate treatments such as sulfidation phosphidation selenidation and LDH (layered double hydroxide) anion intercalation. Additionally this study explores the role of regulating the electrode surface microenvironment and forming unique coordination environments for active atoms to enhance seawater electrolysis performance. Regulating the surface microenvironment provides a novel approach to mitigating seawater corrosion. Contrary to the traditional understanding that chloride ions accelerate anode corrosion certain catalysts benefit from the unique coordination environment of chloride ions on the catalyst surface potentially enhancing oxygen evolution reaction (OER) performance. Lastly this study presents the latest advancements in the industrialization of seawater electrolysis including the in situ electrolysis of undiluted seawater and the implementation of three-chamber dual anion membranes coupled with circulating electrolyte systems. The prospects of seawater electrolysis are also explored.
Above-ground Hydrogen Storage: A State-of-the-art Review
Nov 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Optimal Scheduling of Electricity and Hydrogen Integrated Energy System Considering Multiple Uncertainties
Apr 2024
Publication
The spread of renewable energy (RE) generation not only promotes economy and the environmental protection but also brings uncertainty to power system. As the integration of hydrogen and electricity can effectively mitigate the fluctuation of RE generation an electricity-hydrogen integrated energy system is constructed. Then this paper studies the source-load uncertainties and corresponding correlation as well as the electricity-hydrogen price uncertainties and corresponding correlation. Finally an optimal scheduling model considering economy environmental protection and demand response (DR) is proposed. The simulation results indicate that the introduction of the DR strategy and the correlation of electricity-hydrogen price can effectively improve the economy of the system. After introducing the DR the operating cost of the system is reduced by 5.59% 10.5% 21.06% in each season respectively. When considering the correlation of EP and HP the operating cost of the system is reduced by 4.71% 6.47% 1.4% in each season respectively.
A Numerial Study on Hydrogen Blending in Natural Gas Pipeline by a T-pipe
Mar 2024
Publication
In order to study the flow blending and transporting process of hydrogen that injects into the natural gas pipelines a three-dimensional T-pipe blending model is established and the flow characteristics are investigated systematically by the large eddy simulation (LES). Firstly the mathematical formulation of hydrogen-methane blending process is provided and the LES method is introduced and validated by a benchmark gas blending model having experimental data. Subsequently the T-pipe blending model is presented and the effects of key parameters such as the velocity of main pipe hydrogen blending ratio diameter of hydrogen injection pipeline diameter of main pipe and operating pressure on the hydrogen-methane blending process are studied systematically. The results show that under certain conditions the gas mixture will be stratified downstream of the blending point with hydrogen at the top of the pipeline and methane at the bottom of the pipeline. For the no-stratified scenarios the distance required for uniformly mixing downstream the injection point increases when the hydrogen mixing ratio decreases the diameter of the hydrogen injection pipe and the main pipe increase. Finally based on the numerical results the underlying physics of the stratification phenomenon during the blending process are explored and an indicator for stratification is proposed using the ratio between the Reynolds numbers of the natural gas and hydrogen.
The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments
May 2024
Publication
The use of hydrogen-blended natural gas presents an efficacious pathway toward the rapid large-scale implementation of hydrogen energy with pipeline transportation being the principal method of conveyance. However pipeline materials are susceptible to hydrogen embrittlement in high-pressure hydrogen environments. Natural gas contains various impurity gases that can either exacerbate or mitigate sensitivity to hydrogen embrittlement. In this study we analyzed the mechanisms through which multiple impurity gases could affect the hydrogen embrittlement behavior of pipeline steel. We examined the effects of O2 and CO2 on the hydrogen embrittlement behavior of L360 pipeline steel through a series of fatigue crack growth tests conducted in various environments. We analyzed the fracture surfaces and assessed the fracture mechanisms involved. We discovered that CO2 promoted the hydrogen embrittlement of the material whereas O2 inhibited it. O2 mitigated the enhancing effect of CO2 when both gases were mixed with hydrogen. As the fatigue crack growth rate increased the influence of impurity gases on the hydrogen embrittlement of the material diminished.
Comparative Study of Different Alternative Fuel Options for Shipowners Based on Carbon Intensity Index Model Under the Background of Green Shipping Development
Nov 2024
Publication
The International Maritime Organization (IMO)’s annual operational carbon intensity index (CII) rating requires that from 1 January 2023 all applicable ships meet both technical and operational energy efficiency requirements. In this paper we conduct a comparative study of different alternative fuel options based on a CII model from the perspective of shipowners. The advantages and disadvantages of alternative fuel options such as liquefied natural gas (LNG) methanol ammonia and hydrogen are presented. A numerical example using data from three China Ocean Shipping (Group) shipping lines is analyzed. It was found that the overall attained CII of different ship types showed a decreasing trend with the increase of the ship’s deadweight tonnage. A larger ship size choice can obtain better carbon emission reduction for the carbon emission reduction investment program using alternative fuels. The recommended options of using LNG fuel and zero-carbon fuel (ammonia and hydrogen) on Route 1 and Route 3 during the study period were analyzed for the shipowners. Carbon reduction scenarios using low-carbon fuels (LNG and methanol) and zero-carbon fuels (ammonia and hydrogen) on Route 2 are in line with IMO requirements for CII.
No more items...