Transmission, Distribution & Storage
Large-scale Storage of Hydrogen
Mar 2019
Publication
The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale the approach is not applicable in all regions due to varying geological conditions. Therefore other storage methods are necessary. In this article options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermodynamic and engineering aspects. The application of certain storage technologies such as liquid hydrogen methanol ammonia and dibenzyltoluene is found to be advantageous in terms of storage density cost of storage and safety. The variable costs for these high-density storage technologies are largely associated with a high electricity demand for the storage process or with a high heat demand for the hydrogen release process. If hydrogen is produced via electrolysis and stored during times of low electricity prices in an industrial setting these variable costs may be tolerable.
Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment
Apr 2021
Publication
Hydrogen gas pressure is an important test parameter when considering materials for high-pressure hydrogen applications. A large set of data on the effect of hydrogen gas pressure on mechanical properties in gaseous hydrogen experiments was reviewed. The data were analyzed by converting pressures into fugacities (f) and by fitting the data using an f|n| power law. For 95% of the data sets |n| was smaller than 0.37 which was discussed in the context of (i) rate-limiting steps in the hydrogen reaction chain and (ii) statistical aspects. This analysis might contribute to defining the appropriate test fugacities (pressures) to qualify materials for gaseous hydrogen applications.
Long-Term Hydrogen Storage—A Case Study Exploring Pathways and Investments
Jan 2022
Publication
Future low-carbon systems with very high shares of variable renewable generation require complex models to optimise investments and operations which must capture high degrees of sector coupling contain high levels of operational and temporal detail and when considering seasonal storage be able to optimise both investments and operations over long durations. Standard energy system models often do not adequately address all these issues which are of great importance when considering investments in emerging energy carriers such as Hydrogen. An advanced energy system model of the Irish power system is built in SpineOpt which considers a number of future scenarios and explores different pathways to the wide-scale adoption of Hydrogen as a low-carbon energy carrier. The model contains a high degree of both temporal and operational detail sector coupling via Hydrogen is captured and the optimisation of both investments in and operation of large-scale underground Hydrogen storage is demonstrated. The results highlight the importance of model detail and demonstrate how over-investment in renewables occur when the flexibility needs of the system are not adequately captured. The case study shows that in 2030 investments in Hydrogen technologies are limited to scenarios with high fuel and carbon costs high levels of Hydrogen demand (in this case driven by heating demand facilitated by large Hydrogen networks) or when a breakthrough in electrolyser capital costs and efficiencies occurs. However high levels of investments in Hydrogen technologies occur by 2040 across all considered scenarios. As with the 2030 results the highest level of investments occur when demand for Hydrogen is high albeit at a significantly higher level than 2030 with increases in investments of large-scale electrolysers of 538%. Hydrogen fuelled compressed air energy storage emerges as a strong investment candidate across all scenarios facilitating cost effective power-to-Hydrogen-to-power conversions.
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications such as brake disks for windmills and trucks filtration systems in refineries and fossil power plants transfer rolls for hot-rolled steel strips and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and (iii) number (type) of defects on the thermo-mechanical properties. Additionally environmental degradation of the alloys consisting of hydrogen embrittlement anodic or cathodic dissolution localized corrosion and oxidation resistance in different environments should be well known. Recently some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements environmental items and crystal structure on the deformation behavior of alloys. In this paper we will review the extensive work which has been done during the last decades to address each of the points mentioned above.
Linking Ab Initio Data on Hydrogen and Carbon in Steel to Statistical and Continuum Descriptions
Mar 2018
Publication
We present a selection of scale transfer approaches from the electronic to the continuum regime for topics relevant to hydrogen embrittlement. With a focus on grain boundary related hydrogen embrittlement we discuss the scale transfer for the dependence of the carbon solution behavior in steel on elastic effects and the hydrogen solution in austenitic bulk regions depending on Al content. We introduce an approximative scheme to estimate grain boundary energies for varying carbon and hydrogen population. We employ this approach for a discussion of the suppressing influence of Al on the substitution of carbon with hydrogen at grain boundaries which is an assumed mechanism for grain boundary hydrogen embrittlement. Finally we discuss the dependence of hydride formation on the grain boundary stiffness
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly when employing the membranes in fluidized bed reactors the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes resistance to hydrogen embrittlement and stability at high temperature.
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
Aug 2019
Publication
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite achieving an extraordinary balance of mechanical properties and alloying cost. In the present work two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.
Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging
Aug 2016
Publication
The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21) steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE) susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS) result showed that hydrogen content decreased with increasing baking duration and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.
Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing
Mar 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover the formation and growth of primary voids were observed in the BM leading to a superior fracture toughness. In addition the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content.
Graded Grain Structure to Improve Hydrogen-Embrittlement Resistance of TWIP Steel
Nov 2020
Publication
The high strength of twinning-induced plasticity (TWIP) steels makes them vulnerable to the hydrogen embrittlement (HE) phenomenon thereby limiting their potential applications. This study suggests inducing a graded grain structure (GGS) in a Fe-17Mn-0.8C TWIP steel through shot peening and subsequent heat treatment to solve the problem. The microstructures and fracture surfaces of GGS TWIP steel were compared with those of conventionally manufactured TWIP steel possessing a uniform grain structure (UGS). Compared with the conventional UGS TWIP steel GGS steel showed similar tensile properties with a yield strength of 310 MPa tensile strength of 1060 MPa and elongation-to-failure of 135%. It also exhibited moderately enhanced low-cycle fatigue (LCF) resistance in terms of fatigue life (8196 cycles to failure) compared with the UGS steel (7201 cycles). Furthermore GGS TWIP steel exhibited a marked improvement in HE resistance both in the monotonic (by a slow-strain-rate test) and cyclic deformation modes (by the LCF test) in a hydrogen environment. A relatively fine-grained (d = 15.6 μm) surficial area enhanced the HE resistance by inhibiting hydrogen penetration and decreasing twin density while the coarse-grained (d = 74.6 μm) interior promoted the LCF resistance by suppressing crack growth
Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys
Mar 2021
Publication
It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels nickel superalloys and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THEmax where the degradation of this mechanical property reaches a maximum. Above and below this temperature the degradation is less. Unfortunately the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THEmax are in the range of about 200–340 K which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is the value of THEmax itself as well as the slope of the gradient might affect the materials selection for a dedicated application. Given the current lack of scientific understanding a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications
Energy Transition: Measurement Needs for Carbon Capture, Usage and Storage
Jan 2021
Publication
This latest report describes the potential for CCUS as an important technology during the UK’s energy transition and focuses on the role that metrology (the science of measurement) could play in supporting its deployment. High priority measurement needs and challenges identified within this report include:
- Measuring and comparing the efficiency of different capture techniques and configurations to provide confidence in investments into technologies;
- Improving equations of state to support the development of accurate models used for controlling operational conditions;
- Improving CO2 flow measurement to support fiscal and financial metering as well as process control and;
- Improving the understanding and validation of dispersion models for emitted CO2 including plume migration to support safety assessment.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
The Effects of Electrochemical Hydrogen Charging on Room-Temperature Tensile Properties of T92/TP316H Dissimilar Weldments in Quenched-and-Tempered and Thermally-Aged Conditions
Aug 2019
Publication
The influence of isothermal aging at 620 °C in combination with subsequent electrochemical hydrogen charging at room-temperature was studied on quenched-and-tempered T92/TP316H martensitic/austenitic weldments in terms of their room-temperature tensile properties and fracture behavior. Hydrogen charging of the weldments did not significantly affect their strength properties; however it resulted in considerable deterioration of their plastic properties along with significant impact on their fracture characteristics and failure localization. The hydrogen embrittlement plays a dominant role in degradation of the plastic properties of the weldments already in their initial material state i.e. before thermal aging. After thermal aging and subsequent hydrogen charging mutual superposition of thermal and hydrogen embrittlement phenomena had led to clearly observable effects on the welds deformation and fracture processes. The measure of hydrogen embrittlement was clearly lowered for thermally aged material state since the contribution of thermal embrittlement to overall degradation of the weldments has dominated. The majority of failures of the weldments after hydrogen charging occurred in the vicinity of T92 BM/Ni weld metal (WM) fusion zone; mostly along the Type-II boundary in Ni-based weld metal. Thus regardless of aging exposure the most critical failure regions of the investigated weldments after hydrogen charging and tensile straining at room temperature are the T92 BM/Ni WM fusion boundary and Type-II boundary acting like preferential microstructural sites for hydrogen embrittling effects accumulation
Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel
Jul 2016
Publication
Plastic deformation and strain-induced martensite (SIM α′) transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture tensile strength hardness and the amount of SIM increased with decreasing the strain rate. The strain-rate dependence of RT tensile properties was observed to be related to the amount of SIM. Specifically SIM formed during tensile tests was beneficial in increasing the elongation to fracture hardness and tensile strength. Hydrogen suppressed the SIM formation leading to hydrogen softening and localized brittle fracture.
Research on Carbide Characteristics and Their Influence on the Properties of Welding Joints for 2.25Cr1Mo0.25V Steel
Feb 2021
Publication
The carbide characteristics of 2.25Cr1Mo0.25V steel have an extremely important influence on the mechanical properties of welding joints. In addition hydrogen resistance behavior is crucial for steel applied in hydrogenation reactors. The carbide morphology was observed by scanning electron microscopy (SEM) and the carbide microstructure was characterized by transmission electron microscopy (TEM). Tensile and impact tests were carried out and the influence of carbides on properties was studied. A hydrogen diffusion test was carried out and the hydrogen brittleness resistance of welding metal and base metal was studied by tensile testing of hydrogenated samples to evaluate the influence of hydrogen on the mechanical properties. The research results show that the strength of the welding metal was slightly higher and the Charpy impact value was significantly lower compared to the base metal. The hydrogen embrittlement resistance of the welding metal was stronger than that of the base metal. The presence of more carbides and inclusions was the main cause of the decreased impact property and hydrogen brittleness resistance of the welding metal. These conclusions have certain reference value for designing and manufacturing hydrogenation reactors. View Full-Text
Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging
Aug 2019
Publication
Herein the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrogen embrittlement than the base metal samples in the same current density. Brittle circumferential cracks located at the HAZ sample surfaces were perpendicular to the loading direction and the crack propagation path indicated that five or more cracks may join together to form a longer crack. The fracture morphologies were found to be a mixture of intergranular and transgranular fractures. Hydrogen blisters were observed on the HAZ sample surfaces after conducting tensile tests at a current density of 40 mA/cm2 leading to a fracture in the elastic deformation stage.
Energy Transition: Measurement Needs Within the Hydrogen Industry
Dec 2017
Publication
Hydrogen in the UK is beginning to shift from hypothetical debates to practical demonstration projects. An ever-growing evidence base has showcased how the costs of hydrogen and its barriers to entry are reducing such that it now has practical potential to contribute to the decarbonisation of the UK's energy sector.
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
This Document can be downloaded from their website
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
- Material development for fuel cells and electrolysers to reduce costs and assess critical degradation mechanisms – extending lifetime and durability is key to the commercialisation of these technologies.
- Impact assessment of added odorant to hydrogen to aid leak detection. Measurement of its impact during pipeline transportation and on the end-use application (particularly fuel cell technology) will be important to provide assurance that it will not affect lifetime and durability.
- Determination of the blend ratio when hydrogen is mixed with natural gas in the gas grid. Accurate flow rate measurement and validated metering methods are needed to ensure accurate billing of the consumer.
- Measurement of the combustion properties of hydrogen including flame detection and propagation temperature and nitrogen oxides (NOx) emissions should it be used for heat applications to ensure existing and new appliances are suitable for hydrogen.
- Assessment of the suitability of existing gas infrastructure and materials for hydrogen transportation. Building an understanding of what adaptations might need to be made to avoid for example air permeation metal embrittlement and hydrogen leakage.
- Validated techniques for hydrogen storage which will require measurement of the efficiency and capacity of each mechanism through robust metering leakage detection and purity analysis to ensure they are optimised for the storage of hydrogen gas.
This Document can be downloaded from their website
The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction
Oct 2020
Publication
Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes making the search for earth-abundant and cheaper alternatives important. Herein we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested they achieve competitively low overpotentials of 115 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 0.5 M H2SO4 and 120 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals which showed significantly higher overpotentials and lower current densities when tested under identical conditions confirming the synergistic effect of the alloying. However the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.
A Fracture Analysis of Ti-10Mo-8V-1Fe-3.5Al Alloy Screws during Assembly
Oct 2016
Publication
Titanium screws have properties that make them ideal for applications that require both a high strength-to-weight ratio and corrosion resistance such as fastener applications for aviation and aerospace. The fracture behavior of Ti-10Mo-8V-1Fe-3.5Al (TB3) alloy screws during assembly was explored. Besides visual examination other experimental techniques used for the investigation are as follows: (1) fracture characteristics and damage morphology via scanning electron microscopy (SEM); (2) chemical constituents via energy dispersive spectroscopy (EDS) and hydrogen concentration testing; (3) metallographic observation; (4) stress durability embrittlement testing; and (5) torsion simulation testing. Results show that the fracture mode of the screws is brittle. There is no obvious relation to hydrogen-induced brittle. The main reason for the fracture of titanium alloy screws is internal defects around which oxygen content is high increasing brittleness. The internal defects of screws result from grain boundary cracking caused by hot forging.
No more items...