Transmission, Distribution & Storage
Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel
Feb 2017
Publication
The effect of metastable austenite on the hydrogen embrittlement (HE) of cold-rolled (30% reduction in thickness) 301 stainless steel (SS) was investigated. Cold-rolled (CR) specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transformation of austenite into α′ and ε-martensite in the 301 SS. Aging at 450 °C enhanced the precipitation of M23C6 carbides G and σ phases in the cold-rolled specimen. In addition the formation of α′ martensite and M23C6 carbides along the grain boundaries increased the HE susceptibility and low-temperature sensitization of the 450 °C-aged 301 SS. In contrast the grain boundary α′-martensite and M23C6 carbides were not observed in the as-rolled and 300 °C-aged specimens
Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminium Hexahydride
Feb 2021
Publication
A systematic study of different ratios of CO CO2 N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2in H2 and CO CO2 N2 in H2 mixture were investigated. Both CO and CO2gas react with the complex hydride forming Al oxy-compounds NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2 the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3% respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2 full degradation was observed whereas after 6 cycles with 10 vol % CO2+ 90 vol % H2 degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2+ 27 vol % H2 + 61.5 vol % N2 the degradation of 94% after 6 cycles was shown. According to these results it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.
Hydrogen Trapping Behavior in Vanadium Microalloyed TRIP-Assisted Annealed Martensitic Steel
Jun 2019
Publication
Transformation induced plasticity (TRIP)-assisted annealed martensitic (TAM) steel combines higher tensile strength and elogangtion and has been increasingly used but appears to bemore prone to hydrogen embrittlement (HE). In this paper the hydrogen trapping behavior and HE of TRIP-assisted annealed martensitic steels with different vanadium additions had been investigated by means of hydrogen charging and slow strain rate tensile tests (SSRT) microstructral observartion and thermal desorption mass spectroscope (TDS). Hydrogen charging test results indicates that apparent hydrogen diffusive index Da is 1.94 × 10−7/cm2·s−1 for 0.21 wt.% vanadium steel while the value is 8.05 × 10−7/cm2·s−1 for V-free steel. SSRT results show that the hydrogen induced ductility loss ID is 76.2% for 0.21 wt.%V steel compared with 86.5% for V-free steel. The trapping mechanism of the steel containing different V contents is analyzed by means of TDS and Transmission electron microscope (TEM) observations. It is found out that the steel containing 0.21 wt.%V can create much more traps for hydrogen trapping compared with lower V steel which is due to vanadium carbide (VC) precipitates acting as traps capturing hydrogen atoms.The relationship between hydrogen diffusion and hydrogentrapping mechanism is discussed in details.
Numerical Solution for Thermodynamic Model of Charge-discharge Cycle in Compressed Hydrogen Tank
Mar 2019
Publication
The safety and convenience of hydrogen storage are significant for fuel cell vehicles. Based on mass conservation equation and energy conservation equation two thermodynamic models (single zone model and dual zone model) have been established to study the hydrogen gas temperature and tank wall temperature for compressed hydrogen storage tank. With two models analytical solution and Euler solution for single zone (gas zone) charge-discharge cycle have been compared Matlab/Simulink solution and Euler solution for dual zone (gas zone wall zone) charge-discharge cycle have been compared. Three charge-discharge cycle cases (Case 1 constant inflow temperature; Case 2 variable inflow temperature; Case 3 constant inflow temperature variable outflow temperature) and two compressed hydrogen tanks (Type III 25L Type IV 99L) charge-discharge cycle are studied by Euler method. Results show Euler method can well predict hydrogen temperature and tank wall temperature.
Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel
Apr 2020
Publication
The present research focuses on the investigation of an in situ hydrogen charging effect during Crack Tip Opening Displacement testing (CTOD) on the fracture toughness properties of X65 pipeline steel. This grade of steel belongs to the broader category of High Strength Low Alloy Steels (HSLA) and its microstructure consists of equiaxed ferritic and bainitic grains with a low volume fraction of degenerated pearlite islands. The studied X65 steel specimens were extracted from pipes with 19.15 mm wall thickness. The fracture toughness parameters were determined after imposing the fatigue pre-cracked specimens on air on a specific electrolytic cell under a slow strain rate bending loading (according to ASTM G147-98 BS7448 and ISO12135 standards). Concerning the results of this study in the first phase the hydrogen cations’ penetration depth the diffusion coefficient of molecular and atomic hydrogen and the surficial density of blisters were determined. Next the characteristic parameters related to fracture toughness (such as J KQ CTODel CTODpl) were calculated by the aid of the Force-Crack Mouth Open Displacement curves and the relevant analytical equations.
Effects of Purity and Pressure on the Hydrogen Embrittlement of Steels and Other Metallic Materials
Sep 2009
Publication
A study of open literature was performed to determine the effects of high hydrogen purity and gas pressure (in the range of 700-1000 bar) on the hydrogen embrittlement of several metallic materials. A particular focus was given to carbon low-alloy and stainless steels but information on embrittlement of aluminum and copper was included in the study. Additionally the most common test methods were studied and results from similar tests are presented in a manner so as to simplify comparisons of materials. Finally suggestions are provided for future testing necessary to ensure the safety of hydrogen storage at 700 bar.
Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments
Mar 2022
Publication
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas electrochemically pre-charged and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables such as the applied current density the electrolyte composition and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.
Measurement of Fatigue Crack Growth Rates for Steels in Hydrogen Containment Components
Sep 2009
Publication
The objective of this work was to enable the safe design of hydrogen pressure vessels by measuring the fatigue crack growth rates of ASME code-qualified steels in high-pressure hydrogen gas. While a design framework has recently been established for high-pressure hydrogen vessels a material property database does not exist to support the design calculations. This study addresses such voids in the database by measuring the fatigue crack growth rates of three different heats of ASME SA-372 Grade J steel in 100 MPa hydrogen gas. Results showed that the fatigue crack growth rates were similar for all three steel heats although the highest-strength steel appeared to exhibit the highest growth rates. Hydrogen accelerated the fatigue crack growth rates of the steels by as much as two orders of magnitude relative to anticipated crack growth rates in inert environments. Despite such dramatic effects of hydrogen on the fatigue crack growth rates measurement of these properties enables reliable definition of the design life of steel hydrogen containment vessels.
Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC)
Dec 2021
Publication
The liquid organic hydrogen carriers (LOHC) are aromatic molecules which can be considered as an attractive option for the storage and transport of hydrogen. A considerable amount of hydrogen up to 7–8% wt. can be loaded and unloaded with a reversible chemical reaction. Substituted quinolines and pyridines are available from petroleum coal processing and wood preservation or they can be synthesized from aniline. Quinolines and pyridines can be considered as potential LOHC systems provided they have favorable thermodynamic properties which were the focus of this current study. The absolute vapor pressures of methyl-quinolines were measured using the transpiration method. The standard molar enthalpies of vaporization of alkyl-substituted quinolines and pyridines were derived from the vapor pressure temperature dependencies. Thermodynamic data on vaporization and formation enthalpies available in the literature were collected evaluated and combined with our own experimental results. The theoretical standard molar gas-phase enthalpies of formation of quinolines and pyridines calculated using the quantum-chemical G4 methods agreed well with the evaluated experimental data. Reliable standard molar enthalpies of formation in the liquid phase were derived by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporization. The liquid-phase hydrogenation/dehydrogenation reaction enthalpies of alkyl-substituted pyridines and quinolines were calculated and compared with the data for other potential liquid organic hydrogen carriers. The comparatively low enthalpies of reaction make these heteroaromatics a seminal LOHC system.
Hydrogen Deblending in the GB Network - Feasibility Study Report
Nov 2020
Publication
The UK government has committed to reducing greenhouse gas emissions to net zero by 2050. All future energy modelling identifies a key role for hydrogen (linked to CCUS) in providing decarbonised energy for heat transport industry and power generation. Blending hydrogen into the existing natural gas pipeline network has already been proposed as a means of transporting low carbon energy. However the expectation is that a gas blend with maximum hydrogen content of 20 mol% can be used without impacting consumers’ end use applications. Therefore a transitional solution is needed to achieve a 100% hydrogen future network.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
- Cryogenic separation
- Membrane separation
- Pressure Swing Adsorption (PSA)
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Laboratory Method for Simulating Hydrogen Assisted Degradation of Gas Pipeline Steels
Aug 2019
Publication
Integrity of natural gas transmission systems is of great importance for energy and environmental security. Deterioration occurs in gas transit pipelines due to operational conditions and action of corrosion and hydrogenating media and leads to changes in microstructure and mechanical properties of pipeline steels which influences on pipeline performance. Hydrogenation of metal during corrosion process together with working stresses facilitates a development of in-bulk damaging at nano- and microscales. Reducing brittle fracture resistance of pipeline steels under operation increases significantly a failure risk of gas pipelines associated with in-bulk material degradation. Therefore hydrogen assisted degradation of pipelines steels under operation calls for effective methods for in-laboratory accelerated degradation. The present study is devoted to the development of the procedure of laboratory simulation of in-service degradation of pipeline steels. The role of hydrogen in degradation of pipeline steels was analysed. The procedure of accelerated degradation of pipeline steels under the combined action of axial loading and hydrogen charging was developed and induced in the laboratory. The procedure was consisted in consistently subjecting of specimens to electrolytic hydrogen charging to an axial loading up and to an artificial aging. Pipeline steels in the different states (as-received post-operated aged and after in-laboratory degradation) were investigated. The tensile mechanical behaviour of steels and impact toughness were experimentally studied. It was definitely concluded that the applied procedure caused the changes in the metal mechanical properties at the same level compared to the properties degradation due to operation. The developed procedure enables on a laboratory scale simulating of pipeline steel degradation during long-term operation under simultaneous action of hydrogenation and working loading and it makes possible to predict the mechanical behaviour of pipeline steels during service.
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lower hydrogen storage capacities than those of the FeTi reference sample due to solid solution formation. It was observed that the equilibrium pressures decreased with the amount of molybdenum which is in good agreement with the increase in the cell parameters of the TiFe phase. Suspended droplet alloying was found to be a practical method to fabricate alloys with refractory metal additions; however it is appropriate for screening samples with desired chemical and phase compositions rather than for manufacturing purposes.
Static and Dynamic Studies of Hydrogen Adsorption on Nanoporous Carbon Gels
Jun 2019
Publication
Although hydrogen is considered to be one of the most promising green fuels its efficient and safe storage and use still raise several technological challenges. Physisorption in porous materials may offer an attractive means of storage but the state-of-the-art capacity of these kinds of systems is still limited. To overcome the present drawbacks a deeper understanding of the adsorption and surface diffusion mechanism is required along with new types of adsorbents developed and/or optimised for this purpose. In the present study we compare the hydrogen adsorption behaviour of three carbon gels exhibiting different porosity and/or surface chemistry. In addition to standard adsorption characterisation techniques neutron spin-echo spectroscopy (NSE) has been also applied to explore the surface mobility of the adsorbed hydrogen. Our results reveal that both the porosity and surface chemistry of the adsorbent play a significant role in the adsorption of in these systems.
Hydrogen adsorption on transition metal carbides
Jan 2019
Publication
Transition metal carbides are a class of materials widely known for both their interesting physical properties and catalytic activity. In this work we have used plane-wave DFT methods to study the interaction with increasing amounts of molecular hydrogen on the low-index surfaces of four major carbides – TiC VC ZrC and NbC. Adsorption is found to be generally exothermic and occurs predominantly on the surface carbon atoms. We identify trends over the carbides and their surfaces for the energetics of the adsorption as a function of their electronic and geometrical characteristics. An ab initio thermodynamics formalism is used to study the properties of the slabs as the hydrogen coverage is increased.
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
Jun 2014
Publication
Simulation of hydrogen embrittlement (HE) requires a coupled approach; on one side the models describing hydrogen transport must account for local mechanical fields while on the other side the effect of hydrogen on the accelerated material damage must be implemented into the model describing crack initiation and growth. This study presents a review of coupled diffusion and cohesive zone modelling as a method for numerically assessing HE of a steel structure. While the model is able to reproduce single experimental results by appropriate fitting of the cohesive parameters there appears to be limitations in transferring these results to other hydrogen systems. Agreement may be improved by appropriately identifying the required input parameters for the particular system under study.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Implementation of hydrogen plasma activation of Mg powder in two steps hydrogenation
Oct 2017
Publication
Development of technologically and economically feasible solutions for hydrogen storage stimulates progress in hydrogen economy. High gravimetric and volumetric capacities of magnesium hydride makes it promising material capable to accelerate implementation of hydrogen-based technologies in our daily life. However widely discussed limitations of sorption kinetics and thermodynamic properties must be managed in MgH2. This work investigates two steps hydrogenation when process of hydrogen absorption is followed after hydrogen plasma activation. Such technique initiates creation of new channels for enhanced hydrogen sorption. Moreover synthesis of negligible amount of hydride acts as positive factor for further hydrogenation.
Wood Cellulose as a Hydrogen Storage Material
Apr 2020
Publication
Hydrogen has become a strong candidate to be a future energy storage medium but there are technological challenges both in its production and storage. For storage a search for lightweight abundant and non-toxic materials is on the way. An abundant natural material such as wood cellulose would make an ideal storage medium from a sustainability perspective. Here using a combination of static DFT calculations and ab initio molecular dynamics simulations at different temperatures it is shown that wood cellulose has the ability to uptake H2 via a physisorption mechanism based on dispersion interactions of the van der Waals type involving the O-atoms of the d-glucose rings. The absorption causes little to no disturbances on the cellulose structure and H2 is highly mobile in the material. At an external pressure of H2(g) of 0.09 atm and T = 25 °C cellulose has a theoretical gravimetric density of hydrogen storage of ≈1%.
In-situ Study of the Effect of Hydrogen on Fatigue Crack Initiation in Polycrystalline Nickel
Aug 2019
Publication
Correlating hydrogen embrittlement phenomenon with the metallic microstructural features holds the key for developing metals resistant to hydrogen-based failures. In case of fatigue failure of hydrogen charged metals in addition to the hydrogen-based failure mechanisms associated with monotonic loading such as HELP HEDE etc. microstructural features such as grain size type of grain boundary (special/random) fraction of special grain boundaries; their network and triple junctions can play a complex role. The probable sites for fatigue crack initiation in such metals can be identified as the sites of highest hydrogen concentration or accumulated plastic strain. To this end we have developed an experimental framework based on in-situ fatigue crack initiation and propagation studies under scanning electron microscope (SEM) to identify the weakest link in the metallic microstructure leading to failure. In-situ fatigue experiments are performed on carefully designed polycrystalline nickel (99.95% pure) specimens (miniaturised shallow-notched & electro-polished) using a 10 kN fatigue stage inside the SEM. Electron Back Scattering Diffraction (EBSD) map of the notched region surface helps identify the distribution of special/random grain boundaries triple junctions and grain orientation. The specimen surface in the shallow notched region for both the hydrogen charged and un-charged specimens are then carefully studied to correlate the microstructural feature associated with fatigue crack initiation sites. Such correlation of the fatigue crack initiation site and microstructural feature is further corroborated with the knowledge of hydrogen trapping and grain’s elastic anisotropicity to be either the site of high hydrogen concentration accumulated plastic slip or both.
20 Years of Carbon Capture and Storage - Accelerating Future Deployment
Nov 2016
Publication
Carbon capture and storage (CCS) technologies are expected to play a significant part in the global climate response. Following the ratification of the Paris Agreement the ability of CCS to reduce emissions from fossil fuel use in power generation and industrial processes – including from existing facilities – will be crucial to limiting future temperature increases to ""well below 2°C"" as laid out in the Agreement. CCS technology will also be needed to deliver ""negative emissions"" in the second half of the century if these ambitious goals are to be achieved.
CCS technologies are not new. This year is the 20th year of operation of the Sleipner CCS Project in Norway which has captured almost 17 million tonnes of CO2 from an offshore natural gas production facility and permanently stored them in a sandstone formation deep under the seabed. Individual applications of CCS have been used in industrial processes for decades and projects injecting CO2 for enhanced oil recovery (EOR) have been operating in the United States since the early 1970s.
This publication reviews progress with CCS technologies over the past 20 years and examines their role in achieving 2°C and well below 2°C targets. Based on the International Energy Agency’s 2°C scenario it also considers the implications for climate change if CCS was not a part of the response. And it examines opportunities to accelerate future deployment of CCS to meet the climate goals set in the Paris Agreement.
Link to Document on IEA Website
CCS technologies are not new. This year is the 20th year of operation of the Sleipner CCS Project in Norway which has captured almost 17 million tonnes of CO2 from an offshore natural gas production facility and permanently stored them in a sandstone formation deep under the seabed. Individual applications of CCS have been used in industrial processes for decades and projects injecting CO2 for enhanced oil recovery (EOR) have been operating in the United States since the early 1970s.
This publication reviews progress with CCS technologies over the past 20 years and examines their role in achieving 2°C and well below 2°C targets. Based on the International Energy Agency’s 2°C scenario it also considers the implications for climate change if CCS was not a part of the response. And it examines opportunities to accelerate future deployment of CCS to meet the climate goals set in the Paris Agreement.
Link to Document on IEA Website
Formation and Dissociation Behaviour Studies of Hydrogen Hydrate in the Presence of Tetrahydrofuran by using High Pressure DSC
Mar 2019
Publication
Significant challenges still remain in the development of suitable materials for storing hydrogen for practical applications. Clathrate hydrates as a special inclusion compounds could be tailored by changing the storage pressure and temperature to adapt ambient conditions. In this work the hydrates were adopted to encage hydrogen in tetrahydrofuran (THF) aqueous solution with concentration of 3.0 mol%. The formation and dissociation behaviours were investigated by a high pressure micro-differential scanning calorimeter at the operating pressure of 18 MPa 25 MPa and 34 MPa. Experimental results show that the memory water only affects the hydrate formation behaviour instead of the hydrate dissociation behaviour. The dissociation temperature of the THF-H2 hydrate increases with the increase of the operating pressure and its dissociation equilibrium data can be obtained. The dissociation temperatures of the THF-H2 hydrate are 9.26 ℃ 10.94 ℃ and 12.67 ℃ at the operating pressure of 18 MPa 25 MPa and 34 MPa respectively. It is fundamental for performing the kinetics and microscopic experiments.
No more items...