Transmission, Distribution & Storage
Numerical Simulation of Tensile Behavior of Corroded Aluminum Alloy 2024 T3 Considering the Hydrogen Embrittlement
Jan 2018
Publication
A multi-scale modeling approach for simulating the tensile behavior of the corroded aluminum alloy 2024 T3 was developed accounting for both the geometrical features of corrosion damage and the effect of corrosion-induced hydrogen embrittlement (HE). The approach combines two Finite Element (FE) models: a model of a three-dimensional Representative Unit Cell (RUC) representing an exfoliated area and its correspondent hydrogen embrittled Read More
Unusual Hydrogen Implanted Gold with Lattice Contraction at Increased Hydrogen Content
Mar 2021
Publication
The experimental evidence for the contraction of volume of gold implanted with hydrogen at low doses is presented. The contraction of lattice upon the addition of other elements is very rare and extraordinary in the solid-state not only for gold but also for many other solids. To explain the underlying physics the pure kinetic theory of absorption is not adequate and the detailed interaction of hydrogen in the lattice needs to be clarified. Our analysis poin Read More
Dislocation and Twinning Behaviors in High Manganese Steels in Respect to Hydrogen and Aluminum Alloying
Dec 2018
Publication
The dislocation and twinning evolution behaviors in high manganese steels Fe-22Mn-0.6C and Fe-17Mn-1.5Al-0.6C have been investigated under tensile deformation with and without diffusive hydrogen. The notched tensile tests were interrupted once primary cracks were detected using the applied direct current potential drop measurement. In parallel the strain distribution in the vicinity of the crack was characterized by digital image correlation usi Read More
The Effect of Heat Treatments on the Constituent Materials of a Nuclear Reactor Pressure Vessel in Hydrogen Environment
Jul 2016
Publication
A nuclear reactor pressure vessel (NRPV) wall is formed by two layer of different materials: an inner layer of stainless steel (cladding material) and an outer layer of low carbon steel (base material) which is highly susceptible to corrosion related phenomena. A reduction of the mechanical properties of both materials forming the wall would appear due to the action of the harsh environment causing hydrogen embrittlement (HE) related phenomena. As Read More
Influence of Pressure, Temperature and Organic Surface Concentration on Hydrogen Wettability of Caprock; Implications for Hydrogen Geo-storage
Sep 2021
Publication
Hydrogen (H2) as a cleaner fuel has been suggested as a viable method of achieving the decarbonization objectives and meeting increasing global energy demand. However successful implementation of a full-scale hydrogen economy requires large-scale hydrogen storage (as hydrogen is highly compressible). A potential solution to this challenge is injecting hydrogen into geologic formations from where it can be withdrawn again at later stages for utilizat Read More
Study on Temper Embrittlement and Hydrogen Embrittlement of a Hydrogenation Reactor by Small Punch Test
Jun 2017
Publication
The study on temper embrittlement and hydrogen embrittlement of a test block from a 3Cr1Mo1/4V hydrogenation reactor after ten years of service was carried out by small punch test (SPT) at different temperatures. The SPT fracture energy Esp (derived from integrating the load-displacement curve) divided by the maximum load (Fm) of SPT was used to fit the Esp/Fm versus-temperature curve to determine the energy transition temperature (Tsp) whi Read More
Baking Effect on Desorption of Diffusible Hydrogen and Hydrogen Embrittlement on Hot-Stamped Boron Martensitic Steel
Jun 2019
Publication
Recently hot stamping technology has been increasingly used in automotive structural parts with ultrahigh strength to meet the standards of both high fuel efficiency and crashworthiness. However one issue of concern regarding these martensitic steels which are fabricated using a hot stamping procedure is that the steel is highly vulnerable to hydrogen delayed cracking caused by the diffusible hydrogen flow through the surface reaction of the coating in a Read More
Prospecting Stress Formed by Hydrogen or Isotope Diffused in Palladium Alloy Cathode
Oct 2018
Publication
The objective of this project is to take into account the mechanical constraints formed by diffusion of hydrogen or tritium in watertight palladium alloy cathode. To know the origin of these it was necessary to discriminating the damaging effects encountered. Effectively hydrogen and isotope induce deformation embrittlement stress corrosion cracking and cathodic corrosion in different regions of cathode. Palladium can be alloyed with silver o Read More
Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance
Nov 2017
Publication
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e. 50 80 and 100 °C) and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel but simultaneously significantly increased the HE susceptibility of the steel since α′ martensite was induc Read More
Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying
Apr 2018
Publication
Niobium microalloying is the backbone of modern low-carbon high strength low alloy (HSLA) steel metallurgy providing a favorable combination of strength and toughness by pronounced microstructural refinement. Molybdenum alloying is established in medium-carbon quenching and tempering of steel by delivering high hardenability and good tempering resistance. Recent developments of ultra-high strength steel grades such as fully martensitic ste Read More
Effect of Hot Mill Scale on Hydrogen Embrittlement of High Strength Steels for Pre-Stressed Concrete Structures
Mar 2018
Publication
The presence of a conductive layers of hot-formed oxide on the surface of bars for pre or post-compressing structures can promote localized attacks as a function of pH. The aggressive local environment in the occluded cells inside localized attacks has as consequence the possibility of initiation of stress corrosion cracking. In this paper the stress corrosion cracking behavior of high strength steels proposed for tendons was studied by means of Con Read More
Charpy Impact Properties of Hydrogen-Exposed 316L Stainless Steel at Ambient and Cryogenic Temperatures
May 2019
Publication
316L stainless steel is a promising material candidate for a hydrogen containment system. However when in contact with hydrogen the material could be degraded by hydrogen embrittlement (HE). Moreover the mechanism and the effect of HE on 316L stainless steel have not been clearly studied. This study investigated the effect of hydrogen exposure on the impact toughness of 316L stainless steel to understand the relation between hydrogen chargi Read More
Hydrogen Storage in Depleted Gas Reservoirs: A Comprehensive Review
Nov 2022
Publication
Hydrogen future depends on large-scale storage which can be provided by geological formations (such as caverns aquifers and depleted oil and gas reservoirs) to handle demand and supply changes a typical hysteresis of most renewable energy sources. Amongst them depleted natural gas reservoirs are the most cost-effective and secure solutions due to their wide geographic distribution proven surface facilities and less ambiguous site evaluation. Read More
Influence of Hydrogen for Crack Formation during Mechanical Clinching
Jan 2018
Publication
Hydrogen intrudes into the steel during pickling process which is a pre-processing before a joining process promoting crack formation. In a mechanical clinching which is one of joining method in the automotive industry cracks due to large strain sometimes forms. In order to guarantee reliability it is important to clarify the influence of hydrogen on crack formation of the joint. In this study we clarified the influence of hydrogen for the crack formation on t Read More
Environmental Degradation Effect of High-Temperature Water and Hydrogen on the Fracture Behavior of Low-Alloy Reactor Pressure Vessel Steels
Dec 2019
Publication
Structural integrity of reactor pressure vessel (RPV) in light water reactors (LWR) is of highest importance regarding operation safety and lifetime. The fracture behaviour of low-alloy RPV steels with different dynamic strain aging (DSA) & environmental assisted cracking (EAC) susceptibilities in simulated LWR environments was evaluated by elastic plastic fracture mechanics tests (EPFM) and by metallo- and fractographic post-test analysis. Exposure to h Read More
The Role of the Testing Rate on Small Punch Tests for the Estimation of Fracture Toughness in Hydrogen Embrittlement
Dec 2020
Publication
In this paper different techniques to test notched Small Punch (SPT) samples in fracture conditions in aggressive environments are studied based on the comparison of the micromechanisms at different rates. Pre-embrittled samples subsequently tested in air at rates conventionally employed (0.01 and 0.002 mm/s) are compared to embrittled ones tested in environment at the same rates (0.01 and 0.002 mm/s) and at a very slow rate (5E-5 mm/s). A se Read More
Enabling Large-scale Hydrogen Storage in Porous Media – The Scientific Challenges
Jan 2021
Publication
Niklas Heinemann,
Juan Alcalde,
Johannes M. Miocic,
Suzanne J. T. Hangx,
Jens Kallmeyer,
Christian Ostertag-Henning,
Aliakbar Hassanpouryouzband,
Eike M. Thaysen,
Gion J. Strobel,
Cornelia Schmidt-Hattenberger,
Katriona Edlmann,
Mark Wilkinson,
Michelle Bentham,
Stuart Haszeldine,
Ramon Carbonell and
Alexander Rudloff
Expectations for energy storage are high but large-scale underground hydrogen storage in porous media (UHSP) remains largely untested. This article identifies and discusses the scientific challenges of hydrogen storage in porous media for safe and efficient large-scale energy storage to enable a global hydrogen economy. To facilitate hydrogen supply on the scales required for a zero-carbon future it must be stored in porous geological formations Read More
Hydrogen Storage Behavior of Nanocrystalline and Amorphous Mg–Ni–Cu–La Alloys
Sep 2020
Publication
Alloying and structural modification are two effective ways to enhance the hydrogen storage kinetics and decrease the thermal stability of Mg and Mg-based alloys. In order to enhance the characteristics of Mg2Ni-type alloys Cu and La were added to an Mg2Ni-type alloy and the sample alloys (Mg24Ni10Cu2)100−xLax (x = 0 5 10 15 20) were prepared by melt spinning. The influences of La content and spinning rate on the gaseous and e Read More
Features of the Hydrogen-Assisted Cracking Mechanism in the Low-Carbon Steel at Ex- and In-situ Hydrogen Charging
Dec 2018
Publication
Hydrogen embrittlement has been intensively studied in the past. However its governing mechanism is still under debate. Particularly the details of the formation of specific cleavage-like or quasi-cleavage fracture surfaces related to hydrogen embrittled steels are unclear yet. Recently it has been found that the fracture surface of the hydrogen charged and tensile tested low-carbon steel exhibits quasi-cleavage facets having specific smoothly curved s Read More
Strain Rate Sensitivity of Microstructural Damage Evolution in a Dual-Phase Steel Pre-Charged with Hydrogen
Dec 2018
Publication
We evaluated the strain rate sensitivity of the micro-damage evolution behavior in a ferrite/martensite dual-phase steel. The micro-damage evolution behavior can be divided into three regimes: damage incubation damage arrest and damage growth. All regimes are associated with local deformability. Thus the total elongation of DP steels is determined by a combination of plastic damage initiation resistance and damage growth arrestability. This fact i Read More
No more items...