Transmission, Distribution & Storage
Innovation Insights Brief - Five Steps to Energy Storage
Jan 2020
Publication
As the global electricity systems are shaped by decentralisation digitalisation and decarbonisation the World Energy Council’s Innovation Insights Briefs explore the new frontiers in energy transitions and the challenges of keeping pace with fast moving developments. We use leadership interviews to map the state of play and case studies across the whole energy landscape and build a broader and deeper picture of new developments within and beyond Read More
Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo
Sep 2017
Publication
This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD) hydrogen embrittlement (HE) or at the micro-level hydrogen-assisted micro-damage (HAMD) thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen ef Read More
Microalloyed Steels through History until 2018: Review of Chemical Composition, Processing and Hydrogen Service
May 2018
Publication
Microalloyed steels have evolved in terms of their chemical composition processing and metallurgical characteristics since the beginning of the 20th century in the function of fabrication costs and mechanical properties required to obtain high-performance materials needed to accommodate for the growing demands of gas and hydrocarbons transport. As a result of this microalloyed steels present a good combination of high strength and ductility obtai Read More
Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging
Aug 2019
Publication
Herein the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrog Read More
The UK Carbon Capture, Usage and Storage (CCUS) Deployment Pathway: An Action Plan
Nov 2018
Publication
CCUS has economy-wide qualities which could be very valuable to delivering clean industrial growth. It could deliver tangible results in tackling some of the biggest challenges we face in decarbonising our economy contributing to industrial competitiveness and generating new economic opportunities – a key part of our modern Industrial Strategy.Our vision is to become a global leader in CCUS unlocking the potential of the technology and securing the adde Read More
Balancing Wind-power Fluctuation Via Onsite Storage Under Uncertainty Power-to-hydrogen-to-power Versus Lithium Battery
Oct 2019
Publication
Imbalance costs caused by forecasting errors are considerable for grid-connected wind farms. In order to reduce such costs two onsite storage technologies i.e. power-to-hydrogen-to-power and lithium battery are investigated considering 14 uncertain technological and economic parameters. Probability density distributions of wind forecasting errors and power level are first considered to quantify the imbalance and excess wind power. Then robust optimal Read More
Geomechanical Simulation of Energy Storage in Salt Formations
Oct 2021
Publication
A promising option for storing large-scale quantities of green gases (e.g. hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a signifcant role in long-term stability and serviceability. However rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological doma Read More
Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels
May 2018
Publication
In the present study the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and unc Read More
Hydrogen Assisted Crack Initiation and Propagation in Nickel-cobalt Heat Resistant Superalloys
Aug 2019
Publication
It has been investigated the Ni-Co alloys (obtained from powder 0.1...0.3 mm under hot gaseous (in argon) isostatic pressure (up to 300 MPa) (Ni60Co15Cr8W8Al2Mo3) (Firth Rixon Metal Ltd Sheffield) and deformed (obtained by vacuum induced remealting) materials (Ni62Cr14Co10Mo5Nb3Al3Ti3) for gaseous turbine discs. Investigation has performed in the range of temperature 25…800°С and hydrogen pressure up to 70 MPa. By the 3D vis Read More
Hydrogen Embrittlement in Super Duplex Stainless Steels
Nov 2019
Publication
In super duplex stainless steels (SDSSs) both austenite and ferrite are susceptible to hydrogen embrittlement however there is a lack of understanding into the effect of hydrogen in each phase. In this study in neutron diffraction was applied on hydrogen-charged (H-charged) samples to investigate the hydrogen embrittlement behaviour in super duplex stainless steels. The result reveals that austenite maintains good plasticity during tensile testing whilst a l Read More
Investigation of the Hydrogen Embrittlement Susceptibility of T24 Boiler Tubing in the Context of Stress Corrosion Cracking of its Welds
Dec 2018
Publication
For the membrane and spiral walls of the new USC boilers the advanced T24 material was developed. In 2010 however extensive T24 tube weld cracking during the commissioning phase of several newly built boilers was observed. As the dominant root cause Hydrogen Induced - Stress Corrosion Cracking was reported. An investigation into the interaction of the T24 material with hydrogen was launched in order to compare its hydrogen embrittlement su Read More
Tensile and Fatigue Properties of 17-4PH Martensitic Stainless Steels in Presence of Hydrogen
Dec 2019
Publication
Effects of hydrogen on slow-strain-rate tensile (SSRT) and fatigue-life properties of 17-4PH H1150 martensitic stainless steel having an ultimate tensile strength of ~1GPa were investigated. Smooth and circumferentially-notched axisymmetric specimens were used for the SSRT and fatigue-life tests respectively. The fatigue-life tests were done to investigate the hydrogen effect on fatigue crack growth (FCG) properties. The specimens tested in Read More
Tracking Hydrogen Embrittlement Using Short Fatigue Crack Behavior of Metals
Dec 2018
Publication
Understanding hydrogen embrittlement phenomenon that leads to deterioration of mechanical properties of metallic components is vital for applications involving hydrogen environment. Among these understanding the influence of hydrogen on the fatigue behaviour of metals is of great interest. Total fatigue life of a material can be divided into fatigue crack initiation and fatigue crack growth phase. While fatigue crack initiation can be linked with the pr Read More
Hydrogen Embrittlement in Pipelines Transporting Sour Hydrocarbons
Sep 2017
Publication
Lamination-like defects in pipeline steels can be of both metallurgical and operational origin. In pipelines transporting hydrocarbon usually such defects are not a big challenge since they do not propagate under operating conditions. Nonetheless in presence of a corrosion phenomenon and sour gas (H2S) it is possible to observe blisters and cracks which may propagate in the steel. The observed damage mechanisms is Hydrogen Embrittlement and in sp Read More
Reversible Hydrogen Storage Using Nanocomposites
Jul 2020
Publication
In the field of energy storage recently investigated nanocomposites show promise in terms of high hydrogen uptake and release with enhancement in the reaction kinetics. Among several carbonaceous nanovariants like carbon nanotubes (CNTs) fullerenes and graphitic nanofibers reveal reversible hydrogen sorption characteristics at 77 K due to their van der Waals interaction. The spillover mechanism combining Pd nanoparticles on the host metal-org Read More
Adaptation of Hydrogen Transport Models at the Polycrystal Scale and Application to the U-bend Test
Dec 2018
Publication
Hydrogen transport and trapping equations are implemented in a FE software using User Subroutines and the obtained tool is applied to get the diffusion fields in a metallic sheet submitted to a U-Bend test. Based on a submodelling process mechanical and diffusion fields have been computed at the polycrystal scale from which statistical evaluation of the risk of failure of the sample has been estimated.
Critical Review of Models for H2-permeation Through Polymers with Focus on the Differential Pressure Method
May 2021
Publication
To reduce loss of hydrogen in storage vessels with high energy-to-weight-ratio new materials especially polymers have to be developed as barrier materials. Very established methods for characterization of barrier materials with permeation measurements are the time-lag and flow rate method along with the differential pressure method which resembles the nature of hydrogen vessel systems very well. Long measurement durations are necessary to gai Read More
Hydrogen-Based Energy Storage Systems for Large-Scale Data Center Applications
Nov 2021
Publication
Global demand for data and data access has spurred the rapid growth of the data center industry. To meet demands data centers must provide uninterrupted service even during the loss of primary power. Service providers seeking ways to eliminate their carbon footprint are increasingly looking to clean and sustainable energy solutions such as hydrogen technologies as alternatives to traditional backup generators. In this viewpoint a survey of the curr Read More
Hydrogen vs. Battery in the Long-term Operation. A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids
Apr 2020
Publication
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time the use of renewable energy sources is pursued to address decarbonization targets but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing at the same time the security and reliability of the microgrids. Locally dist Read More
Prospects of Enhancing the Understanding of Material-hydrogen Interaction by Novel In-situ and In-operando Methods
Jan 2022
Publication
A main scientific and technical challenge facing the implementation of new and sustainable energy sources is the development and improvement of materials and components. In order to provide commercial viability of these applications an intensive research in material-hydrogen (H) interaction is required. This work provides an overview of recently developed in-situ and in-operando H-charging methods and their applicability to investigate Read More
No more items...