- Home
- A-Z Publications
- Publications
Publications
A Novel LH2/GH2/Battery Multi-energy Vehicle Supply Station using 100% Local Wind Energy, Technical, Economic and Environmental Perspectives
Feb 2023
Publication
With the gradual maturity of wind power technology China’s wind power generation has grown rapidly over the recent years. However due to the on-site inconsumable electricity the phenomenon of large-scale “wind curtailment” occurs in some areas. In this paper a novel hybrid hydrogen/electricity refueling station is built near a wind farm and a part of the surplus wind power is used to charge electric trucks and the other part of the surplus power is used to produce “green hydrogen”. According to real-time load changes different amounts of liquid hydrogen and gas hydrogen can be properly coordinated to provide timely energy supply for hydrogen trucks. For a 400 MW wind farm in the western Inner Mongolia China the feasibility of the proposed system has been carried out based on the sensitivity and reliability analysis the static and dynamic economic modeling with an entire life cycle analysis. Compared to the conventional technology the initial investment of the proposed scheme (700.07 M$) decreases by 13.97% and the dynamic payback period (10.93 years) decreases by 25.87%. During the life cycle of the proposed system the accumulative NPV reaches 184.63 M$ which increases by 3.14 times compared to the case by conventional wind technology.
Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste
Dec 2023
Publication
Disposing of plastic waste through burial or burning leads to air pollution issues while also contributing to gas emissions and plastic waste spreading underground into seas via springs. Henceforth this research aims at reducing plastic waste volume while simultaneously generating clean energy. Hydrogen energy is a promising fuel source that holds great value for humanity. However achieving clean hydrogen energy poses challenges including high costs and complex production processes especially on a national scale. This research focuses on Iran as a country capable of producing this energy examining the production process along with related challenges and the general supply chain. These challenges encompass selecting appropriate raw materials based on chosen technologies factory capacities storage methods and transportation flow among different provinces of the country. To deal with these challenges a mixed-integer linear programming model is developed to optimize the hydrogen supply chain and make optimal decisions about the mentioned problems. The supply chain model estimates an average cost—IRR 4 million (approximately USD 8)—per kilogram of hydrogen energy that is available in syngas during the initial period; however subsequent periods may see costs decrease to IRR 1 million (approximately USD 2) factoring in return-on-investment rates.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
Social Risk Approach for Assessing Public Safety of Large-scale Hydrogen Systems
Sep 2023
Publication
Social risk is a comprehensive concept that considers not only internal/external physical risks but also risks (which are multiple varied and diverse) associated with social activity. It should be considered from diverse perspectives and requires a comprehensive evaluation framework that takes into account the synergistic impact of each element on others rather than evaluating each risk individually. Social risk assessment is an approach that is not limited to internal system risk from an engineering perspective but also considers the stakeholders development stage and societal readiness and resilience to change. This study aimed to introduce a social risk approach to assess the public safety of large-scale hydrogen systems. Guidelines for comprehensive social risk assessment were developed to conduct appropriate risk assessments for advanced science and technology activities with high uncertainties to predict major impacts on society before an accident occurs and to take measures to mitigate the damage and to ensure good governance are in place to facilitate emergency response and recovery in addition to preventive measures. In a case study this approach was applied to a hydrogen refueling station in Japan and risk-based multidisciplinary approaches were introduced. These approaches can be an effective supporting tool for social implementation with respect to large-scale hydrogen systems such as liquefied hydrogen storage tanks. The guidelines for social risk assessment of large-scale hydrogen systems are under the International Energy Agency Technology Collaboration Program Hydrogen Safety Task 43. This study presents potential case studies of social risk assessment for large-scale hydrogen systems for future.
Composition Tracking of Natural Gas-Hydrogen Mixtures in Pipeline Flow Using High-resolution Schemes
Jul 2024
Publication
A transient pipeline flow model with gas composition tracking is solved for studying the operation of a natural gas pipeline under nonisothermal flow conditions in a hydrogen injection scenario. Two approaches to high-resolution pipeline flow modeling based on the WENO scheme are presented and compared with the implicit finite difference method. The high-resolution models are capable of capturing fast fluid transients and tracking the step changes in the composition of the transported mixture. The implicit method assumes the decoupling of the flow model components in order to enhance calculation efficiency. The validation of the composition tracking results against actual gas transmission pipeline indicates that both models exhibit good prediction performance with normalized root mean square errors of 0.406% and 1.48% respectively. Under nonisothermal flow conditions the prediction response of the reduced model against a high-resolution flow model with respect to the mass and energy linepack is at most 3.20%.
Integration of Renewable Energy Sources in Tandem with Electrolysis: A Technology Review for Green Hydrogen Production
Jun 2024
Publication
The global shift toward sustainable energy solutions emphasises the urgent need to harness renewable sources for green hydrogen production presenting a critical opportunity in the transition to a low-carbon economy. Despite its potential integrating renewable energy with electrolysis to produce green hydrogen faces significant technological and economic challenges particularly in achieving high efficiency and cost-effectiveness at scale. This review systematically examines the latest advancements in electrolysis technologies—alkaline proton exchange membrane electrolysis cell (PEMEC) and solid oxide—and explores innovative grid integration and energy storage solutions that enhance the viability of green hydrogen. The study reveals enhanced performance metrics in electrolysis processes and identifies critical factors that influence the operational efficiency and sustainability of green hydrogen production. Key findings demonstrate the potential for substantial reductions in the cost and energy requirements of hydrogen production by optimising electrolyser design and operation. The insights from this research provide a foundational strategy for scaling up green hydrogen as a sustainable energy carrier contributing to global efforts to reduce greenhouse gas emissions and advance toward carbon neutrality. The integration of these technologies could revolutionise energy systems worldwide aligning with policy frameworks and market dynamics to foster broader adoption of green hydrogen.
Freshwater Supply for Hydrogen Production: An Underestimated Challenges
Jun 2024
Publication
This paper presents a thorough critical literature review aimed at understanding the challenges associated with freshwater supply associated with rapidly growing global hydrogen economies. The review has been prompted by the fact that the hydrogen production projected for 2030 will create at least an additional demand of 2.1 billion cubic meters for freshwater which needs to be addressed to support sustainable development of emerging hydrogen economies. The key solutions explored by this study include seawater and wastewater treatment methods for large-scale freshwater generation along with the newly introduced technique of direct seawater-fed electrolysis. Prior research indicates that desalination technologies including reverse osmosis and membrane distillation also offer promising avenues for large-scale freshwater production at costs comparable to other desalination techniques. Additionally low-temperature desalination methods such as membrane distillation could play a significant role in freshwater production for electrolysis underscoring the importance of exploring waste recovery opportunities within the system (e.g. fuel cell heat recovery). This review also identifies research gaps that need to be addressed to overcome freshwater supply challenges and enhance the sustainability and techno-economic viability of large-scale hydrogen energy systems.
Environmental Implications and Levelized Cost Analysis of E-fuel Production under Photovoltaic Energy, Direct Air Capture, and Hydrogen
Jan 2024
Publication
The ecological transition in the transport sector is a major challenge to tackle environmental pollution and European legislation will mandate zero-emission new cars from 2035. To reduce the impact of petrol and diesel vehicles much emphasis is being placed on the potential use of synthetic fuels including electrofuels (e-fuels). This research aims to examine a levelised cost (LCO) analysis of e-fuel production where the energy source is renewable. The energy used in the process is expected to come from a photovoltaic plant and the other steps required to produce e-fuel: direct air capture electrolysis and Fischer-Tropsch process. The results showed that the LCOe-fuel in the baseline scenario is around 3.1 €/l and this value is mainly influenced by the energy production component followed by the hydrogen one. Sensitivity scenario and risk analyses are also conducted to evaluate alternative scenarios and it emerges that in 84% of the cases LCOe-fuel ranges between 2.8 €/l and 3.4 €/l. The findings show that the current cost is not competitive with fossil fuels yet the development of e-fuels supports environmental protection. The concept of pragmatic sustainability incentive policies technology development industrial symbiosis economies of scale and learning economies can reduce this cost by supporting the decarbonisation of the transport sector.
Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study
Jul 2024
Publication
The growing concern about climate change and the contemporary increase in mobility requirements call for faster cheaper safer and cleaner means of transportation. The retrofitting of fossil-fueled piston engine ultralight aerial vehicles to hydrogen power systems is an option recently proposed in this direction. The goal of this investigation is a comparative analysis of the environmental impact of conventional and hydrogen-based propulsive systems. As a case study a hybrid electric configuration consisting of a fuel cell with a nominal power of about 30 kW a 6 kWh LFP battery and a pressurized hydrogen vessel is proposed to replace a piston prop configuration for an ultralight aerial vehicle. Both power systems are modeled with a backward approach that allows the efficiency of the main components to be evaluated based on the load and altitude at every moment of the flight with a time step of 1 s. A typical 90 min flight mission is considered for the comparative analysis which is performed in terms of direct and indirect emissions of carbon dioxide water and pollutant substances. For the hydrogen-based configuration two possible strategies are adopted for the use of the battery: charge sustaining and charge depleting. Moreover the effect of the altitude on the parasitic power of the fuel cell compressor and consequently on the net efficiency of the fuel cell system is taken into account. The results showed that even if the use of hydrogen confines the direct environmental impact to the emission of water (in a similar quantity to the fossil fuel case) the indirect emissions associated with the production transportation and delivery of hydrogen and electricity compromise the desired achievement of pollutant-free propulsion in terms of equivalent emissions of CO2 and VOCs if hydrogen is obtained from natural gas reforming. However in the case of green hydrogen from electrolysis with wind energy the total (direct and indirect) emissions of CO2 can be reduced up to 1/5 of the fossil fuel case. The proposed configuration has the additional advantage of eliminating the problem of lead which is used as an additive in the AVGAS 100LL.
A Computational Study of Hydrogen Dispersion and Explosion after Large-Scale Leakage of Liquid Hydrogen
Nov 2023
Publication
This study employs the FLACS code to analyze hydrogen leakage vapor dispersion and subsequent explosions. Utilizing pseudo-source models a liquid pool model and a hybrid model combining both we investigate dispersion processes for varying leak mass flow rates (0.225 kg/s and 0.73 kg/s) in a large open space. We also evaluate explosion hazards based on overpressure and impulse effects on humans. The computational results compared with experimental data demonstrated reasonable hydrogen vapor cloud concentration predictions especially aligned with the wind direction. For higher mass flow rate of 0.73 kg/s the pseudo-source model exhibited the most reasonable predictive performance for locations near the leak source despite the hybrid model yielded similar results to the pseudo-source model while the liquid pool model was more suitable for lower mass flow rate of 0.225 kg/s. Regarding explosion analyses using overpressure-impulse diagram higher mass flow rates leaded to potentially fatal overpressure and impulse effects on humans. However lower mass flow rates may cause severe eardrum damage at the maximum overpressure point.
Techno-Economic Analysis of Clean Hydrogen Production Plants in Sicily: Comparison of Distributed and Centralized Production
Jul 2024
Publication
This paper presents an assessment of the levelized cost of clean hydrogen produced in Sicily a region in Southern Italy particularly rich in renewable energy and where nearly 50% of Italy’s refineries are located making a comparison between on-site production that is near the end users who will use the hydrogen and centralized production comparing the costs obtained by employing the two types of electrolyzers already commercially available. In the study for centralized production the scale factor method was applied on the costs of electrolyzers and the optimal transport modes were considered based on the distance and amount of hydrogen to be transported. The results obtained indicate higher prices for hydrogen produced locally (from about 7 €/kg to 10 €/kg) and lower prices (from 2.66 €/kg to 5.80 €/kg) for hydrogen produced in centralized plants due to economies of scale and higher conversion efficiencies. How-ever meeting the demand for clean hydrogen at minimal cost requires hydrogen distribution pipelines to transport it from centralized production sites to users which currently do not exist in Sicily as well as a significant amount of renewable energy ranging from 1.4 to 1.7 TWh per year to cover only 16% of refineries’ hydrogen needs.
A Parametric Study on In-situ Hydrogen Production from Hydrocarbon Reservoirs - Effect of Reservoir and Well Properties
Jul 2024
Publication
Energy transition is a key driver to combat climate change and achieve zero carbon future. Sustainable and costeffective hydrogen production will provide valuable addition to the renewable energy mix and help minimize greenhouse gas emissions. This study investigates the performance of in-situ hydrogen production (IHP) process using a full-field compositional model as a precursor to experimental validation The reservoir model was simulated as one geological unit with a single point uniform porosity value of 0.13 and a five-point connection type between cell to minimize computational cost. Twenty-one hydrogen forming reactions were modelled based on the reservoir fluid composition selected for this study. The thermodynamic and kinetic parameters for the reactions were obtained from published experiments due to the absence of experimental data specific to the reservoir. A total of fifty-four simulation runs were conducted using CMG STARS software for 5478 days and cumulative hydrogen produced for each run was recorded. Results generated were then used to build a proxy model using Box-Behnken design of experiment method and Support Vector Machine with RBF kernel. To ascertain accuracy of the proxy models analysis of variance (ANOVA) was conducted on the variables. The average absolute percentage error between the proxy model and numerical simulation was calculated to be 10.82%. Optimization of the proxy model was performed using genetic algorithm to maximize cumulative hydrogen produced. Based on this optimized model the influence of porosity permeability well location injection rate and injection pressure were studied. Key results from this study reveals that lower permeability and porosity reservoirs supports more hydrogen yield injection pressure had a negligible effect on hydrogen yield and increase in oxygen injection rate corelated strongly with hydrogen production until a threshold value beyond which hydrogen yield decreased. The framework developed in the study could be used as tool to assess candidate reservoirs for in-situ hydrogen production.
Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response
Jan 2024
Publication
A regional integrated energy system (RIES) synergizing multiple energy forms is pivotal for enhancing renewable energy use and mitigating the greenhouse effect. Considering that the equipment of the current regional comprehensive energy system is relatively simple there is a coupling relationship linking power generation refrigeration and heating in the cogeneration system which is complex and cannot directly meet various load demands. This article proposes a RIES optimization model for bottom-source heat pumps and hydrogen storage systems in the context of comprehensive demand response. First P2G electric hydrogen production technology was introduced into RIES to give full play to the high efficiency advantages of hydrogen energy storage system and the adjustable thermoelectric ratio of the HFC was considered. The HFC could adjust its own thermoelectric ratio according to the system load and unit output. Second through the groundsource heat pump’s cleaning efficiency function further separation and cooling could be achieved. The heat and electrical output of RIES improved the operating efficiency of the system. Thirdly a comprehensive demand response model for heating cooling and electricity was established to enable users to reasonably adjust their own energy use strategies to promote the rational distribution of energy in the system. The model integrates power-to-gas (P2G) technology leveraging the tunable thermoelectric ratio of a hydrogen fuel cell (HFC) to optimize the generation of electricity and heat while maximizing the efficiency of the hydrogen storage system. Empirical analysis substantiated the proposed RIES model’s effectiveness and economic benefits when integrating ground-source HP and electric hydrogen production with IDR. Compared with the original model the daily operating cost of the proposed model was reduced by RMB 1884.16.
Assessing the Potential of Decarbonization Options for Industrial Sectors
Jan 2024
Publication
Industry emits around a quarter of global greenhouse gas (GHG) emissions. This paper presents the first comprehensive review to identify the main decarbonization options for this sector and their abatement potentials. First we identify the important GHG emitting processes and establish a global average baseline for their current emissions intensity and energy use. We then quantify the energy and emissions reduction potential of the most significant abatement options as well as their technology readiness level (TRL). We find that energy-intensive industries have a range of decarbonization technologies available with medium to high TRLs and mature options also exist for decarbonizing low-temperature heat across a wide range of industrial sectors. However electrification and novel process change options to reduce emissions from high-temperature and sector-specific processes have much lower TRLs in comparison. We conclude by highlighting important barriers to the deployment of industrial decarbonization options and identifying future research development and demonstration needs.
OIES Podcast - Key Energy Themes for 2024
Jan 2024
Publication
In this latest OIES podcast James Henderson talks to Bill Farren-Price the new Head of the Gas Programme about some of Key Themes identified by OIES research fellows for 2024. After a review of the outcomes from 2023 we look at the oil and gas markets and discuss a common theme around the contrast between the fundamental tightness in both markets compared with the relative softness of prices. We then move onto a number of energy transition issues starting with some of the key actions from COP28 that need to be implemented in 2024 and following with a review of the outlook for carbon markets hydrogen developments and offshore wind. We also consider the impact of emerging competition between regions over green industrial policy. Finally we consider some of the key geopolitical drivers for 2024 with the influence of China being the most critical. However in an election year for so many countries it will be critical to follow the key policy announcements of the main candidates and of most critically the outcome of the US election in November.
The podcast can be found on their website
The podcast can be found on their website
Steam Electrolysis for Green Hydrogen Generation. State of the Art and Research Perspective
Jul 2024
Publication
With renewable energy sources projected to become the dominant source of electricity hydrogen has emerged as a crucial energy carrier to mitigate their intermittency issues. Water electrolysis is the most developed alternative to generate green hydrogen so far. However in the past two decades steam electrolysis has attracted increasing interest and aims to become a key player in the portfolio of electrolytic hydrogen. In practice steam electrolysis follows two distinct operational approaches: Solid Oxide Electrolysis Cell (SOEC) and Proton Exchange Membrane (PEM) at high temperature. For both technologies this work analyses critical cell components outlining material characteristics and degradation issues. The influence of operational conditions on the performance and cell durability of both technologies is thoroughly reviewed. The analytical comparison of the two electrolysis alternatives underscores their distinct advantages and drawbacks highlighting their niche of applications: SOECs thrive in high temperature industries like steel production and nuclear power plants whereas PEM steam electrolysis suits lower temperature applications such as textile and paper. Being PEM steam electrolysis less explored this work ends up by suggesting research lines in the domain of i) cell components (membranes catalysts and gas diffusion layers) to optimize and scale the technology ii) integration strategies with renewable energies and iii) use of seawater as feedstock for green hydrogen production.
Technoeconomic, Environmental and Multi-criteria Decision Making Investigations for Optimisation of Off-grid Hybrid Renewable Energy System with Green Hydrogen Production
Jan 2024
Publication
The current study presents a comprehensive investigation of different energy system configurations for a remote village community in India with entirely renewable electricity. Excess electricity generated by the systems has been stored using two types of energy storage options: lithium-ion batteries and green hydrogen production through the electrolysers. The hybrid renewable energy system (HRES) configurations have been sized by minimising the levelised cost of energy (LCOE). In order to identify the best-performing HRES configuration economic and environmental performance indicators has been analysed using the multi-criteria decision-making method (MCDM) TOPSIS. Among the evaluated system configurations system-1 with a photovoltaic panel (PV) size of 310.24 kW a wind turbine (WT) size of 690 kW a biogas generator (BG) size of 100 kW a battery (BAT) size of 174 kWh an electrolyser (ELEC) size of 150 kW a hydrogen tank (HT) size of 120 kg and a converter (CONV) size of 106.24 kW has been found to be the best-performing system since it provides the highest relative closeness (RC) value (∼0.817) and also has the lowest fuel consumption rate of 2.31 kg/kWh. However system-6 shows the highest amount of CO2 (143.97 kg/year) among all the studied system configurations. Furthermore a detailed technical economic and environmental analysis has been conducted on the optimal HRES configuration. The minimum net present cost (NPC) LCOE and cost of hydrogen (COH) for system 1 has been estimated to be $1960584 $0.44/kWh and $22.3/kg respectively.
Development of Electric Power Generator by Using Hydrogen
Nov 2023
Publication
In this research we developed a hydrogen (H2 ) electric generator in an H2 generation system based on chemical reactions. In the experiment we tested the performance of the H2 electric generator and measured the amount of H2 generated. The maximum output was 700 W and the thermal efficiency was 18.2%. The theoretical value and measured value were almost the same and the maximum error was 4%.
Hydrogen Import and Export: Unlocking the UK's Hydrogen Trade Potential
May 2024
Publication
Hydrogen trade is an emerging area of interest for hydrogen developers end-users traders and governments around the world. It can enhance system flexibility energy security and clean growth enabling decarbonisation at a lower cost and faster pace. Thanks to its competitive advantage in existing ports terminals and interconnectors the UK is well placed to be the European trade hub for hydrogen and its carriers. With its access to world leading offshore wind generation capacity and geological storage the UK will almost certainly be a net exporter of hydrogen in the future delivering economic value and creating jobs. However hydrogen trade will not be a one-way process. In order to best position the UK as a future hydrogen trade hub there could be value in investing in small scale hydrogen imports and exports to ‘wet the pipes’ and stimulate investment in infrastructure. Imports could also enhance our energy security as a part of a diverse energy mix and support demand whilst domestic production gets up to speed. Both imports and exports will be key to build supply chains and skills and enhance clean growth. With major European economies having established their hydrogen trade strategy there is growing uncertainty as to how the United Kingdom will capitalise on its competitive advantage and position itself in the global hydrogen market. This is the first qualitative report released by Hydrogen UK’s Import and Export Taskforce. This report aims to provide a high-level overview of Hydrogen UK’s vision and recommendations with subsequent reports exploring this topic in further detail.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Green Hydrogen Cooperation between Egypt and Europe: The Perspective of Locals in Suez and Port Said
Jun 2024
Publication
Hydrogen produced by renewable energy sources (green hydrogen) is at the centrepiece of European decarbonization strategies necessitating large imports from third countries. Egypt potentially stands out as major production hub. While technical and economic viability are broadly discussed in literature analyses of local acceptance are absent. This study closes this gap by surveying 505 locals in the Suez Canal Economic Zone (Port Said and Suez) regarding their attitudes towards renewable energy development and green hydrogen production. We find overall support for both national deployment and export to Europe. Respondents see a key benefit in rising income thereby strongly underlying the economic argument. Improved trade relationships or improved political relationships are seen as potential benefits of export but as less relevant for engaging in cooperation putting a spotlight on local benefits. Our study suggests that the local population is more positive than negative towards the development and scaling up of green hydrogen projects in Egypt.
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
Optimization of the Joint Operation of an Electricity–Heat– Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power
Jun 2024
Publication
With the continuous development of hydrogen storage systems power-to-gas (P2G) and combined heat and power (CHP) the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally multiple scenarios are set up and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the twostage P2G the system emissions reduction can be 5.97% and 23.07% respectively and the total cost of operation can be reduced by 7.5% and 14.5% respectively.
Electrochemical Devices to Power a Sustainable Energy Transition—An Overview of Green Hydrogen Contribution
Mar 2024
Publication
This work discusses the current scenario and future growth of electrochemical energy devices such as water electrolyzers and fuel cells. It is based on the pivotal role that hydrogen can play as an energy carrier to replace fossil fuels. Moreover it is envisaged that the scaled-up and broader deployment of the technologies can hold the potential to address the challenges associated with intermittent renewable energy generation. From a sustainability perspective this synergy between hydrogen and electricity from renewable sources is particularly attractive: electrolyzers convert the excess energy from renewables into green hydrogen and fuel cells use this hydrogen to convert it back into electricity when it is needed. Although this transition endorses the ambitious goal to supply greener energy for all it also entails increased demand for the materials that are essential for developing such cleaner energy technologies. Herein several economic and environmental issues are highlighted besides a critical overview regarding each technology. The aim is to raise awareness and provide the reader (a non-specialist in the field) with useful resources regarding the challenges that need to be overcome so that a green hydrogen energy transition and a better life can be fully achieved.
The Cost of Clean Hydrogen from Offshore Wind and Electrolysis
Feb 2024
Publication
The decarbonization of industry heating and transportation is a major challenge for many countries’ energy transition. Hydrogen is a direct low-carbon fuel alternative to natural gas offering a higher flexibility in the range of possible applications yet currently most hydrogen is produced using carbonintensive steam methane reforming due to cost considerations. Therefore this study explores the economics of a prominent low-carbon method of hydrogen production comparing the cost of hydrogen generation from offshore wind farms with and without grid electricity imports to conventional hydrogen production methods. A novel techno-economic model for offshore electrolysis production costs is presented which makes hydrogen production fully dispatchable leveraging geological salt-cavern storage. This model determines the lifetime costs aportioned across the system components as well as the Levelized Cost of Hydrogen (LCOH). Using the United Kingdom as a case study LCOH from offshore wind power is calculated to be €8.68 /kgH2 using alkaline electrolysis (AEL) €10.49 /kgH2 using proton exchange membrane electrolysis (PEMEL) and €10.88 /kgH2 with grid electricity to backup the offshore wind power. A stochastic Monte-Carlo model is used to asses the uncertainty on costs and identify the cost of capital electrolyser and wind farm capital costs and cost of electricity as the most important drivers of LCOH across the different scenarios. Reducing the capital cost to comparative levels observed on today’s wind farms alone could see AEL LCOH fall to €5.32 /kgH2 near competitive with conventional generation methods.
Optimal Design of Hydrogen Delivery Infrastructure for Multi-sector End Uses at Regional Scale
Jul 2024
Publication
Hydrogen is a promising solution for the decarbonisation of several hard-to-abate end uses which are mainly in the industrial and transport sectors. The development of an extensive hydrogen delivery infrastructure is essential to effectively activate and deploy a hydrogen economy connecting production storage and demand. This work adopts a mixed-integer linear programming model to study the cost-optimal design of a future hydrogen infrastructure in presence of cross-sectoral hydrogen uses taking into account spatial and temporal variations multiple production technologies and optimised multi-mode transport and storage. The model is applied to a case study in the region of Sicily in Italy aiming to assess the infrastructural needs to supply the regional demand from transport and industrial sectors and to transfer hydrogen imported from North Africa towards Europe thus accounting for the region’s role as transit point. The analysis integrates multiple production technologies (electrolysis supplied by wind and solar energy steam reforming with carbon capture) and transport options (compressed hydrogen trucks liquid hydrogen trucks pipelines). Results show that the average cost of hydrogen delivered to demand points decreases from 3.75 €/kgH2 to 3.49 €/kgH2 when shifting from mobilityonly to cross-sectoral end uses indicating that the integrated supply chain exploits more efficiently the infrastructural investments. Although pipeline transport emerges as the dominant modality delivery via compressed hydrogen trucks and liquid hydrogen trucks remains relevant even in scenarios characterised by large hydrogen flows as resulting from cross-sectoral demand demonstrating that the system competitiveness is maximised through multi-mode integration.
Large Eddy Simulations of a Hydrogen-Air Explosion in an Obstructed Chamber Using Adaptive Mesh Refinement
Sep 2023
Publication
Following the growing use of hydrogen in the industry gas explosions have become a critical safety issue. Computational Fluid Dynamic (CFD) and in particular the Large Eddy Simulation (LES) approach have already shown their great potential to reproduce such scenarios with high fidelity. However the computational cost of this approach is an obvious limiting factor since fine grid resolutions are often required in the whole computational domain to ensure a correct numerical resolution of the deflagration front all along its propagation. In this context Adaptive Mesh Refinement (AMR) is of great interest to reduce the computational cost as it allows to dynamically refine the mesh throughout the explosion scenario only in regions where Quantities of Interest (QoI) are detected. This study aims to demonstrate the strong potential of AMR for the LES of explosions. The target scenario is a hydrogen-air explosion in the GraVent explosion channel [1]. Using the massively parallel Navier- Stokes compressible solver AVBP a reference simulation is first obtained on a uniform and static unstructured mesh. The comparison with the experiments shows a good agreement in terms of absolute flame front speed overpressure and flow visualisation. Then an AMR simulation is performed targeting the same resolution as the reference simulation only in regions where QoI are detected i.e. inside the reaction zones and vortical structures. Results show that the accuracy of the reference simulation is recovered with AMR for only 12% of its computational cost.
Flame Acceleration in Stoichiometric Methane/Hydrogen/Air Mixtures in an Obstructed Channel: Effect of Hydrogen Blend Ratio
Sep 2023
Publication
Experiments and numerical simulations were conducted to study the flame acceleration (FA) in stoichiometric CH4/H2/air mixtures with various hydrogen blend ratios (i.e. Hbr = 0% 20% 50% 80% and 100%). In the experiments high-speed photography was used to record the FA process. In the calculations the two-dimensional fully-compressible reactive Navier-Stokes equations were solved using a high-order algorithm on a dynamically adapting mesh. The chemical reaction and diffusive transport of the mixtures were described by a calibrated chemical-diffusive model. The numerical predictions are in good agreement with the experimental measurements. The results show that the mechanism of FA is similar in all cases that is the flame is accelerated by the thermal expansion effects various fluid-dynamic instabilities flame-vortex interactions and the interactions of flame with pressure waves. The hydrogen blend ratio has a significant impact on the propagation speed and the morphological evolution of the flame during FA. A larger hydrogen blend ratio leads to a faster FA and the difference in FA mainly depends on the increase of flame surface area and the interactions between flame and pressure waves. In addition as the hydrogen blend ratio increases there are fewer pockets of the unburned funnels in the combustion products when the flame propagates to the end of the channel.
CFD Modelling of Large Scale Liquid Hydrogen Experiments Indoors and Outdoors
Sep 2023
Publication
The use of liquid hydrogen in maritime applications is expected to grow in the coming years in order to meet the decarbonisation goals that EU countries and countries worldwide have set for 2050. In this context The Norwegian Public Roads Administration commissioned large-scale LH2 dispersion and explosion experiments both indoors and outdoors which were conducted by DNG GL in 2019 to better understand safety aspects of LH2 in the maritime sector. In this work the DNV unignited outdoor and indoor tests have been simulated and compared with the experiments with the aim to validate the ADREA-HF Computational Fluid Dynamics (CFD) code in maritime applications. Three tests two outdoors and one indoors were chosen for the validation. The outdoor tests (test 5 and 6) involved liquid hydrogen release vertically downwards and horizontal to simulate an accidental leakage during bunkering. The indoor test (test 9) involved liquid hydrogen release inside a closed room to simulate an accident inside a tank connection space (TCS) connected to a ventilation mast.
The Hydrogen Economy can Reduce Costs of Climate Change Mitigation by up to 22%
May 2024
Publication
In response to the urgent need to mitigate climate change via net-zero targets many nations are renewing their interest in clean hydrogen as a net-zero energy carrier. Although clean hydrogen can be directly used in various sectors for deep decarbonization the relatively low energy density and high production costs have raised doubts as to whether clean hydrogen development is worthwhile. Here we improve on the GCAM model by including a more comprehensive and detailed representation of clean hydrogen production distribution and demand in all sectors of the global economy and simulate 25 scenarios to explore the costeffectiveness of integrating clean hydrogen into the global energy system. We show that due to costly technical obstacles clean hydrogen can only provide 3%–9% of the 2050 global final energy use. Nevertheless clean hydrogen deployment can reduce overall energy decarbonization costs by 15%–22% mainly via powering ‘‘hard-to-electrify’’ sectors that would otherwise face high decarbonization expenditures. Our work provides practical references for cost-effective clean hydrogen planning.
Hydrogen Energy and Fuel Cells: A Vision of our Future
Jan 2003
Publication
This report of the High Level Group for Hydrogen and Fuel Cell Technologies sets out a vision for these technologies in future sustainable energy systems - improving energy security of supply and air quality whilst mitigating climate change. The report recommends actions for developing world-class European hydrogen technologies and fostering their commercial exploitation.
Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review
Aug 2023
Publication
This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power which typically include photovoltaic modules a proton exchange membrane (PEM) electrolyzer hydrogen gas storage and PEM fuel cells the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode URFCs function similarly to stand-alone electrolyzers. However in fuel cell mode the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past present and future of URFCs with details on the operating modes of URFCs limitations and technical challenges and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.
Merging the Green-H2 Production with Carbon Recycling for Stepping Towards the Carbon Cyclic Economy
Jan 2024
Publication
Hydrogen Economy and Cyclic Economy are advocated together with the use of perennial (solar wind hydro geo-power SWHG) and renewable (biomass) energy sources for defossilizing anthropic activities and mitigating climate change. Each option has intrinsic limits that prevent a stand-alone success in reaching the target. Humans have recycled goods (metals water paper and now plastics) to a different extent since very long time. Recycling carbon (which is already performed at the industrial level in the form of CO2 utilization and with recycling paper and plastics) is a key point for the future. The conversion of CO2 into chemicals and materials is carried out since the late 1800s (Solvay process) and is today performed at scale of 230 Mt/y. It is time to implement on a scale of several Gt/y the conversion of CO2 into energy products possibly mimicking Nature which does not use hydrogen. In the short term a few conditions must be met to make operative on a large scale the production of fuels from recycled-C namely the availability of low-cost: i. abundant pure concentrated streams of CO2 ii. non-fossil primary energy sources and iii. non-fossil-hydrogen. The large-scale production of hydrogen by Methane Steam Reforming with CO2 capture (Blue-H2) seems to be a realistic and sustainable solution. Green-H2 could in principle be produced on a large scale through the electrolysis of water powered by perennial primary sources but hurdles such as the availability of materials for the construction of long-living robust electrochemical cells (membranes electrodes) must be abated for a substantial scale-up with respect to existing capacity. The actual political situation makes difficult to rely on external supplies. Supposed that cheap hydrogen will be available its direct use in energy production can be confronted with the indirect use that implies the hydrogenation of CO2 into fuels (E-fuels) an almost ready technology. The two strategies have both pros and cons and can be integrated. E-Fuels can also represent an option for storing the energy of intermittent sources. In the medium-long term the direct co-processing of CO2 and water via co-electrolysis may avoid the production/transport/ use of hydrogen. In the long term coprocessing of CO2 and H2O to fuels via photochemical or photoelectrochemical processes can become a strategic technology.
Selecting Appropriate Energy Source Options for an Arctic Research Ship
Dec 2023
Publication
Interest in more sustainable energy sources has increased rapidly in the maritime industry and ambitious goals have been set for decreasing ship emissions. All industry stakeholders have reacted to this with different approaches including the optimisation of ship power plants the development of new energy-improving sub-systems for existing solutions or the design of entirely novel power plant concepts employing alternative fuels. This paper assesses the feasibility of different ship energy sources for an icebreaking Arctic research ship. To that end possible energy sources are assessed based on fuel infrastructure availability and operational endurance criteria in the operational area of interest. Promising alternatives are analysed further using the evidence-based Strengths Weaknesses Opportunities and Threats (SWOT) method. Then a more thorough investigation with respect to the required fuel tank space life cycle cost and CO2 emissions is implemented. The results demonstrate that marine diesel oil (MDO) is currently still the most convenient solution due to the space operational range and endurance limitations although it is possible to use liquefied natural gas (LNG) and methanol if the ship’s arrangement is radically redesigned which will also lead to reduced emissions and life cycle costs. The use of liquefied hydrogen as the only energy solution for the considered vessel was excluded from the potential options due to low volumetric energy density and high life cycle and capital costs. Even if it is used with MDO for the investigated ship the reduction in CO2 emissions will not be as significant as for LNG and methanol at a much higher capital and lifecycle cost. The advantage of the proposed approach is that unrealistic alternatives are eliminated in a systematic manner before proceeding to detailed techno-economic analysis facilitating the decision-making and investigation of various options in a more holistic manner.
Recent Progress and Techno-economic Analysis of Liquid Organic Hydrogen Carriers for Australian Renewable Energy Export - A Critical Review
Jan 2024
Publication
Hydrogen as a primary carbon-free energy carrier is confronted by challenges in storage and transportation. However liquid organic hydrogen carriers (LOHCs) present a promising solution for storing and transporting hydrogen at ambient temperature and atmospheric pressure. Unlike circular energy carriers such as methanol ammonia and synthetic natural gas LOHCs do not produce by-products during hydrogen recovery. LOHCs only act as hydrogen carriers and the carriers can also be recycled for reuse. Although there are considerable advantages to LOHCs there are also some drawbacks especially relative to the energy consumption during the dehydrogenation step of the LOHC recycling. This review summarizes the recent progresses in LOHC technologies focusing on catalyst developments process and reactor designs applications and techno-economic assessments (TEA). LOHC technologies can potentially offer significant benefits to Australia especially in terms of hydrogen as an export commodity. LOHCs can help avoid capital costs associated with infrastructure such as transportation vessels while reducing hydrogen loss during transportation such as in the case of liquid hydrogen (LH2). Additionally it minimises CO2 emissions as observed in methane and methanol reforming. Thus it is essential to dedicate more efforts to explore and develop LOHC technologies in the Australian context.
Developing a Generalized Framework for Assessing Safety of Hydrogen Vehicles in Tunnels
Sep 2023
Publication
For widespread adoption of hydrogen fuel cell powered vehicles such vehicles need to be able to provide similar transportation capabilities as their gasoline/diesel powered counterparts. Meeting this requirement in many regions will necessitate access to tunnels. Previous work completed at Sandia National Laboratories provided high-fidelity consequence modeling of hydrogen vehicle tunnel crashes for a specific fire scenario in selected Massachusetts tunnels. To consider additional tunnels a generalized tunnel safety analysis framework is being developed. This framework aims to be broader than specific fire scenarios in specific tunnels allowing it to be applied to a range of tunnel geometries vehicle types and crash scenarios. Initial steps in the development of the generalized framework are reported within this work. Representative tunnel characteristics are derived based on data for tunnels in the U.S. Tunnel dimensions shapes and traffic levels are among the many characteristics reported within the data that can be used to inform crash scenario specification. Various crash scenario parameters are varied using lower-fidelity consequence modeling to quantify the impact on resulting safety hazards for time-dependent releases. These lower-fidelity models consider the unignited dispersion of hydrogen gas the thermal effects of jet fires and potential impacts of overpressures. Different sizes/classes of vehicles are considered as the total amount of hydrogen onboard may greatly affect scenario-specific consequences. The generalized framework will allow safety assessments to be both more agile and consistent when applied to different types of tunnels.
Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen
Nov 2023
Publication
Offshore electricity production mainly by wind turbines and eventually floating PV is expected to increase renewable energy generation and their dispatchability. In this sense a significant part of this offshore electricity would be directly used for hydrogen generation. The integration of offshore energy production into the hydrogen economy is of paramount importance for both the techno-economic viability of offshore energy generation and the hydrogen economy. An analysis of this integration is presented. The analysis includes a discussion about the current state of the art of hydrogen pipelines and subsea cables as well as the storage and bunkering system that is needed on shore to deliver hydrogen and derivatives. This analysis extends the scope of most of the previous works that consider port-to-port transport while we report offshore to port. Such storage and bunkering will allow access to local and continental energy networks as well as to integrate offshore facilities for the delivery of decarbonized fuel for the maritime sector. The results of such state of the art suggest that the main options for the transport of offshore energy for the production of hydrogen and hydrogenated vectors are through direct electricity transport by subsea cables to produce hydrogen onshore or hydrogen transport by subsea pipeline. A parametric analysis of both alternatives focused on cost estimates of each infrastructure (cable/pipeline) and shipping has been carried out versus the total amount of energy to transport and distance to shore. For low capacity (100 GWh/y) an electric subsea cable is the best option. For high-capacity renewable offshore plants (TWh/y) pipelines start to be competitive for distances above approx. 750 km. Cost is highly dependent on the distance to land ranging from 35 to 200 USD/MWh.
Investigation of Hybrid Power-to-hydrogen/Nautral Gas and Hydrogen-to-X System in Cameroon
May 2024
Publication
In Sub-Saharan Africa (SSA) the capacity to generate energy faces significant hurdles. Despite efforts to integrate renewable energy sources and natural gas power plants into the energy portfolio the desired reduction in environmental impact and alleviation of energy poverty remain elusive. Hence exploring a spectrum of hybrid technologies encompassing storage and hydrogen-based solutions is imperative to optimize energy production while mitigating harmful emissions. To exemplify this necessity the 216 MW Kribi gas power plant in Cameroon is the case study. The primary aim is to investigate cutting-edge emissions and energy schemes within the SSA. This paper assessed the minimum complaint load technique and four power-to-fuel options from technical financial and environmental perspectives to assess the viability of a natural gas fuel system powered with hydrogen in a hybrid mode. The system generates hydrogen by using water electrolysis with photovoltaic electricity and gas power plant. This research also assesses process efficiency storage capacity annual costs carbon avoided costs and production prices for various fuels. Results showed that the LCOE from a photovoltaic solar plant is 0.19$/kWh with the Power-to-Hydrogen process (76.2% efficiency) being the most efficient followed by the ammonia and urea processes. The study gives a detailed examination of the hybrid hydrogen natural gas fuel system. According to the annual cost breakdown the primary costs are associated with the acquisition of electrical energy and electrolyser CAPEX and OPEX which account for 95% of total costs. Urea is the cheapest mass fuel. However it costs more in terms of energy. Hydrogen is the most cost-effective source of energy. In terms of energy storage and energy density by volume the methane resulted as the most suitable solution while the ammonia resulted as the best H2 storage medium in terms of kg of H2 per m3 of storage (108 kgH2/m3 ). By substituting the fuel system with 15% H2 the environmental effects are reduced by 1622 tons per year while carbon capture technology gathered 16664 tons of CO2 for methanation and urea operations yielding a total carbon averted cost of 21 $/ton.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Cost Projection of Global Green Hydrogen Production Scenarios
Nov 2023
Publication
A sustainable future hydrogen economy hinges on the development of green hydrogen and the shift away from grey hydrogen but this is highly reliant on reducing production costs which are currently too high for green hydrogen to be competitive. This study predicts the cost trajectory of alkaline and proton exchange membrane (PEM) electrolyzers based on ongoing research and development (R&D) scale effects and experiential learning consequently influencing the levelized cost of hydrogen (LCOH) projections. Electrolyzer capital costs are estimated to drop to 88 USD/kW for alkaline and 60 USD/kW for PEM under an optimistic scenario by 2050 or 388 USD/kW and 286 USD/kW respectively under a pessimistic scenario with PEM potentially dominating the market. Through a combination of declining electrolyzer costs and a levelized cost of electricity (LCOE) the global LCOH of green hydrogen is projected to fall below 5 USD/kgH2 for solar onshore and offshore wind energy sources under both scenarios by 2030. To facilitate a quicker transition the implementation of financial strategies such as additional revenue streams a hydrogen/carbon credit system and an oxygen one (a minimum retail price of 2 USD/kgO2 ) and regulations such as a carbon tax (minimum 100 USD/tonCO2 for 40 USD/MWh electricity) and a contract-for-difference scheme could be pivotal. These initiatives would act as financial catalysts accelerating the transition to a greener hydrogen economy.
Safety Risk and Strategy Analysis of On-Board Hydrogen System of Hydrogen Fuel Cell Vehicles in China
Nov 2023
Publication
Hydrogen fuel cell vehicles (HFCVs) represent an important breakthrough in the hydrogen energy industry. The safe utilization of hydrogen is critical for the sustainable and healthy development of hydrogen fuel cell vehicles. In this study risk factors and preventive measures are proposed for on-board hydrogen systems during the process of transportation storage and use of fuel cell vehicles. The relevant hydrogen safety standards in China are also analyzed and suggestions involving four safety strategies and three safety standards are proposed.
Alternative Gaseous Fuels for Marine Vessels towards Zero-Carbon Emissions
Nov 2023
Publication
The maritime industry is recognized as a major pollution source to the environment. The use of low- or zero-carbon marine alternative fuel is a promising measure to reduce emissions of greenhouse gases and toxic pollutants leading to net-zero carbon emissions by 2050. Hydrogen (H2 ) fuel cells particularly proton exchange membrane fuel cell (PEMFC) and ammonia (NH3 ) are screened out to be the feasible marine gaseous alternative fuels. Green hydrogen can reduce the highest carbon emission which might amount to 100% among those 5 types of hydrogen. The main hurdles to the development of H2 as a marine alternative fuel include its robust and energy-consuming cryogenic storage system highly explosive characteristics economic transportation issues etc. It is anticipated that fossil fuel used for 35% of vehicles such as marine vessels automobiles or airplanes will be replaced with hydrogen fuel in Europe by 2040. Combustible NH3 can be either burned directly or blended with H2 or CH4 to form fuel mixtures. In addition ammonia is an excellent H2 carrier to facilitate its production storage transportation and usage. The replacement of promising alternative fuels can move the marine industry toward decarbonization emissions by 2050.
CFD Simulations of Hydrogen Tank Fuelling: Sensitivity to Turbulence Model and Grid Resolution
Dec 2023
Publication
CFD modelling of compressed hydrogen fuelling provides information on the hydrogen and tank structure temperature dynamics required for onboard storage tank design and fuelling protocol development. This study compares five turbulence models to develop a strategy for costeffective CFD simulations of hydrogen fuelling while maintaining a simulation accuracy acceptable for engineering analysis: RANS models k-ε and RSM; hybrid models SAS and DES; and LES model. Simulations were validated against the fuelling experiment of a Type IV 29 L tank available in the literature. For RANS with wall functions and blended models with near-wall treatment the simulated average hydrogen temperatures deviated from the experiment by 1–3% with CFL ≈ 1–3 and dimensionless wall distance y + ≈ 50–500 in the tank. To provide a similar simulation accuracy the LES modelling approach with near-wall treatment requires mesh with wall distance y + ≈ 2–10 and demonstrates the best-resolved flow field with larger velocity and temperature gradients. LES simulation on this mesh however implies a ca. 60 times longer CPU time compared to the RANS modelling approach and 9 times longer compared to the hybrid models due to the time step limit enforced by the CFL ≈ 1.0 criteria. In all cases the simulated pressure histories and inlet mass flow rates have a difference within 1% while the average heat fluxes and maximum hydrogen temperature show a difference within 10%. Compared to LES the k-ε model tends to underestimate and DES tends to overestimate the temperature gradient inside the tank. The results of RSM and SAS are close to those of LES albeit of 8–9 times faster simulations.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
Technical and Economic Viability of Underground Hydrogen Storage
Nov 2023
Publication
Considering the mismatch between the renewable source availability and energy demand energy storage is increasingly vital for achieving a net-zero future. The daily/seasonal disparities produce a surplus of energy at specific moments. The question is how can this “excess” energy be stored? One promising solution is hydrogen. Conventional hydrogen storage relies on manufactured vessels. However scaling the technology requires larger volumes to satisfy peak demands enhance the reliability of renewable energies and increase hydrogen reserves for future technology and infrastructure development. The optimal solution may involve leveraging the large volumes of underground reservoirs like salt caverns and aquifers while minimizing the surface area usage and avoiding the manufacturing and safety issues inherent to traditional methods. There is a clear literature gap regarding the critical aspects of underground hydrogen storage (UHS) technology. Thus a comprehensive review of the latest developments is needed to identify these gaps and guide further R&D on the topic. This work provides a better understanding of the current situation of UHS and its future challenges. It reviews the literature published on UHS evaluates the progress in the last decades and discusses ongoing and carried-out projects suggesting that the technology is technically and economically ready for today’s needs.
Flame Acceleration, Detonation Limit and Heat Loss for Hydrogen-Oxygen Mixture at Cryogenic Temperature of 77 K
Sep 2023
Publication
Experiments are performed in hydrogen-oxygen mixtures at the cryogenic temperature of 77 K with the equivalence ratio of 1.5 and 2.0. The optical fibers pressure sensors and the smoked foils are used to record the flame velocity overpressure evolution curve and detonation cells respectively. The 1st and 2nd shock waves are captured and they finally merge to form a stronger precursor shock wave prior to the onset of detonation. The cryogenic temperature will cause the larger expansion ratio which results in the occurrence of strong flame acceleration. The stuttering mode the galloping mode and the deflagration mode are observed when the initial pressure decreases from 0.50 atm to 0.20 atm with the equivalence ratio of 1.5 and the detonation limit is within 0.25-0.30 atm. The heat loss effect on the detonation limit is analysed. In addition the regularity of detonation cell is investigated and the larger post-shock specific heat ratio !"" and the lower normalized activation energy # at lower initial pressure will cause the more regular detonation cell. Also the detonation cell width is predicted by a model of = ($) ⋅ Δ# and the prediction results are mainly consistent with the experimental results.
A Review of Hydrogen-based Hybrid Renewable Energy Systems: Simulation and Optimization with Artificial Intelligence
Nov 2021
Publication
With the massive use of traditional fossil fuels greenhouse gas emissions are increasing and environmental pollution is becoming an increasingly serious problem which led to an imminent energy transition. Therefore the development and application of renewable energy are particularly important. This paper reviews a wide range of issues associated with hybrid renewable energy systems (HRESs). The issues concerning system configurations energy storage options simulation and optimization with artificial intelligence are discussed in detail. Storage technology options are introduced for stand-alone (off-grid) and grid-connected (on-grid) HRESs. Different optimization methodologies including classical techniques intelligent techniques hybrid techniques and software tools for sizing system components are presented. Besides the artificial intelligence methods for optimizing the solar/wind HRESs are discussed in detail.
Energy Storage in Urban Areas: The Role of Energy Storage Facilities, a Review
Feb 2024
Publication
Positive Energy Districts can be defined as connected urban areas or energy-efficient and flexible buildings which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation while contributing to energy security. Energy storage can respond to supplement demand provide flexible generation and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating respectively coupled with energy system storage facilities for electricity (i.e. batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply while supporting a growing transition to nondepletable power sources. This work aims to broaden the scientific and practical understanding of energy storage in urban areas in order to explore the flexibility potential in adopting feasible solutions at district scale where exploiting the space and resource-saving systems. The main objective is to present and critically discuss the available options for energy storage that can be used in urban areas to collect and distribute stored energy. The concerns regarding the installation and use of Energy Storage Systems are analyzed by referring to regulations and technical and environmental requirements as part of broader distribution systems or as separate parts. Electricity heat energy and hydrogen are the most favorable types of storage. However most of them need new regulations technological improvement and dissemination of knowledge to all people with the aim of better understanding the benefits provided.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
A Numerial Study on Hydrogen Blending in Natural Gas Pipeline by a T-pipe
Mar 2024
Publication
In order to study the flow blending and transporting process of hydrogen that injects into the natural gas pipelines a three-dimensional T-pipe blending model is established and the flow characteristics are investigated systematically by the large eddy simulation (LES). Firstly the mathematical formulation of hydrogen-methane blending process is provided and the LES method is introduced and validated by a benchmark gas blending model having experimental data. Subsequently the T-pipe blending model is presented and the effects of key parameters such as the velocity of main pipe hydrogen blending ratio diameter of hydrogen injection pipeline diameter of main pipe and operating pressure on the hydrogen-methane blending process are studied systematically. The results show that under certain conditions the gas mixture will be stratified downstream of the blending point with hydrogen at the top of the pipeline and methane at the bottom of the pipeline. For the no-stratified scenarios the distance required for uniformly mixing downstream the injection point increases when the hydrogen mixing ratio decreases the diameter of the hydrogen injection pipe and the main pipe increase. Finally based on the numerical results the underlying physics of the stratification phenomenon during the blending process are explored and an indicator for stratification is proposed using the ratio between the Reynolds numbers of the natural gas and hydrogen.
Inspection of Hydrogen Transport Equipment: A Data-driven Approach to Predict Fatigue Degradation
Jul 2024
Publication
Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However the mechanical properties of structural materials are significantly degraded in H2 environments leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence these systems are potentially prone to fatigue degradation often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms i.e. Linear Model Deep Neural Network and Random Forest are used to categorize the severity of the fatigue degradation. The models are critically compared and the best-performing algorithm are trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in lowalloy steels. These results allow for estimating the probability of failure of hydrogen pipelines thus facilitating the inspection and maintenance planning.
Potential Capacity and Cost Assessments for Hydrogen Production from Marine Sources
May 2024
Publication
The current study comprehensively examines the application of wave tidal and undersea current energy sources of Turkiye for green hydrogen fuel production and cost analysis. The estimated potential capacity of each city is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Turkiye is projected to be 7.33 million tons using a proton exchange membrane electrolyser (PEMEL). Cities with the highest hydrogen production capacities from marine applications are Mugla Izmir Antalya and Canakkale with 998.10 kt 840.31 kt 605.46 kt and 550.42 kt respectively. The study calculations obviously show that there is a great potential by using excess power in producing hydrogen which will result in an economic value of 3.01 billion US dollars. This study further helps develop a detailed hydrogen map for every city in Turkiye using the identified potential capacities of renewable energy sources and the utilization of electrolysers to make green hydrogen by green power. The potentials and specific capacities for every city are also highlighted. Furthermore the study results are expected to provide clear guidance for government authorities and industries to utilize such a potential of renewable energy for investment and promote clean energy projects by further addressing concerns caused by the usage of carbon-based (fossil fuels dependent) energy options. Moreover green hydrogen production and utilization in every sector will help achieve the national targets for a net zero economy and cope with international targets to achieve the United Nation's sustainable development goals.
Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review
Oct 2024
Publication
Hydrogen has the capability of being a potential energy carrier and providing a long-term solution for sustainable lower-carbon and ecologically benign fuel supply. Because lower-carbon hydrogen is widely used in chemical synthesis it is regarded as a fuel with no emissions for transportation. This review paper offers a novel technique for producing hydrogen using wastewater in a sustainable manner. The many techniques for producing hydrogen with reduced carbon emissions from wastewater are recognized and examined in detail taking into account the available prospects significant obstacles and potential future paths. A comparison of the assessment showed that water electrolysis and dark fermentation technologies are the most effective methods for hydrogen generation from wastewater with microbial electrolysis and photofermentation. Thus the incorporation of systems that are simultaneously producing lower-carbon hydrogen and meant for wastewater treatment is important for the minimization of emissions from greenhouse gases and recovering the energy utilized in the treatment of wastewater.
Towards Sustainable Hydrogen Production: An Integrated Approach for Sustainability, Complexity, and Systems Thinking in the Energy Sector
Mar 2024
Publication
The energy sector constitutes a dynamic and complex system indicating that its actions are influenced not just by its individual components but also by the emergent behavior resulting from interactions among them. Moreover there are crucial limitations of previous approaches for addressing the sustainability challenge of the energy sector. Changing transforming and integrating paradigms are the most relevant leverage points for transforming a given system. In other words nowadays the integration of new predominant paradigms in order to provide a unified framework could aim at this actual transformation looking for a sustainable future. This research aims to develop a new unified framework for the integration of the following three paradigms: (1) Sustainability (2) Complexity and (3) Systems Thinking which will be applied to achieving sustainable energy production (using hydrogen production as a case study). The novelty of this work relies on providing a holistic perspective through the integration of the aforementioned paradigms considering the multiple and complex interdependencies among the economy the environment and the economy. For this purpose an integrated seven-stage approach is introduced which explores from the starting point of the integration of paradigms to the application of this integration to sustainable energy production. After applying the Three-Paradigm approach for sustainable hydrogen production as a case study 216 feedback loops are identified due to the emerged complexity linked to the analyzed system. Additionally three system dynamics-based models are developed (by increasing the level of complexity) as part of the application of the Three-Paradigm approach. This research can be of interest to a broad professional audience (e.g. engineers policymakers) as looks into the sustainability of the energy sector from a holistic perspective considering a newly developed Three-Paradigm model considering complexity and using a Systems Thinking approach.
Above-ground Hydrogen Storage: A State-of-the-art Review
Nov 2024
Publication
Hydrogen is increasingly recognized as a clean energy alternative offering effective storage solutions for widespread adoption. Advancements in storage electrolysis and fuel cell technologies position hydrogen as a pathway toward cleaner more efficient and resilient energy solutions across various sectors. However challenges like infrastructure development cost-effectiveness and system integration must be addressed. This review comprehensively examines above-ground hydrogen storage technologies and their applications. It highlights the importance of established hydrogen fuel cell infrastructure particularly in gaseous and LH2 systems. The review favors material-based storage for medium- and long-term needs addressing challenges like adverse thermodynamics and kinetics for metal hydrides. It explores hydrogen storage applications in mobile and stationary sectors including fuel-cell electric vehicles aviation maritime power generation systems off-grid stations power backups and combined renewable energy systems. The paper underscores hydrogen’s potential to revolutionize stationary applications and co-generation systems highlighting its significant role in future energy landscapes.
Safety of Hydrogen Storage Technologies
Oct 2024
Publication
While hydrogen is regularly discussed as a possible option for storing regenerative energies its low minimum ignition energy and broad range of explosive concentrations pose safety challenges regarding hydrogen storage and there are also challenges related to hydrogen production and transport and at the point of use. A risk assessment of the whole hydrogen energy system is necessary to develop hydrogen utilization further. Here we concentrate on the most important hydrogen storage technologies especially high-pressure storage liquid hydrogen in cryogenic tanks methanol storage and salt cavern storage. This review aims to study the most recent research results related to these storage techniques by describing typical sensors and explosion protection measures thus allowing for a risk assessment of hydrogen storage through these technologies.
Drifting toward Alliance Innovation: Patent Collaboration Relationships and Development in China’s Hydrogen Energy Industry from a Network Perspective
Mar 2024
Publication
The hydrogen energy industry as one of the most important directions for future energy transformation can promote the sustainable development of the global economy and of society. China has raised the development of hydrogen energy to a strategic position. Based on the patent data in the past two decades this study investigates the collaborative innovation relationships in China’s hydrogen energy field using complex network theory. Firstly patent data filed between 2003 and 2023 are analyzed and compared in terms of time geography and institutional and technological dimensions. Subsequently a patent collaborative innovation network is constructed to explore the fundamental characteristics and evolutionary patterns over five stages. Furthermore centrality measures and community detection algorithms are utilized to identify core entities and innovation alliances within the network which reveal that China’s hydrogen energy industry is drifting toward alliance innovation. The study results show the following: (1) the network has grown rapidly in size and scope over the last two decades and evolved from the initial stage to the multi-center stage before forming innovation alliances; (2) core innovative entities are important supports and bridges for China’s hydrogen energy industry and control most resources and maintain the robustness of the whole network; (3) innovation alliances reveal the closeness of the collaborative relationships between innovative entities and the potential landscape of China’s hydrogen energy industry; and (4) most of the innovation alliances cooperate only on a narrow range of technologies which may hinder the overall sustainable growth of the hydrogen energy industry. Thereafter some suggestions are put forward from the perspective of an industrial chain and innovation chain which may provide a theoretical reference for collaborative innovation and the future development and planning in the field of hydrogen energy in China.
Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives
Oct 2024
Publication
The growing emphasis on renewable energy highlights hydrogen’s potential as a clean energy carrier. However traditional hydrogen production methods contribute significantly to carbon emissions. This review examines the integration of carbon capture and storage (CCS) technologies with hydrogen production processes focusing on their ability to mitigate carbon emissions. It evaluates various hydrogen production techniques including steam methane reforming electrolysis and biomass gasification and discusses how CCS can enhance environmental sustainability. Key challenges such as economic technical and regulatory obstacles are analyzed. Case studies and future trends offer insights into the feasibility of CCS–hydrogen integration providing pathways for reducing greenhouse gases and facilitating a clean energy transition.
The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level
Nov 2024
Publication
The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels or a dispenser. This may lead to a hydrogen cloud occurring near the source of the release or at a given distance. The range of the cloud was analyzed in connection to the amount of the released gas and the wind velocity. The results of the calculations were compared for chosen structures in the station. Then potential fires and explosions were investigated. The hazard zones were calculated with respect to heat fluxes generated in the fires and the overpressure generated in explosions. The maximum ranges of these zones vary from about 14 to 30 m and from about 9 to 14 m for a fires and an explosions of hydrogen respectively. Finally human death probabilities are presented as functions of the distance from the sources of the uncontrolled hydrogen releases. These are shown for different amounts and pressures of the released gas. In addition the risk of human death is determined along with the area where it reaches the highest value in the whole station. The risk of human death in this area is 1.63 × 10−5 [1/year]. The area is approximately 8 square meters.
Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System
Jun 2024
Publication
Accelerating the transition to a cleaner global energy system is essential for tackling the climate crisis and green hydrogen energy systems hold significant promise for integrating renewable energy sources. This paper offers a thorough evaluation of green hydrogen’s potential as a groundbreaking alternative to achieve near-zero greenhouse gas (GHG) emissions within a renewable energy framework. The paper explores current technological options and assesses the industry’s present status alongside future challenges. It also includes an economic analysis to gauge the feasibility of integrating green hydrogen providing a critical review of the current and future expectations for the levelized cost of hydrogen (LCOH). Depending on the geographic location and the technology employed the LCOH for green hydrogen can range from as low as EUR 1.12/kg to as high as EUR 16.06/kg. Nonetheless the findings suggest that green hydrogen could play a crucial role in reducing GHG emissions particularly in hard-to-decarbonize sectors. A target LCOH of approximately EUR 1/kg by 2050 seems attainable in some geographies. However there are still significant hurdles to overcome before green hydrogen can become a cost-competitive alternative. Key challenges include the need for further technological advancements and the establishment of hydrogen policies to achieve cost reductions in electrolyzers which are vital for green hydrogen production.
Underground Hydrogen Storage (UHS) in Natural Storage Sites: A Perspective of Subsurface Characterization and Monitoring
Jan 2024
Publication
With the long-standing efforts of green transition in our society underground hydrogen storage (UHS) has emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands. Like operations in hydrocarbon production and geological CO2 storage a successful UHS project requires a good understanding of subsurface formations while having different operational objectives and practical challenges. Similar to the situations in hydrocarbon production and geological CO2 storage in UHS problems the information of subsurface formations at the field level cannot be obtained through direct measurements due to the resulting high costs. As such there is a need for subsurface characterization and monitoring at the field scale which uses a certain history matching algorithm to calibrate a numerical subsurface model based on available field data. Whereas subsurface characterization and monitoring have been widely used in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs to the best of our knowledge at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow this noticed gap and investigates the use of an ensemble-based workflow for subsurface characterization and monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based workflow works reasonably well while also identifying some particular challenges that would be relevant to real-world problems.
Electrification or Hydrogen? The Challenge of Decarbonizing Industrial (High-Temperature) Process Heat
Oct 2024
Publication
The decarbonization of industrial process heat is one of the bigger challenges of the global energy transition. Process heating accounts for about 20% of final energy demand in Germany and the situation is similar in other industrialized nations around the globe. Process heating is indispensable in the manufacturing processes of products and materials encountered every day ranging from food beverages paper and textiles to metals ceramics glass and cement. At the same time process heating is also responsible for significant greenhouse gas emissions as it is heavily dependent on fossil fuels such as natural gas and coal. Thus process heating needs to be decarbonized. This review article explores the challenges of decarbonizing industrial process heat and then discusses two of the most promising options the use of electric heating technologies and the substitution of fossil fuels with low-carbon hydrogen in more detail. Both energy carriers have their specific benefits and drawbacks that have to be considered in the context of industrial decarbonization but also in terms of necessary energy infrastructures. The focus is on high-temperature process heat (>400 ◦C) in energy-intensive basic materials industries with examples from the metal and glass industries. Given the heterogeneity of industrial process heating both electricity and hydrogen will likely be the most prominent energy carriers for decarbonized high-temperature process heat each with their respective advantages and disadvantages.
Net Zero Fuel (Mixed Hydrogen and Biofuels) Cement Clinker: Characterisation, Microstructure, and Performance
Oct 2024
Publication
Over 35% of the CO2 associated with cement production comes from operational energy. The cement industry needs alternative fuels to meet its net zero emissions target. This study investigated the influence of hydrogen mixed with biofuels herein designated net zero fuel as an alternative to coal on the clinker quality and performance of cement produced in an industrial cement plant. Scanning electron microscopy X-ray diffraction and nuclear magnetic resonance were coupled to study the clinker mineralogy and polymorphs. Hydration and microstructure development in plain and slag blended cements based on the clinker were compared to commercial cement equivalent. The results revealed a lower alite/belite ratio but a significant proportion of the belite was of the α’H-C2S polymorph. These reacted faster and compensated for the alite/belite ratio. Gel and micro-capillary pores were densified which reduced total porosity and attained comparable strength to the reference plain and blended cement. This study demonstrates that the investigated net zero fuel-produced clinker meets compositional and strength requirements for plain and blended cement providing a feasible pathway for the cement industry to lower its operational carbon significantly.
Batteries or Hydrogen or Both for Grid Electricity Storage Upon Full Electrification of 145 Countries with Wind-Water-Solar?
Jan 2024
Publication
Grids require electricity storage. Two emerging storage technologies are battery storage (BS) and green hydrogen storage (GHS) (hydrogen produced and compressed with clean-renewable electricity stored then returned to electricity with a fuel cell). An important question is whether GHS alone decreases system cost versus BS alone or BS+GHS. Here energy costs are modeled in 145 countries grouped into 24 regions. Existing conventional hydropower (CH) storage is used along with new BS and/or GHS. A method is developed to treat CH for both baseload and peaking power. In four regions only CH is needed. In five CH+BS is lowest cost. Otherwise CH+BS+GHS is lowest cost. CH+GHS is never lowest cost. A metric helps estimate whether combining GHS with BS reduces cost. In most regions merging (versus separating) grid and non-grid hydrogen infrastructure reduces cost. In sum worldwide grid stability may be possible with CH+BS or CH+BS+GHS. Results are subject to uncertainties.
Whole System Impacts of Decarbonising Transport with Hydrogen: A Swedish Case Study
Oct 2024
Publication
This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs coupled with the Swedish electricity system to study the inter-dependencies between them. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain designs comprehend centralised production decentralised production a combination of both and with/without seasonal variation in hydrogen demand. The supply chain design is modelled to minimize the overall cost while meeting the hydrogen demands. The outputs of the supply chain model include the hydrogen refuelling stations’ locations the electrolyser’s locations and their respective sizes as well as the operational schedule. The electricity system model shows that the average electricity prices in Sweden for zones SE1 SE2 SE3 and SE4 will be 4.28 1.88 8.21 and 8.19 €/MWh respectively. The electricity is mainly generated from wind and hydropower (around 42% each) followed by nuclear (14%) solar (2%) and then bio-energy (0.3%). In addition the hydrogen supply chain design that leads to a lower overall cost is the decentralised design with a cost of 1.48 and 1.68 €/kgH2 in scenarios without and with seasonal variation respectively. The seasonal variation in hydrogen demand increases the cost of hydrogen regardless of the supply chain design.
Life Cycle Analysis of Hydrogen Production by Different Alkaline Electrolyser Technologies Sourced with Renewable Energy
Jul 2024
Publication
Green hydrogen has been considered a promising alternative to fossil fuels in chemical and energy applications. In this study a life cycle analysis is conducted for green hydrogen production sourced with a mixture of renewable energy sources (50 % solar and 50 % wind energy). Two advanced technologies of alkaline electrolysis are selected and compared for hydrogen production: pressurised alkaline electrolyser and capillary-fed alkaline electrolyser. The different value chain stages were assessed in SimaPro enabling the assessment of the environmental impacts of a green hydrogen production project with 60 MW capacity and 20 years lifetime. The results evaluate the environmental impacts depending on the components construction and operation requirements. The results demonstrated that capillary-fed alkaline electrolyser technology has lower potential environmental impacts by around 17 % than pressurised alkaline electrolyser technology for all the process stages. The total global warming potential was found to be between 1.98 and 2.39 kg of carbon dioxide equivalent per kg of hydrogen. This study contributes to the electrolysers industry and the planning of green hydrogen projects for many applications towards decarbonization and sustainability.
Potential-risk and No-regret Options for Urban Energy System Design - A Sensitivity Analysis
Jan 2024
Publication
This study identifies supply options for sustainable urban energy systems which are robust to external system changes. A multi-criteria optimization model is used to minimize greenhouse gas (GHG) emissions and financial costs of a reference system. Sensitivity analyses examine the impact of changing boundary conditions related to GHG emissions energy prices energy demands and population density. Options that align with both financial and emission reduction and are robust to system changes are called “no-regret” options. Options sensitive to system changes are labeled as “potential-risk” options.<br/>There is a conflict between minimizing GHG emissions and financial costs. In the reference case the emission-optimized scenario enables a reduction of GHG emissions (-93%) but involves higher costs (+160%) compared to the financially-optimized scenario.<br/>No-regret options include photovoltaic systems decentralized heat pumps thermal storages electricity exchange between sub-systems and with higher-level systems and reducing energy demands through building insulation behavioral changes or the decrease of living space per inhabitant. Potential-risk options include solar thermal systems natural gas technologies high-capacity battery storages and hydrogen for buildiing energy supply.<br/>When energy prices rise financially-optimized systems approach the least-emission system design. The maximum profitability of natural gas technologies was already reached before the 2022 European energy crisis.
Regional Capabilities and Hydrogen Adoption Barriers
Dec 2023
Publication
Hydrogen is gaining importance to decarbonize the energy system and tackle the climate crisis. This exploratory study analyzes three focus groups with representatives from relevant organizations in a Northern German region that has unique beneficial characteristics for the transition to a hydrogen economy. Based upon this data (1) a category system of innovation adoption barriers for hydrogen technologies is developed (2) decision levels associated with the barriers are identified (3) detailed insights on how decision levels contribute to the adoption barriers are provided and (4) the barriers are evaluated in terms of their importance. Our analysis adds to existing literature by focusing on short-term barriers and exploring relevant decision levels and their associated adoption barriers. Our main results comprise the following: flaws in the funding system complex approval procedures lack of networks and high costs contribute to hydrogen adoption barriers. The (Sub-)State level is relevant for the uptake of the hydrogen economy. Regional entities have leeway to foster the hydrogen transition especially with respect to the distribution infrastructure. Funding policy technological suitability investment and operating costs and the availability of distribution infrastructure and technical components are highly important adoption barriers that alone can impede the transition to a hydrogen economy.
A Systematic Review: The Role of Emerging Carbon Capture and Conversion Rechnologies for Energy Transition to Clean Hydrogen
Feb 2024
Publication
The exploitation of fossil fuels in various sectors such as power and heat generation and the transportation sector has been the primary source of greenhouse gas (GHG) emissions which are the main contributors to global warming. Qatar's oil and gas sector notably contributes to CO2 emissions accounting for half of the total emissions. Globally it is essential to transition into cleaner fossil fuel production to achieve carbon neutrality on a global scale. In this paper we focus on clean hydrogen considering carbon capture to make hydrogen a viable low carbon energy alternative for the transition to clean energy. This paper systematically reviews emerging technologies in carbon capture and conversion (CCC). First the road map stated by the Intergovernmental Panel on Climate Change (IPCC) to reach carbon neutrality is discussed along with pathways to decarbonize the energy sector in Qatar. Next emerging CO2 removal technologies including physical absorption using ionic liquids chemical looping and cryogenics are explored and analyzed regarding their advancement and limitations CO2 purity scalability and prospects. The advantages limitations and efficiency of the CO2 conversion technology to value-added products are grouped into chemical (plasma catalysis electrochemical and photochemical) and biological (photosynthetic and non-photosynthetic). The paper concludes by analyzing pathways to decarbonize the energy sector in Qatar via coupling CCC technologies for low-carbon hydrogen highlighting the challenges and research gaps.
A 500 kW Hydrogen Fuel Cell-powered Vessel: From Concept to Sailing
Sep 2024
Publication
This paper presents the “Three Gorges Hydrogen Boat No. 1” a novel green hydrogen-powered vessel that has been successfully delivered and is currently sailing. This vessel integrated with a hydrogen production and bunkering station at its dedicated dock achieves zero-carbon emissions. It stores 240 kg of 35 MPa gaseous hydrogen and has a fuel cell system rated at 500 kW. We analysed the engineering details of the marine hydrogen system including hydrogen bunkering storage supply fuel cell and the hybrid power system with lithium-ion batteries. In the first bunkering trial the vessel was safely refuelled with 200 kg of gaseous hydrogen in 156 min via a bunkering station 13 m above the water surface. The maximum hydrogen pressure and temperature recorded during bunkering were 35.05 MPa and 39.04 ◦C respectively demonstrating safe and reliable shore-toship bunkering. For the sea trial the marine hydrogen system operated successfully during a 3-h voyage achieving a maximum speed of 28.15 km/h (15.2 knots) at rated propulsion power. The vessel exhibited minimal noise and vibration and its dynamic response met load change requirements. To prevent rapid load changes to the fuel cells 68 s were used to reach 483 kW from startup and 62 s from 480 kW to zero. The successful bunkering and operation of this hydrogen-powered vessel demonstrates the feasibility of zero-carbon emission maritime transport. However four lessons were identified concerning bunkering speed hydrogen cylinder leakage hydrogen pressure regulator malfunctions and fuel cell room space. The novelty of this work lies in the practical demonstration of a fully operational hydrogen-powered maritime vessel achieving zero emissions encompassing its design building operation and lessons learned. These parameters and findings can be used as a baseline for further engineering research.
Modelling Guided Energy Management System for a Hydrogen-fuelled Harbour Tug
May 2024
Publication
The use of hydrogen as a source of fuel for marine applications is relatively nascent. As the maritime industry pivots to the use of alternate low and zero-emission fuels to adapt to a changing regulatory landscape hydrogen energy needs to present and substantiate a technical and commercially viable use case to secure its value proposition in the future fuel mix. This paper leverages the technoeconomic and environmental assessment previously performed on HyForce a hydrogen-fuelled harbour tug which has shown encouraging results for both technical and commercial aspects. This study aims to create a digital twin of HyForce to accurately predict her operability in real-world scenarios. The results from this study identify the strengths and drawbacks of the proposed use case. This is achieved by embedding the detailed design of HyForce in a virtual environment to further evaluate its operational performance through Computational Fluid Dynamics (CFD) simulations of realistic environmental conditions such as wind wave sea currents and friction attributed to the properties of seawater. The results from this study indicate a base case power requirement of 93 kW to 1892 kW to achieve speeds of 5 to 12 knots in the absence of external environmental influences. Consequently the speed of HyForce has a profound impact on total resistance peaking at 97.3 kN at 12 knots. Seawater properties such as low seawater temperature of 0C and a high salinity of 50g/kg increased friction. Additionally wind speeds of 10 m/s acting on HyForce delivered a resistance of 3 kN. However these will be well mitigated through the design of the propulsion system which will be able to deliver a thrust power of 1892 kW and with assistance from the energy storage systems produce 2 MW of power to overcome the resistance experienced. The findings presented in this paper can serve as a foundation for constructing a robust model for the development of a predictive controller for future work. This controller has the potential to optimize the configuration of hydrogen and battery energy storage aligning with desired cost functions.
Renewable Electricity and Green Hydrogen Integration for Decarbonization of “Hard-to-Abate” Industrial Sectors
Jul 2024
Publication
This paper investigates hydrogen’s potential to accelerate the energy transition in hardto-abate sectors such as steel petrochemicals glass cement and paper. The goal is to assess how hydrogen produced from renewable sources can foster both industrial decarbonization and the expansion of renewable energy installations especially solar and wind. Hydrogen’s dual role as a fuel and a chemical agent for process innovation is explored with a focus on its ability to enhance energy efficiency and reduce CO2 emissions. Integrating hydrogen with continuous industrial processes minimizes the need for energy storage making it a more efficient solution. Advances in electrolysis achieving efficiencies up to 60% and storage methods consuming about 10% of stored energy for compression are discussed. Specifically in the steel sector hydrogen can replace carbon as a reductant in the direct reduced iron (DRI) process which accounts for around 7% of global steel production. A next-generation DRI plant producing one million tons of steel annually would require approximately 3200 MW of photovoltaic capacity to integrate hydrogen effectively. This study also discusses hydrogen’s role as a co-fuel in steel furnaces. Quantitative analyses show that to support typical industrial plants hydrogen facilities of several hundred to a few thousand MW are necessary. “Virtual” power plants integrating with both the electrical grid and energy-intensive systems are proposed highlighting hydrogen’s critical role in industrial decarbonization and renewable energy growth.
A Novel Hydrogen Supply Chain Optimization Model - Case Study of Texas and Louisiana
Jun 2024
Publication
The increasing political momentum advocating for decarbonization efforts has led many governments around the world to unveil national hydrogen strategies. Hydrogen is viewed as a potential enabler of deep decarbonization notably in hard-to-abate sectors such as the industry. A multi-modal hourly resolved linear programming model was developed to assess the infrastructure requirements of a low-carbon supply chain over a large region. It optimizes the deployment of infrastructure from 2025 up to 2050 by assessing four years: 2025 2030 2040 and 2050 and is location agnostic. The considered infrastructure encompasses several technologies for production transmission and storage. Model results illustrate supply chain requirements in Texas and Louisiana. Edge cases considering 100% electrolytic production were analyzed. Results show that by 2050 with an assumed industrial demand of 276 TWh/year Texas and Louisiana would require 62 GW of electrolyzers 102 GW of onshore wind and 32 GW of solar panels. The resulting levelized cost of hydrogen totaled $5.6–6.3/kgH2 in 2025 decreasing to $3.2–3.5/ kgH2 in 2050. Most of the electricity production occurs in Northwest Texas thanks to high capacity factors for both renewable technologies. Hydrogen is produced locally and transmitted through pipelines to demand centers around the Gulf Coast instead of electricity being transmitted for electrolytic production co-located with demand. Large-scale hydrogen storage is highly beneficial in the system to provide buffer between varying electrolytic hydrogen production and constant industrial demand requirements. In a system without low-cost storage liquid and compressed tanks are deployed and there is a significant renewable capacity overbuild to ensure greater electrolyzer capacity factors resulting in higher electricity curtailment. A system under carbon constraint sees the deployment of natural gas-derived hydrogen production. Lax carbon constraint target result in an important reliance on this production method due to its low cost while stricter targets enforce a great share of electrolytic production.
Current Status of Green Hydrogen Production Technology: A Review
Oct 2024
Publication
As a clean energy source hydrogen not only helps to reduce the use of fossil fuels but also promotes the transformation of energy structure and sustainable development. This paper firstly introduces the development status of green hydrogen at home and abroad and then focuses on several advanced green hydrogen production technologies. Then the advantages and shortcomings of different green hydrogen production technologies are compared. Among them the future source of hydrogen tends to be electrolysis water hydrogen production. Finally the challenges and application prospects of the development process of green hydrogen technology are discussed and green hydrogen is expected to become an important part of realizing sustainable global energy development.
Evaluating the Economic Influence of Water Sources on Green Hydrogen Production: A Cost Analysis Approach
Sep 2024
Publication
The production of green hydrogen requires significant water usage making the economic evaluation of different water sources crucial for optimizing the Levelized Cost of Hydrogen (LCOH). This study examines the economic impact of using seawater groundwater grid water industrial wastewater and rainwater for hydrogen production through PEM electrolysis considering the water abstraction transport treatment and storage costs across various plant sizes (1 MW 10 MW 20 MW 50 MW and 100 MW) were assessed and a sensitivity analysis on electricity prices was conducted. Findings reveal that while water-related costs are minimal.
Transitioning to Sustainable Economic Resilience through Renewable Energy and Green Hydrogen: The Case of Iraq
Sep 2024
Publication
The study investigates the potential of transitioning Iraq a nation significantly dependent on fossil fuels toward a green hydrogen-based energy system as a pathway to achieving sustainable economic resilience. As of 2022 Iraqi energy supply is over 90% reliant on hydrocarbons which also account for 95% of the country foreign exchange earnings. The global energy landscape is rapidly shifting towards cleaner alternatives and the volatility of oil prices has made it imperative for the country to diversify its energy sources. Green hydrogen produced through water electrolysis powered by renewable energy sources such as solar and wind offers a promising alternative given country vast renewable energy potential. The analysis indicates that with strategic investments in green hydrogen infrastructure the country could reduce its hydrocarbon dependency by 30% by the year 2030. This transition could not only address pressing environmental challenges but also contribute to the economic stability of the country. However the shift to green hydrogen is not without significant challenges including water scarcity technological limitations and the necessity for a robust regulatory framework. The findings underscore the importance of international partnerships and supportive policies in facilitating this energy transition. Adopting renewable energy and green hydrogen technologies the country has the potential to become a leader in sustainable energy within the region. This shift would not only drive economic growth and energy security but also contribute to global efforts towards environmental sustainability positioning country favorably in a future low-carbon economy.
Techno-economic Assessment of Hydrogen Supply Solutions for Industrial Site
Sep 2024
Publication
In Austria one of the highest priorities of hydrogen usage lies in the industrial sector particularly as a feedstock and for high-temperature applications. Connecting hydrogen producers with consumers is challenging and requires comprehensive research to outline the advantages and challenges associated with various hydrogen supply options. This study focuses on techno-economic assessment of different supply solutions for industrial sites mainly depicted in two categories: providing hydrogen by transport means and via on-site production. The technologies needed for the investigation of these scenarios are identified based on the predictions of available technologies in near future (2030). The transportation options analyzed include delivering liquid hydrogen by truck liquid hydrogen by railway and gaseous hydrogen via pipeline. For on-site low-carbon hydrogen production a protonexchange membrane (PEM) electrolysis was selected as resent research suggests lower costs for PEM electrolysis compared to alkaline electrolysis (AEL). The frequency of deliveries and storage options vary by scenario and are determined by the industrial demand profile transport capacity and electrolyser production capacity. The assessment evaluates the feasibility and cost-effectiveness of each option considering factors such as infrastructure requirements energy efficiency and economic viability. At a hydrogen demand of 80 GWh the transport options indicate hydrogen supply costs in the range of 14–24 ct/kWh. In contrast the scenarios investigating on-site production of hydrogen show costs between 29 and 49 ct/ kWh. Therefore transport by truck rail or pipeline is economically advantageous to own-production under the specific assumptions and conditions. However the results indicate that as energy demand increases on-site production becomes more attractive. Additionally the influence of electricity prices and the hydrogen production/import price were identified as decisive factors for the overall hydrogen supply costs.
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
Sep 2024
Publication
Climatic changes are reaching alarming levels globally seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However the widespread adoption of hydrogen energy is challenged by transportation and storage issues as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods as it uses self-generated power. Similarly solid storage of hydrogen is also attractive in many ways including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially but once the materials and methods are established they will become more attractive considering rising fuel prices depletion of fossil fuel resources and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient safe and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 ◦C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage and discusses current challenges in hydrogen generation and storage. This includes material selection and the structural and chemical modifications needed for optimal performance and potential applications.
Techno-economics of Renewable Hydrogen Export: A Case Study for Australia-Japan
Jul 2024
Publication
The shift from fossil fuels to clean energy carriers such as renewable H2 is imminent. Consequently a global H2 market is taking shape involving countries with limited or insufficient energy resources importing from renewable-rich countries. This study evaluates the techno-economics of renewable hydrogen (H2) export in a globally significant scenario in which Australia exports to Japan. To gain insight into the immediate realisable future the base year was selected as 2030 with a consequently small (in export terms) hydrogen production rate of 100 t/day landed capacity. Electricity was generated by photovoltaic arrays (PV) connected directly to proton exchange membrane (PEM) electrolyser plant allowing for flexible gaseous hydrogen (GH2) production. To enhance the fidelity of the technoeconomic model we incorporated rarely applied but impactful parameters including dynamic efficiency and the overload capacity of PEM electrolysers. The GH2 produced was assumed to be converted into condensed forms suitable for export by sea: liquid hydrogen (LH2) and the chemical carriers liquid ammonia (LNH3) methanol (MeOH) methylcyclohexane (MCH). These were assumed to be reconverted to GH2 at the destination. LNH3 and MCH emerged as promising carriers for export yielding the lowest landed levelised cost of hydrogen (LCOH). LH2 yielded the highest LCOH unless boiloff gas could be managed effectively and cheaply. A sensitivity analysis showed that a lower weighted average cost of capital (WACC) and scale-up can significantly reduce the landed LCOH. Increasing the production rate to 1000 t/day landed capacity very significantly lowered the landed LCOH providing a strong incentive to scale up and optimise the entire supply chain as fast as possible.
Hydrogen as an Energy Source: A Review of Production Technologies and Challenges of Fuel Cell Vehicles
Oct 2024
Publication
The significant growth of both the global population and economy in recent years has led to a rise in global energy demand. Fossil fuels have a significant contribution to generating energy which has raised concerns about sustainability and environmental impact. There are widespread efforts to find alternative sources in order to reduce dependence on fossil fuels and mitigate their environmental consequences. Among the alternative sources hydrogen has emerged as a promising option due to its potential to be a clean and sustainable energy source. Hydrogen possesses several advantages such as a high calorific value a high reaction rate various sources and the ability to integrate with other renewable energy sources and existing systems. These attributes render hydrogen a stable and reliable energy resource which can help reduce greenhouse gas emissions (GHG) and transition towards a sustainable future. In this review paper distinct hydrogen production technologies such as conventional renewable and nuclear energy are investigated and compared. In addition the challenges and limitations of the application of hydrogen fuel cells on vehicles and hydrogen circulation components are explored. Finally the environmental impact of hydrogen vehicles specifically their role in promoting sustainable development is investigated.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the opensource software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030-2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250-265 euro/tCO2 will be necessary for renewable fuels to become competitive.
Design Considerations and Preliminary Hydrodynamic Analysis of an Offshore Decentralised Floating Wind-hydrogen System
Sep 2024
Publication
Despite the number of works on the techno-economics of offshore green hydrogen production there is a lack of research on the design of floating platforms to concomitantly support hydrogen production facilities and wind power generation equipment. Indeed previous studies on offshore decentralised configuration for hydrogen production implicitly assume that a floating platform designed for wind power generation (FOWT) can be also suitable as a floating wind hydrogen system (FWHS). This work proposes a novel design for an offshore decentralised FWHS and analyses the effects of the integration of the hydrogen facilities on the platform’s dynamics and how this in turn affects the performances of the wind turbine and the hydrogen equipment. Our findings indicate that despite the reduction in platform’s stability the performance of the wind turbine is barely affected. Regarding the hydrogen system our results aim at contributing to further assessment and design of this equipment for offshore conditions.
Environmental and Climate Impacts of a Large-scale Deployment of Green Hydrogen in Europe
Apr 2024
Publication
Green hydrogen is expected to play a vital role in decarbonizing the energy system in Europe. However large-scale deployment of green hydrogen has associated potential trade-offs in terms of climate and other environmental impacts. This study aims to shed light on a comprehensive sustainability assessment of this large-scale green hydrogen deployment based on the EMPIRE energy system modeling compared with other decarbonization paths. Process-based Life Cycle Assessment (LCA) is applied and connected with the output of the energy system model revealing 45% extra climate impact caused by the dedicated 50% extra renewable infrastructure to deliver green hydrogen for the demand in the sectors of industry and transport in Europe towards 2050. Whereas the analysis shows that green hydrogen eventually wins on the climate impact within four designed scenarios (with green hydrogen with blue hydrogen without green hydrogen and baseline) mainly compensated by its clean usage and renewable electricity supply. On the other hand green hydrogen has a lower performance in other environmental impacts including human toxicity ecotoxicity mineral use land use and water depletion. Furthermore a monetary valuation of Life Cycle Impact (LCI) is estimated to aggregate 13 categories of environmental impacts between different technologies. Results indicate that the total monetized LCI cost of green hydrogen production is relatively lower than that of blue hydrogen. In overview a large-scale green hydrogen deployment potentially shifts the environmental pressure from climate and fossil resource use to human health mineral resource use and ecosystem damage due to its higher material consumption of the infrastructure.
Detailed Analysis of a Pure Hydrogen-fueled Dual-fuel Engine in Terms of Performance and Greenhouse Gas Emissions
Sep 2024
Publication
The current study seeks to greenhouse gas emissions reduction in an existing engine under dual-fuel combustion fueled with diesel fuel and natural gas due to great concerns about global warming. This simulation study focuses on the identification of areas prone to the formation of greenhouse gas emissions in engine cylinders. The simulation results of dual-fuel combustion confirmed that the possibility of incomplete combustion and the formation of greenhouse gas emissions in high levels are not far from expected. Therefore an efficient combustion strategy along with replacing natural gas with hydrogen was considered. Only changing the combustion mode to reactivity-controlled compression ignition has led to the improvement of the natural gas burning rate and guarantees a 32 % reduction in unburned methane and 50 % carbon monoxide. To further reduce engine emissions while changing the combustion mode a part of natural gas replacement with hydrogen to the complete elimination of it was evaluated. Increasing the share of hydrogen energy in the intake air-natural gas mixture up to 54 % without exhaust gas recirculation does not lead to diesel knock. Moreover improvement of engine load and efficiency can be achieved by up to 18 % and 6 % respectively. Natural gas consumption can be reduced by up to 67 %. Meanwhile the unburned methane and carbon dioxide mass known as greenhouse gas emissions can be reduced to less than 1 % and up to 50 % respectively. Continued replacement of natural gas with hydrogen until its complete elimination guarantees a reduction of 92000 cubic meters of natural gas per year in one engine cylinder. Although the engine efficiency and load face a decrease of 0.8 % and 5.0 % respectively; the amount of carbon dioxide can be decreased by about 4.5 times. Unburned methane carbon monoxide and nitrogen oxides can be reduced to below the relevant EURO VI range while the amount of unburned hydrogen compared to the hydrogen entering the engine is about 0.5 %.
Advancing Life Cycle Assessment of Sustainable Green Hydrogen Production Using Domain-Specific Fine-Tuning by Large Language Models Augmentation
Nov 2024
Publication
Assessing the sustainable development of green hydrogen and assessing its potential environmental impacts using the Life Cycle Assessment is crucial. Challenges in LCA like missing environmental data are often addressed using machine learning such as artificial neural networks. However to find an ML solution researchers need to read extensive literature or consult experts. This research demonstrates how customised LLMs trained with domain-specific papers can help researchers overcome these challenges. By starting small by consolidating papers focused on the LCA of proton exchange membrane water electrolysis which produces green hydrogen and ML applications in LCA. These papers are uploaded to OpenAI to create the LlamaIndex enabling future queries. Using the LangChain framework researchers query the customised model (GPT-3.5-turbo) receiving tailored responses. The results demonstrate that customised LLMs can assist researchers in providing suitable ML solutions to address data inaccuracies and gaps. The ability to quickly query an LLM and receive an integrated response across relevant sources presents an improvement over manually retrieving and reading individual papers. This shows that leveraging fine-tuned LLMs can empower researchers to conduct LCAs more efficiently and effectively.
Performance Comparison of Hydrogen Dispersion Models in Enclosure Adapted to Forced Ventilation
Sep 2023
Publication
In confined spaces hydrogen released with low momentum tends to accumulate in a layer below the ceiling; the concentration in this layer rises and can rapidly enter the flammability range. In this context ventilation is a key safety equipment to prevent the formation of such flammable volumes. To ensure its well-sizing to each specific industrial context it is necessary to dispose of reliable engineering models. Currently the existing engineering models dealing with the buoyancy-driven H2 dispersion in a ventilated enclosure mainly focus on the natural-ventilation phenomenon. However forced ventilation is in some situations more adapted to the industrial context as the wind direction and intensity remains constant and under control. Therefore two existing wind-assisted ventilation models elaborated by Hunt and Linden [1] and Lowesmith et al. [2] were tested on forced ventilation applications. The main assumption consists in assuming a blowing ventilation system rather than a suction system as the composition and velocity of the entering air are known. The fresh air enters the down opening and airhydrogen mixture escapes through the upper one. The adapted models are then validated with experimental data releasing helium rather than hydrogen. Experiments are conducted on a 1-m3 ventilated box controlling the release and ventilation rates. The agreement between both analytical and experimental results is discussed from the different comparisons performed.
Future of Hydrogen in the U.S. Energy Sector: MARKAL Modeling Results
Mar 2024
Publication
Hydrogen is an attractive energy carrier which could play a role in decarbonizing process heat power or transport applications. Though the U.S. already produces about 10 million metric tons of H2 (over 1 quadrillion BTUs or 1% of the U.S. primary energy consumption) production technologies primarily use fossil fuels that release CO2 and the deployment of other cleaner H2 production technologies is still in the very early stages in the U.S. This study explores (1) the level of current U.S. hydrogen production and demand (2) the importance of hydrogen to accelerate a net-zero CO2 future and (3) the challenges that must be overcome to make hydrogen an important part of the U.S. energy system. The study discusses four scenarios and hydrogen production has been shown to increase in the future but this growth is not enough to establish a hydrogen economy. In this study the characteristics of hydrogen technologies and their deployments in the long-term future are investigated using energy system model MARKAL. The effects of strong carbon constraints do not cause higher hydrogen demand but show a decrease in comparison to the business-as-usual scenario. Further according to our modeling results hydrogen grows only as a fuel for hard-to-decarbonize heavy-duty vehicles and is less competitive than other decarbonization solutions in the U.S. Without improvements in reducing the cost of electrolysis and increasing the performance of near-zero carbon technologies for hydrogen production hydrogen will remain a niche player in the U.S. energy system in the long-term future. This article provides the reader with a comprehensive understanding of the role of hydrogen in the U.S. energy system thereby explaining the long-term future projections.
Hydrogen Embrittlement Behaviors During SSRT Tests in Gaseous Hydrogen for Cold-word Type 316 Austenitic Stainless Steel and Iron-based Supperalloy A286 Used in Hydrogen Refueling Station
Feb 2024
Publication
To consider an appropriate evaluation method for hydrogen compatibility slow strain rate tensile (SSRT) tests were conducted on high strength piping materials cold-worked type 316 austenitic stainless steel (SUS316CW) and iron-based superalloy A286 used in hydrogen stations for two years.<br/>SUS316CW used at room temperature in 82 MPa gaseous hydrogen contained 7.8 mass ppm hydrogen. The SSRT test of SUS316CW was conducted in nitrogen at -40 °C. The fracture surface showed dimples and no hydrogen embrittlement behavior was observed. While the SSRT test of SUS316CW in 70 MPa gaseous hydrogen at -40 °C showed a slight decrease in reduction area and a brittle fracture morphology in the outer layer. This was considered to be the effect of high-pressure gaseous hydrogen during the SSRT test in addition to the pre-contained hydrogen.<br/>A286 used at -40 °C in 82 MPa gaseous hydrogen contained negligible hydrogen (0.14 mass ppm). SSRT tests were conducted at 150 °C in 70 MPa gaseous hydrogen and in air and showed a low relative reduction in area (RRA) value. To investigate the decrease in the RRA we switched the gas from hydrogen to air in the middle of the SSRT test and closely examined the RRA values and fracture morphology including side cracks. The hydrogen embrittlement was found to originate from the elastic deformation region. Stress cycling in the elastic deformation region also accelerated the effect of hydrogen. These were attributed to an increase in the lattice hydrogen content. While in the plastic deformation region hydrogen trapped in the defects and hydrogen through the generated surface cracks increased the hydrogen content at the crack tips reducing the RRA value. And there was a good correlation between the crack lengths and RRA values.<br/>Then hydrogen embrittlement mechanism depends on the operating conditions (stress and temperature) of the material and evaluating the hydrogen compatibility of materials by controlling their hydrogen content and strain according to the service environment is desirable.
Design and Analysis of Hydrogen Storage Tank with Different Materials by Ansys
Dec 2019
Publication
Pressure vessels are used for large commercial and industrial applications such as softening filtration and storage. It is expected that high-pressure hydrogen storage vessels will be widely used in hydrogen-fuelled vehicles. Progressive failure properties the burst pressure and fatigue life should be taken into account in the design of composite pressure vessels. In this work the model and analysis of hydrogen storage vessels along with complete structural and thermal analysis. Liquid hydrogen is seen as an outstanding candidate for the fuel of high altitude long-endurance unmanned aircraft. The design of lightweight and super-insulated storage tanks for cryogenic liquid hydrogen is since long identified as crucial to enable the adoption of the liquid hydrogen. The basic structural design of the airborne cryogenic liquid hydrogen tank was completed in this paper. The problem of excessive heat leakage of the traditional support structure was solved by designing and using a new insulating support structure. The thermal performance of the designed tank was evaluated. The structure of the tank was analyzed by the combination of the film container theory and finite element numerical simulation method. The structure of the adiabatic support was analyzed by using the Hertz contact theory and numerical simulation method. A simple and effective structure analysis method for a similar container structure and point-contact support structure was provided. Bases for further structural optimization design of hydrogen tank will be provided also. The analysis will be carried out with different materials like titanium nickel alloy and some coated powders like alumina Titania and zirconium oxide. The results will be compared with that.
Accidental Releases of Hydrogen in Maintenance Garages: Modelling and Assessment
Sep 2023
Publication
This study investigates the light gas dispersion behaviour in a maintenance garage with natural or forced ventilation. A scaled-down garage model (0.71 m high 3.07 m long and 3.36 m wide) equipped with gas and velocity sensors was used in the experiments. The enclosure had four rectangular vents at the ceiling and four at the bottom on two opposing side walls. The experiments were performed by injecting helium continuously through a 1-mm downward-facing nozzle until a steady state was reached. The sensitivity parameters included helium injection rate the elevation of the injection nozzle and forced flow speeds. Exhaust fans were placed at one or all of the top vent(s) to mimic forced ventilation. Numerical simulations conducted using GOTHIC a general-purpose thermal-hydraulic code and calculations with engineering models were compared with experimental measurements to determine the relative suitability of each approach to predict the light gas transport behaviour. The GOTHIC simulations captured the trends of the helium distribution gas movement in the enclosure and the passive vent flows reasonably well. Lowesmith’s model predictions for the helium transients in the upper uniform layer were also in good agreement with the natural venting experiments.
Hydrogen UK Manifesto
Jul 2024
Publication
Hydrogen presents the UK with a substantial opportunity to drive economic growth and secure skilled jobs by leveraging our natural geological and geographical advantages robust supply chain and existing energy expertise. Hydrogen UK’s most recent Economic Impact Assessment estimates that the hydrogen sector in the UK could support approximately 30000 direct jobs and contribute more than £7 billion gross value added annually by 2030. On a global scale the hydrogen market is projected to be worth $2.5 trillion by 2050.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
A Prospective Approach to the Optimal Deployment of a Hydrogen Supply Chain for Sustainable Mobility in Island Territories: Application to Corsica
Oct 2024
Publication
This study develops a framework for designing hydrogen supply chains (HSC) in island territories using Mixed Integer Linear Programming (MILP) with a multi-period approach. The framework minimizes system costs greenhouse gas emissions and a risk-based index. Corsica is used as a case study with a Geographic Information System (GIS) identifying hydrogen demand regions and potential sites for production storage and distribution. The results provide an optimal HSC configuration for 2050 specifying the size location and technology while accounting for techno-economic factors. This work integrates the unique geographical characteristics of islands using a GIS-based approach incorporates technology readiness levels and utilizes renewable electricity from neighboring regions. The model proposes decentralized configurations that avoid hydrogen transport between grids achieving a levelized cost of hydrogen (LCOH) of €8.54/kg. This approach offers insight into future options and incentive mechanisms to support the development of hydrogen economies in isolated territories.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Determining Onshore or Offshore Hydrogen Storage for Large Offshore Wind Parks: The North Sea Wind Power Hub Case
Aug 2024
Publication
The large-scale integration of renewable energy sources leads to daily and seasonal mismatches between supply and demand and the curtailment of wind power. Hydrogen produced from surplus wind power offers an attractive solution to these challenges. In this paper we consider a large offshore wind park and analyze the need for hydrogen storage at the onshore and offshore sides of a large transportation pipeline that connects the wind park to the mainland. The results show that the pipeline with line pack storage though important for day-to-day fluctuations will not offer sufficient storage capacity to bridge seasonal differences. Furthermore the results show that if the pipeline is sufficiently sized additional storage is only needed on one side of the pipeline which would limit the needed investments. Results show that the policy which determines what part of the wind power is fed into the electricity grid and what part is converted into hydrogen has a significant influence on these seasonal storage needs. Therefore investment decisions for hydrogen systems should be made by considering both the onshore and offshore storage requirements in combination with electricity transport to the mainland.
Numerical Investigations of Hydrogen Release and Dispersion Due to Silane Decomposition in a Ventilated Container
Sep 2023
Publication
In recent years new chemical release agents based on silane are being used in the tire industry. Silane is an inorganic chemical compound consisting of a silicon backbone and hydrogen. Silanes can be thermally decomposed into high-purity silicon and hydrogen. If silane is stored and transported in Intermediate Bulk Containers (IBCs) equipped with safety valves in vented semi-confined spaces such as ISO-Containers hydrogen can be accumulated and become explosive mixture with air. A conservative CFD analysis using the GASFLOW-MPI code has been carried out to assess the hydrogen risk inside the vented containers. Two types of containers with different natural ventilation systems were investigated under various hypothetical accident scenarios. A continuous release of hydrogen due to the chemical decomposition of silane from IBCs was studied as the reference case. The effect of the safety valves on hydrogen accumulation in the container which results in small pulsed releases of hydrogen was investigated. The external effects of the sun and wind on hydrogen distribution and ventilation were also evaluated. The results can provide detailed information on hydrogen dispersion and mixing within the vented enclosures and used to evaluate the hydrogen risks such as flammability. Based on the assumptions used in this study it indicates that the geometry of ventilation openings plays a key role in the efficiency of the indoor air exchange process. In addition the use of safety valves makes it possible to reduce the concentration of hydrogen by volume in air compared to the reference case. The effect of the sun which results in a temperature difference between two container walls allows a strong mixing of hydrogen and air which helps to obtain a concentration lower than both the base case and the case of the pulsed releases. But the best results for the venting process are obtained with the wind that can drive the mixture to the downwind wall vent holes.
Green Hydrogen Production: Integrating Environmental and Social Criteria to Ensure Sustainability
Jul 2023
Publication
Hydrogen is experiencing an unprecedented global hype. Hydrogen is globally discussed as a possible future energy carrier and regarded as the urgently needed building block for the much needed carbon-neutral energy transition of hard-to-abate sectors to mitigate the effects of global warming. This article provides synthesised measurable sustainability criteria for analysing green hydrogen production proposals and strategies. Drawn from expert interviews and an extensive literature review this article proposes that a sustainable hydrogen production should consider six impact categories; Energy transition Environment Basic needs Socio-economy Electricity supply and Project planning. The categories are broken down into sixteen measurable sustainability criteria which are determined with related indicators. The article concludes that low economic costs can never be the only decisive criterion for the hydrogen production; social aspects must be integrated along the entire value chain. The compliance with the criteria may avoid social and ecological injustices in the planning of green hydrogen projects and increases inter alia the social welfare of the affected population.
Storage and Transportation Technology Solutions Selection for Large-scale Hydrogen Energy Utilization Scenarios under the Trend of Carbon Neutralization
Apr 2021
Publication
This paper mainly introduces the main pain point of China's civil hydrogen energy supply chain - the problem of storage and transportation and analyzes the safety economy and scale effect and other issues of the existing hydrogen energy storage and transportation compares with other storage and transportation technology solutions and comprehensively screens out the storage and transportation technology solution mainly based on liquid hydrogen technology. The liquid hydrogen technology solution has significant advantages over the existing compressed hydrogen system in terms of safety economy and scale effect especially for future large-scale hydrogen energy application scenarios. In addition the future hydrogen energy storage and transportation system based on liquid hydrogen technology can help improve the overall utilization efficiency of country’s renewable energy promote the country's energy transition promote the electrification of the country's transportation sector and help achieve China's carbon emission reduction 2030/2060 target.
Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry
Jul 2024
Publication
Hydrogen produced from renewable energy sources is a valuable energy carrier for linking growing renewable electricity generation with the hard-to-abate sectors such as cement steel glass chemical and ceramics industries. In this context this paper presents a new model of hydrogen production based on solar photovoltaics and wind energy with application to a real-world ceramics factory. For this task a novel multipurpose profit-maximizing model is implemented using GAMS. The developed model explores hydrogen production with multiple value streams that enable technical and economical informed decisions under specific scenarios. Our results show that it is profitable to sell the hydrogen produced to the gas grid rather than using it for self-consumption for low-gas-price scenarios. On the other hand when the price of gas is significantly high it is more profitable to use as much hydrogen as possible for self-consumption to supply the factory and reduce the internal use of natural gas. The role of electricity self-consumption has proven to be key for the project’s profitability as without this revenue stream the project would not be profitable in any analysed scenario.
Functional Resonance Analysis for Emerging Risks in Hydrogen Handling: An Analysis of an Experimental Test
Oct 2024
Publication
Hydrogen is on the rise as a substitute for fossil fuel in the energy sector. While this substitution does not happen dramatically the steady increase in hydrogen related research might be a good indicator of such desire. As it stands there are issues regarding its safe handling and use; consequently the health and safety subsectors observe the situation conspicuously. As we yet to know the behavior of hydrogen in critical situations uncertainties make these tasks prone to emerging risks. Thus hydrogen safety falls under emerging risk studies. Conventional perspective on safety especially regarding the flammable material focuses on calculating the hypothetical risks of failures in system. Resilience Engineering has another perspective as it focuses on normal operations offering new perspectives to tackle emerging risks from a new angle. Born from the heart of Resilience Engineering the Functional Resonance Analysis Method (FRAM) captures sociotechnical systems’ essence in a tangible way. In this study FRAM has been used to model a series of experiments done on hydrogen management to analyze its jet fire. FRAM is used to test whether the method could be suitable to model a system in which emerging risks are present. It is the conclusion of this study that FRAM seems promising in raising risk awareness especially when available data is limited.
No more items...