Skip to content
1900

Steam Electrolysis for Green Hydrogen Generation. State of the Art and Research Perspective

Abstract

With renewable energy sources projected to become the dominant source of electricity, hydrogen has emerged as a crucial energy carrier to mitigate their intermittency issues. Water electrolysis is the most developed alternative to generate green hydrogen so far. However, in the past two decades steam electrolysis has attracted increasing interest and aims to become a key player in the portfolio of electrolytic hydrogen. In practice, steam electrolysis follows two distinct operational approaches: Solid Oxide Electrolysis Cell (SOEC) and Proton Exchange Membrane (PEM) at high temperature. For both technologies, this work analyses critical cell components outlining material characteristics and degradation issues. The influence of operational conditions on the performance and cell durability of both technologies is thoroughly reviewed. The analytical comparison of the two electrolysis alternatives underscores their distinct advantages and drawbacks, highlighting their niche of applications: SOECs thrive in high temperature industries like steel production and nuclear power plants whereas PEM steam electrolysis suits lower temperature applications such as textile and paper. Being PEM steam electrolysis less explored, this work ends up by suggesting research lines in the domain of i) cell components (membranes, catalysts and gas diffusion layers) to optimize and scale the technology, ii) integration strategies with renewable energies and iii) use of seawater as feedstock for green hydrogen production.

Funding source: The research is currently receiving support from various sources. The project PID2021-123120OB-I00 and TED2021-129951B–C21, funded by the Spanish Ministry of Science, Innovation and Universities, are among the primary contributors. Additionally, the authors acknowledge the financial assistance provided by projects PLEC2021-007718 and the “Complementary Plan for Energy and Renewable Hydrogen” PRTR-C17. I1, financed by MICIU/AEI/10.13039/501100011033, the Regional Government of Cantabria, and the European Union Next GenerationEU/ RTRP.
Related subjects: Production & Supply Chain
Countries: Spain
Loading

Article metrics loading...

/content/journal6030
2024-07-04
2024-11-01
/content/journal6030
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error