Skip to content
1900

Renewable Electricity and Green Hydrogen Integration for Decarbonization of “Hard-to-Abate” Industrial Sectors

Abstract

This paper investigates hydrogen’s potential to accelerate the energy transition in hardto-abate sectors, such as steel, petrochemicals, glass, cement, and paper. The goal is to assess how hydrogen, produced from renewable sources, can foster both industrial decarbonization and the expansion of renewable energy installations, especially solar and wind. Hydrogen’s dual role as a fuel and a chemical agent for process innovation is explored, with a focus on its ability to enhance energy efficiency and reduce CO2 emissions. Integrating hydrogen with continuous industrial processes minimizes the need for energy storage, making it a more efficient solution. Advances in electrolysis, achieving efficiencies up to 60%, and storage methods, consuming about 10% of stored energy for compression, are discussed. Specifically, in the steel sector, hydrogen can replace carbon as a reductant in the direct reduced iron (DRI) process, which accounts for around 7% of global steel production. A next-generation DRI plant producing one million tons of steel annually would require approximately 3200 MW of photovoltaic capacity to integrate hydrogen effectively. This study also discusses hydrogen’s role as a co-fuel in steel furnaces. Quantitative analyses show that to support typical industrial plants, hydrogen facilities of several hundred to a few thousand MW are necessary. “Virtual” power plants integrating with both the electrical grid and energy-intensive systems are proposed highlighting hydrogen’s critical role in industrial decarbonization and renewable energy growth.

Funding source: This work was supported by the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3—Call for tender No. 1561 of 11.10.2022 of Ministero dell’Università e della Ricerca (MUR); and by the European Union—NextGenerationEU. Award Number: Project code PE0000021, Concession Decree No. 1561 of 11.10.2022 adopted by Ministero dell’Università e della Ricerca (MUR), CUP I53C22001450006, according to attachment E of Decree No. 1561/2022, Project title “Network 4 Energy Sustainable Transition—NEST”.
Related subjects: Applications & Pathways
Countries: Italy
Loading

Article metrics loading...

/content/journal6051
2024-07-25
2024-11-21
/content/journal6051
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error