- Home
- A-Z Publications
- Publications
Publications
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
Mar 2020
Publication
Titanium-based alloys are susceptible to hydrogen embrittlement (HE) a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H2 environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K with crack propagation rates up to 13 times higher than those observed in air. Possible reasons for such behaviour were discussed in this paper. The relationship between FCG results in high-pressure H2 environment and microstructure was investigated by comparison with already published results of cast and forged Ti-6Al-4V. Coarser microstructure was found to be more sensitive to HE. Moreover the electron beam melting (EBM) materials experienced a crack growth acceleration in-between that of cast and wrought Ti-6Al-4V
Status, Gaps and Recommendations Regarding Standardisation and the Use of Hydrogen in Sustainable Buildings
Sep 2013
Publication
The use of and interpretation of Regulations Codes and Standards is important input when developing hydrogen systems and applications. This paper presents the work related to standardisation undertaken by DNV as part of the EU supported project H2SusBuild. During the H2SusBuild project a renewable (solar and wind) based full scale energy system with components for hydrogen storage hydrogen production by electrolysis and hydrogen consumption by fuel cell and burner was built and integrated into an existing office building in Lavrion Greece. The relevant standards identified and applied the standardisation gaps identified and the recommendations made for further standardisation activities are presented.
Cost Effective Inherent Safety Index for Polymer Electrolyte Membrane Fuel Cell Systems
Sep 2013
Publication
There have been many indices available in the process industries to describe rank or quantify hazards to people properties and environments. Most of the developed methods were meant to be applied to large scale and complex systems of process industries. Development of a swift and simple inherent safety index method which is relevant to small scale less complex membrane fuel cell system particularly the one in which to be applied during an early design stage is essential as an alternative to current comprehensive and yet time-consuming indices. In this work a modified version of PIIS modified prototype index for inherent safety (m-PIIS) was developed with the objectives of identifying indicating and estimating inherent safety of fuel cell system at an early design stage. The developed index was tested at four proton exchange membrane (PEM) fuel cell systems namely high pressure PEMFC system low pressure PEMFC system LH2 PEMFC system and on-board Me-OH PEMFC system. The developed index was also benchmarked against the original PIIS and ISI using the published results for the selection of process routes in MMA production. Results have indicated that m-PIIS has strong positive relationship with PIIS and ISI on most of the reaction step in MMA with the most significant are the C4 TBA and C3 reaction steps. Other reaction steps such as C2/MP C2/PA and ACH showed a strong positive relationship as well.
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Experimental Study of Ignited Unsteady Hydrogen Releases from a High Pressure Reservoir
Sep 2011
Publication
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3 4 and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Simulations of Hydrogen Production by Methanol Steam Reforming
Jan 2019
Publication
Methanol is regarded as an important feedstock for hydrogen production due to its high energy density and superior transportability. A tubular packed-bed reactor performing the methanol steam reforming (MSR) process was modeled by adopting computational fluid dynamics (CFD) software to analyze its performance. Kinetic parameters of the reactions were adjusted according to the literatures and our previous experimental results. The methanol conversion the hydrogen production rate and the CO concentration in the produced mixture were evaluated by considering different levels of the length and temperature of the catalyst bed the steam-to-carbon ratio and the space velocity of the feedstocks. Moreover the correlation between the dimensionless parameter Damköhler number and the methanol conversion was also investigated.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Experimental Investigation of Unconfined Spherical and Cylindrical Flame Propagation in Hydrogen-air Mixtures
Sep 2019
Publication
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
Commercialisation of Energy Storage
Mar 2015
Publication
This report was created to ensure a deeper understanding of the role and commercial viability of energy storage in enabling increasing levels of intermittent renewable power generation. It was specifically written to inform thought leaders and decision-makers about the potential contribution of storage in order to integrate renewable energy sources (RES) and about the actions required to ensure that storage is allowed to compete with the other flexibility options on a level playing field.<br/>The share of RES in the European electric power generation mix is expected to grow considerably constituting a significant contribution to the European Commission’s challenging targets to reduce greenhouse gas emissions. The share of RES production in electricity demand should reach about 36% by 2020 45-60% by 2030 and over 80% in 2050.<br/>In some scenarios up to 65% of EU power generation will be covered by solar photovoltaics (PV) as well as on- and offshore wind (variable renewable energy (VRE) sources) whose production is subject to both seasonal as well as hourly weather variability. This is a situation the power system has not coped with before. System flexibility needs which have historically been driven by variable demand patterns will increasingly be driven by supply variability as VRE penetration increases to very high levels (50% and more).<br/>Significant amounts of excess renewable energy (on the order of TWh) will start to emerge in countries across the EU with surpluses characterized by periods of high power output (GW) far in excess of demand. These periods will alternate with times when solar PV and wind are only generating at a fraction of their capacity and non-renewable generation capacity will be required.<br/>In addition the large intermittent power flows will put strain on the transmission and distribution network and make it more challenging to ensure that the electricity supply matches demand at all times.<br/>New systems and tools are required to ensure that this renewable energy is integrated into the power system effectively. There are four main options for providing the required flexibility to the power system: dispatchable generation transmission and distribution expansion demand side management and energy storage. All of these options have limitations and costs and none of them can solve the RES integration challenge alone. This report focuses on the question to what extent current and new storage technologies can contribute to integrate renewables in the long run and play additional roles in the short term.
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2017 Final Report
Dec 2018
Publication
The Programme Review Report ensures that the FCH JU programme is aligned with its strategy and objectives. This year the programme review was performed following a new procedure: it was carried out by the European Commission’s in-house science service the Joint Research Committee (JRC). The 2017 review pays particular attention to the added value effectiveness and efficiency of FCH JU activities. The review is structured around six panels under three pillars: transport energy and cross-cutting projects summarising the FCH JU Project Portfolio
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Fuel Cell Codes and Standards Resource
Jan 2021
Publication
Although hydrogen has been used in industry for decades its use as a fuel for vehicles or stationary power generation in consumer environments is relatively new. As such hydrogen and fuel cell codes and standards are in various stages of development. Industry manufacturers the government and other safety experts are working with codes and standards development organizations to prepare review and promulgate technically-sound codes and standards for hydrogen and fuel cell technologies and systems.
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers
Mar 2024
Publication
Underground hydrogen storage in geological structures is considered appropriate for storing large amounts of hydrogen. Using the geological Konary structure in the deep saline aquifers an analysis of the influence of depth on hydrogen storage was carried out. Hydrogen injection and withdrawal modeling was performed using TOUGH2 software assuming different structure depths. Changes in the relevant parameters for the operation of an underground hydrogen storage facility including the amount of H2 injected in the initial filling period cushion gas working gas and average amount of extracted water are presented. The results showed that increasing the depth to approximately 1500 m positively affects hydrogen storage (flow rate of injected hydrogen total capacity and working gas). Below this depth the trend was reversed. The cushion gas-to-working gas ratio did not significantly change with increasing depth. Its magnitude depends on the length of the initial hydrogen filling period. An increase in the depth of hydrogen storage is associated with a greater amount of extracted water. Increasing the duration of the initial hydrogen filling period will reduce the water production but increase the cushion gas volume.
Interaction of Hydrogen Jets with Hot Surfaces of Various Sizes and Temperatures
Sep 2019
Publication
The formation of hydrogen jets from pressurized sources and ignition has been studied by many projects also when hitting hot devices. In the paper presented at the conference 2 years ago the ignition was caused by glow plug a “point like source” at various temperatures distances of igniter and source and source pressures. In continuation of that work ignition now occurred by 1 or 3 platelets of size 45 x 18 mm at a temperatures of 1223 K. When hitting these hot platelets the resulting flame explosions and flame jets show interesting characteristics in contrast to the point like ignition where the explosions drifts downstream with the jet. Parameters of the experiments vary in initial pressure of the tubular source (10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (1223 K). The initial explosions stabilize already at the stagnation point or the wake of the hot platelets. Furthermore flames propagate upstream and downstream depending on the pressure of the hydrogen reservoir and the distance. The achieved flame velocities vary strongly from 30 to 240 m/s. With all investigated hydrogen pressures strong reactions v > 40 m/s occur at platelet distances of 3 and 5 m. The higher values are mainly achieved with jets with 40 MPa pressure at 3 m distance. In these cases the initial explosion contours show irregular shapes. Various effects are found like explosion separation further independently initiated explosions and two parallel flame jets upstream as well as downstream.
Technology Assessment of Hydrogen Firing of Process Heaters
Apr 2011
Publication
In conjunction with John Zink Co. LLC the Chevron Energy Technology Company conducted a three part study evaluating potential issues with switching refinery process heaters from fuel gas to hydrogen fuel for the purpose of greenhouse gas emissions reduction via CO2 capture and storage.
The focus was on the following areas:
The focus was on the following areas:
- Heater performance
- Burner performance and robustness
- Fuel gas system retrofit requirements
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
3D Real Time Monitoring of H2 in FCV Applications
Sep 2019
Publication
In order to monitor a trace amount of Hydrogen in millisecond portable H2 sensor (Sx) was made by using mass spectrometer. The method of monitoring the hydrogen pulse of millisecond in exhaust gas is the increasing needed. Determining H2 concentration both inside and outside of the Fuel Cell Vehicle (FCV) for the optimized operations is becoming a critical issue. The exhaust gas of Fuel Cell Vehicle H2 consumption flushing and disposal around Fuel cell the real time monitoring of H2 in highly humid conditions is the problematic. To solve this issue the system volume of the sampling route was minimized with the heater and the dehumidifier to avoid condensation of water droplets. And also for an automatic calibration of H2 concentration the small cylinder of specific H2 concentration was mounted into the system.<br/>Our basic experiment started from a flow pattern analysis by monitoring H2 concentration in narrow tube. The flow patter analysis was carried out. When H2 gas was introduced in the N2 flow or air in the tube the highly concentrated H2 front phases were observed. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within milliseconds. Our observations showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of H2 cloud the high speed small cluster of H2 molecules in purged gas were explored by this system.
A Large-Scale Study on the Effect of Ambient Conditions on Hydrogen Recombiner Induced Ignition
Sep 2019
Publication
Hydrogen recombiners (known in the nuclear industry as passive autocatalytic recombiners-PARs) in general can be utilized for mitigation of hydrogen in controlled areas where there is potential for hydrogen release and ventilation is not practical. Recombiners are widely implemented in the nuclear industry however there are other applications of recombiners outside the nuclear industry that have not yet been explored practically. The most notable benefit of recombiners over conventional hydrogen mitigation measures is their passive capability where power or operator actions are not needed for the equipment to remove hydrogen when it is present.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review
Jan 2022
Publication
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size shape increased surface-to-volume ratio and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties such as significantly enhanced toughness mechanical strength and thermal/electrochemical conductivity. As a result of these advantages nanocomposites have been used in a variety of applications including catalysts electrochemical sensors biosensors and energy storage devices among others. This study focuses on the usage of several forms of carbon nanomaterials such as carbon aerogels carbon nanofibers graphene carbon nanotubes and fullerenes in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years notably in the car industry due to their cost-effectiveness eco-friendliness and long-cyclic durability. Further; we discuss the principles reaction mechanisms and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
Hydrogen Production by Steam Reforming of DME in a Large Scale CFB Reactor. Part I: Computational Model and Predictions
Oct 2015
Publication
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian–Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics gas residence time temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Hydrogen-enhanced Fatigue Crack Growth in Steels and its Frequency Dependence
Jun 2017
Publication
In the context of the fatigue life design of components particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles it is important to understand the hydrogen-induced fatigue crack growth (FCG) acceleration in steels. As such the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further this frequency dependence is debated by introducing some potentially responsible elements along with new experimental data obtained by the authors.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
The Effect of Graphite Size on Hydrogen Absorption and Tensile Properties of Ferritic Ductile Cast Iron
Jun 2019
Publication
Ductile cast iron (DCI) is one of prospective materials used for the hydrogen equipment because of low-cost good workability and formability. The wide range of mechanical properties of DCI is obtained by controlling microstructural factors such as graphite size volume fraction of graphite matrix structure and so on. Therefore it is important to find out an optimal microstructural condition that is less susceptible to hydrogen embrittlement. In this study the effects of graphite size on the hydrogen absorption capability and the hydrogen-induced ductility loss of ferritic DCI were investigated.<br/>Several kinds of ferritic DCIs with a different graphite diameter of about 10 µm - 30 µm were used for the tensile test and the hydrogen content measurement. Hydrogen charging was performed prior to the tensile test by exposing a specimen to high-pressure hydrogen gas. Then the tensile test was performed in air at room temperature. The hydrogen content of a specimen was measured by a thermal desorption analyzer.<br/>It was found that the amount of hydrogen stored in DCI was dependent on the graphite size. As the graphite diameter increased the hydrogen content sharply increased at a certain graphite diameter and then it became nearly constant irrespective of increase in graphite diameter. In other words there was the critical graphite diameter that significantly changed the hydrogen absorption capability. The ductility was decreased by hydrogen and the hydrogen-induced ductility loss was dependent on the hydrogen content. Therefore the hydrogen embrittlement of DCI became remarkable when the graphite size was larger than the critical value.
Strategy for Selecting an Optimal Propulsion System of a Liquefied Hydrogen Tanker
Jan 2017
Publication
This study proposed a strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker. Four propulsion system options were conceivable depending on whether the hydrogen BOG (boil-off gas) from the cryogenic cargo tanks was used for fuel or not. These options were evaluated in terms of their economic technological and environmental feasibilities. The comparison scope included not only main machinery but also the BOG handling system with electric generators. Cost-benefit analysis life-cycle costing including carbon tax and an energy efficiency design index were used as measures to compare the four alternative systems. The analytic hierarchy process made scientific decision-making possible. This methodology provided the priority of each attribute through the use of pairwise comparison matrices. Consequently the propulsion system using LNG with hydrogen BOG recovery was determined to be the optimal alternative. This system was appropriate for the tanker that achieved the highest evaluation score.
3D Quantitative Risk Assessment on a Hydrogen Refuelling Station in Shanghai
Sep 2019
Publication
The number of hydrogen refuelling stations worldwide is growing rapidly in recent years. The first large capacity hydrogen refuelling station in China is under construction. A 3D quantitative risk assessment QRA)is conducted for this station. Hazards associated with hydrogen systems are identified. Leakage frequency of hydrogen equipment are analyzed. Jet flame explosion scenarios and corresponding accident consequences are simulated. Risk acceptance criteria for hydrogen refuelling stations are discussed. The results show that the risk of this refuelling station is acceptable. And the maximum lethality frequency is 6.3*10-6. The area around compressors has the greatest risk. People should be avoided as far as possible from the compressor when the compressor does not need to be maintained. With 3D QRA the visualization of the evaluation results will help stakeholders to observe the hazardous areas of the hydrogen refuelling station at a glance.
Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers
Oct 2021
Publication
Hydrogen mixed natural gas for combustion can improve combustion characteristics and reduce carbon emission which has important engineering application value. A casing swirl burner model is adopted to numerically simulate and research the natural gas hydrogen mixing technology for combustion in gas boilers in this paper. Under the condition of conventional air atmosphere and constant air excess coefficient the six working conditions for hydrogen mixing proportion into natural gas are designed to explore the combustion characteristics and the laws of pollution emissions. The temperature distributions composition and emission of combustion flue gas under various working conditions are analyzed and compared. Further investigation is also conducted for the variation laws of NOx and soot generation. The results show that when the boiler heating power is constant hydrogen mixing will increase the combustion temperature accelerate the combustion rate reduce flue gas and CO2 emission increase the generation of water vapor and inhibit the generation of NOx and soot. Under the premise of meeting the fuel interchangeability it is concluded that the optimal hydrogen mixing volume fraction of gas boilers is 24.7%.
Deflagration-to-detonation Transition of H2-CO-Air Mixtures in a Partially Obstructed Channel
Sep 2019
Publication
In this study an explosion channel is used to investigate flame dynamics in homogeneous hydrogencarbon monoxide-air (H2-CO-air) mixtures. The test rig is a small scale 6 m channel at a rectangular cross section of 300x60 mm. Obstacles of a blockage ratio of BR=60% and a spacing of s=300mm are placed in first part of the channel. A 2.05 m long unobstructed part in the rear of the channel allows for investigation of freely propagating flames and detonations. The fuel composition is varied from 100/0 to 50/50 Vol.-% H2/CO mixtures. The overall fuel content ranges from 15 to 40 Vol.-% in air aiming to obtain fast flames and deflagration-to-detonation transition (DDT). Flame speed and dynamic pressure data are evaluated. Results extend data obtained by [1] and can be used for validation of numerical frameworks. Limits for fast flames and DDT in homogeneous H2-CO-air mixtures at the given geometry are presented.
The Influence of Hydrogen Desorption on Micromechanical Properties and Tribological Behavior of Iron and Carbon Steels
Dec 2018
Publication
The influence of the previous electrolytic hydrogenation on the micromechanical properties and tribological behavior of the surface layers of iron and carbon steels has been studied. The concentrations of diffusion-moving and residual hydrogen in steels are determined depending on the carbon content. It is shown that the amount of sorbed hydrogen is determined by the density of dislocations and the relative volume of cementite. After desorption of diffusion-moving hydrogen the microhardness increases and materials plasticity decreases. The change of these characteristics decreases with the increase of carbon content in the steels. Internal stresses increase and redistribute under hydrogen desorption. Fragmentation of ferrite and perlite occurs as a result of electrolytic hydrogenation. Ferrite is characterized by the structure fragmentation and change of the crystallographic orientation of planes. The perlite structure shows the crushing of cementite plates and their destruction. The influence of hydrogen desorption on the microhardness of structural components of ferrite-perlite steels is shown. Large scattering of microhardness is found in perlite due to different diffusion rates of hydrogen because of the unequally oriented cementite plates. It was found that the tendency of materials to blister formation is reduced with the increase of carbon content. The influence of hydrogen on the tribological behaviour of steels under dry and boundary friction has been studied. It is shown that hydrogen desorption intensifies the materials wear. After hydrogen desorption tribological behaviour is determined by the adhesion interaction between the contacting pairs.
Homogeneous Hydrogen Deflagrations in Small Scale Enclosure. Experimental Results
Sep 2017
Publication
University of Pisa performed experimental tests in a 1m3 facility which shape and dimensions resemble a gas cabinet for the HySEA project founded by the Fuel Cells and Hydrogen 2 Joint Undertaking with the aim to conduct pre-normative research on vented deflagrations in real-life enclosures and containers used for hydrogen energy applications in order to generate experimental data of high quality. The test facility named Small Scale Enclosure (SSE) had a vent area of 042m2 which location could be varied namely on the top or in front of the facility while different types of vent were investigated. Three different ignition location were investigated as well and the range of Hydrogen concentration ranged between 10 and 18% vol. This paper is aimed to summarize the main characteristics of the experimental campaign as well as to present its results.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Hydrogen Explosion Hazards Limitation in Battery Rooms with Different Ventilation Systems
Sep 2019
Publication
When charging most types of industrial lead-acid batteries hydrogen gas is emitted. A large number of batteries especially in relatively small areas/enclosures and in the absence of an adequate ventilation system may create an explosion hazard. This paper describes full scale tests in confined space which demonstrate conditions that can occur in a battery room in the event of a ventilation system breakdown. Over the course of the tests full scale hydrogen emission experiments were performed to study emission time and flammable cloud formation according to the assumed emission velocity. On this basis the characteristics of dispersion of hydrogen in the battery room were obtained. The CFD model Fire Dynamic Simulator (NIST) was used for confirmation that the lack of ventilation in a battery room can be the cause of an explosive atmosphere developing and leading to a potential huge explosive hazard. It was demonstrated that different ventilation systems provide battery rooms with varying efficiencies of hydrogen removal. The most effective type appeared to be natural ventilation which proved more effective than mechanical means.
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Hydrogen Europe Podcast: Hydrogen, The First Element: Why Renewable Hydrogen? Why Now?
Mar 2022
Publication
In the first episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with NEL's CEO and President of Hydrogen Europe Jon Andre Løkke. Starting off on how Jon joined the hydrogen sector the two CEOs investigate the historical moment renewable hydrogen is currently living.
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
Review of Power-to-Gas Projects in Europe
Nov 2018
Publication
Core of the Power-to-Gas (PtG) concept is the utilization of renewable electricity to produce hydrogen via water electrolysis. This hydrogen can be used directly as final energy carrier or can be converted to e.g. methane synthesis gas liquid fuels electricity or chemicals. To integrate PtG into energy systems technical demonstration and systems integration is of mayor importance. In total 128 PtG research and demonstration projects are realized or already finished in Europe to analyze these issues by May 2018. Key of the review is the identification and assessment of relevant projects regarding their field of application applied processes and technologies for electrolysis type of methanation capacity location and year of commissioning. So far main application for PtX is the injection of hydrogen or methane into the natural gas grid for storing electricity from variable renewable energy sources. Producing fuels for transport is another important application of PtX. In future PtX gets more important for refineries to lower the carbon food print of the products.
Transferring the Retail of Hydrogen Economy and Missing Safety Assurance
Sep 2019
Publication
Australian regional communities are moving ahead of governments. Enterprising individuals are pushing ahead to find global solutions to local issues that governments (local or state or federal) have abandoned stalled mothballed or failed to resolve. We are faced with a flaw in retail of hydrogen economy as fatal as Walgett running dry or a million fish killed in Murray-Darling. The challenge in Australian regional communities will be to interpret safety assurance requirements in an appropriate manner even in severe economic swings such as drought bushfire or floods. In this context the efficacious cultural embrace by regional communities of three key program elements is essential - Australian Hydrogen Safety Panel Hydrogen Safety Knowledge Tools and Dissemination Hydrogen Safety First Responder Training. What are the odds of no accident in retailing hydrogen for examples to vehicles? Place is everything in regional communities of Australia because in nature (as in the ocean) there is no spin. This paper examines the safety assurance issues associated with the cultural integration of Hydrogen’s three key program elements in a country Australia that is fed-up with government.
Specific Effects of Hydrogen Concentration on Resistance to Fracture of Ferrite-pearlitic Pipeline Steels
Aug 2019
Publication
The presented work is dedicated to evaluation of strain and fatigue behaviour of the ferrite-pearlite low-alloyed pipeline steels under known hydrogen concentration in a bulk of metal. Tensile test results have shown on the existence of some characteristic value of the hydrogen concentration CH at which the mechanism of hydrogen influence changes namely: below this value the enhanced plasticity (decreasing of the yield stress value) takes place and above – the hydrogen embrittlement occurs. The ambiguous relationship between fatigue crack growth rate and hydrogen concentration CH in the bulk of steels under their cyclic loading in hydrogen-contained environments has been found. There is a certain CH value at which the crack growth resistance of steel increases and the diagram of fatigue crack growth rate shifts to higher values of stress intensity factor. The generalised diagram of hydrogen concentration effect on strength behaviour of low-alloyed ferrite-pearlite pipeline steels is presented and discussed with the aim of evaluation of different mechanisms of hydrogen effect conditions of their realization and possible co-existence.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes: A Density Functional Theory Study
Jan 2022
Publication
Carbon materials such as graphene nanoflakes carbon nanotubes and fullerene can be widely used to store hydrogen and doping these materials with lithium (Li) generally increases their H2 -storage densities. Unfortunately Li is expensive; therefore alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium. In this study we used density functional theory to systematically investigate how hydrogen molecules interact with Na-doped graphene nanoflakes. A graphene nanoflake (GR) was modeled by a large polycyclic aromatic hydrocarbon composed of 37 benzene rings with GR-Na-(H2 )n and GR-Na+ -(H2 )n (n = 0–12) clusters used as hydrogen storage systems. Data obtained for the Na system were compared with those of the Li system. The single-H2 GR-Li and GR-Na systems (n = 1) exhibited binding energies (per H2 molecule) of 3.83 and 2.72 kcal/mol respectively revealing that the Li system has a high hydrogen-storage ability. This relationship is reversed from n = 4 onwards; the Na systems exhibited larger or similar binding energies for n = 4–12 than the Li-systems. The present study strongly suggests that Na can be used as an alternative metal to Li in H2 -storage applications. The H2 -storage mechanism in the Na system is also discussed based on the calculated results.
Annual Science Review 2018
Mar 2018
Publication
THIS ANNUAL SCIENCE Review showcases the high quality of science evidence and analysis that underpins HSE’s risk-based regulatory regime. To be an effective regulator HSE has to balance its approaches to informing directing advising and enforcing through a variety of activities. For this we need capacity to advance knowledge; to develop and use robust evidence and analysis; to challenge thinking; and to review effectiveness.<br/>In simple terms policy provides the route map to tackling issues. HSE is particularly well placed in terms of the three components of effective policy - “politics” “evidence” and “delivery”. Unlike most regulators and arms-length bodies HSE leads on policy development which draws directly on front line delivery expertise and intelligence; and we are also unusual in having our own world class science and insight capabilities.<br/>The challenge is to ensure we bring these components together to best effect to respond to new risk management and regulatory issues with effective innovative and proportionate approaches.<br/>Many of the articles in this Review relate to new and emerging technologies and the changing world of work and it is important to understand the risks these may pose and how they can be effectively controlled or how they themselves can contribute to improved health and safety in the workplace. Good policy development can support approaches to change that are proportionate relevant persuasive and effective. For example work described in these pages is: to help understand changing workplace exposures; to provide robust evidence to those negotiating alternatives to unduly prescriptive standards; to understand how best to influence duty<br/>holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>The vital interface between HSE science and policy understand how best to influence duty holder behaviors in the changing world of work; to inform possible legislative changes to allow different modes of safe gas transmission; to change administrative processes for Appointed Doctors; and to support our position as a model modern regulator by further focusing our inspection activity where it matters most.<br/>We work well together and it is important we maintain this engagement as a conscious collaboration.
Hydrogen Odorant and Leak Detection: Part 1, Hydrogen Odorant - Project Closure Report
Nov 2020
Publication
This work programme was focused on identifying a suitable odorant for use in a 100% hydrogen gas grid (domestic use such as boilers and cookers). The research involved a review of existing odorants (used primarily for natural gas) and the selection of five suitable odorants based on available literature. One odorant was selected based on possible suitability with a Polymer Electrolyte Membrane (PEM) based fuel cell vehicle which could in future be a possible end-user of grid hydrogen. NPL prepared Primary Reference Materials containing the five odorants in hydrogen at the relevant amount fraction levels (as would be found in the grid) including ones provided by Robinson Brothers (the supplier of odorants for natural gas in the UK). These mixtures were used by NPL to perform tests to understand the effects of the mixtures on pipeline (metal and plastic) appliances (a hydrogen boiler provided by Worcester Bosch) and PEM fuel cells. HSE investigated the health and environmental impact of these odorants in hydrogen. Olfactory testing was performed by Air Spectrum to characterise the ‘smell’ of each odorant. Finally an economic analysis was performed by E4tech. The results confirm that Odorant NB would be a suitable odorant for use in a 100% hydrogen gas grid for combustion applications but further research would be required if the intention is to supply grid hydrogen to stationery fuel cells or fuel cell vehicles. In this case further testing would need to be performed to measure the extent of fuel cell degradation caused by the non-sulphur odorant obtained as part of this work programme and also other UK projects such as the Hydrogen Grid to Vehicle (HG2V) project would provide important information about whether a purification step would be required regardless of the odorant before the hydrogen purity would be suitable for a PEM fuel cell vehicle. If purification was required it would be fine to use Odorant NB as this would be removed during the purification step.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Numerical Modelling of Unconfined and Confined Hydrogen Explosion
Sep 2019
Publication
Numerical studies were conducted with the objective of gaining a better understanding of the consequences of potential explosion that could be associated with release of hydrogen in a confined and unconfined environment. This paper describes the work done by us in modelling explosion of accidental releases of hydrogen using our Fire Explosion Release Dispersion (FRED) software. CAM and SCOPE models in FRED is used for validation of congested/uncongested unconfined and congested/uncongested confined vapour cloud explosion respectively. In the first step CAM is validated against experiments of varying gas cloud size blockage ratio equivalence ratio of the mixture and blockage configuration. The model predictions of explosion overpressure are in good agreement with experiments. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to the experiments. In the second step SCOPE is validated against vented explosion experiments available in open literature. In general SCOPE reproduces the maximum overpressure within the factor of 2. Moreover it well predicts the trends of increase in overpressure with change in type of the fuel increase in number of obstacles blockage ratio and decrease in the vent size.
Improving Hydrogen Embrittlement Resistance of Hot-Stamped 1500 MPa Steel Parts That Have Undergone a Q&P Treatment by the Design of Retained Austenite and Martensite Matrix
Nov 2020
Publication
Hydrogen embrittlement is one of the largest obstacles against the commercialisation of ultra-high strength quenching and partitioning (Q&P) steels with ultimate tensile strength over 1500 MPa including the hot stamped steel parts that have undergone a Q&P treatment. In this work the influence of partitioning temperature on hydrogen embrittlement of ultra-high strength Q&P steels is studied by pre-charged tensile tests with both dog-bone and notched samples. It is found that hydrogen embrittlement resistance is enhanced by the higher partitioning temperature. Then the hydrogen embrittlement mechanism is analysed in terms of hydrogen retained austenite and martensite matrix. Thermal desorption analysis (TDA) shows that the hydrogen trapping properties are similar in the Q&P steels which cannot explain the enhancement of hydrogen embrittlement resistance. On the contrary it is found that the relatively low retained austenite stability after the higher temperature partitioning ensures more sufficient TRIP effect before hydrogen-induced fracture. Additionally dislocation recovery and solute carbon depletion at the higher partitioning temperature can reduce the flow stress of the martensite matrix improving its intrinsic toughness and reducing its hydrogen sensitivity both of which result in the higher hydrogen embrittlement resistance.
New Paradigms in Hydrogen Explosion Modelling Using an Industrial CFD Code
Sep 2019
Publication
It is well-known that deflagration to detonation transition (DDT) may be a significant threat for hydrogen explosions. This paper presents a summary of the work carried out for the development of models in order to enable the industrial computational fluid dynamic (CFD) tool FLACS to provide indications about the possibility of a deflagration-to-detonation transition (DDT). The likelihood of DDT has been expressed in terms of spatial pressure gradients across the flame front. This parameter is able to visualize when the flame front captures the pressure front which is the case in situations when fast deflagrations transition to detonation. Reasonable agreement was obtained with experimental observations in terms of explosion pressures transition times and flame speeds for several practical geometries. The DDT model has also been extended to develop a more meaningful criterion for estimating the likelihood of DDT by comparison of the geometric dimensions with the detonation cell size. The conclusion from simulating these experiments is that the FLACS DPDX criterion seems robust and will generally predict the onset DDTs with reasonable precision including the exact location where DDT may happen. The standard version of FLACS can however not predict the consequences if there is DDT as only deflagration flames are modelled. Based on the methodology described above an approach for predicting detonation flames and explosion loads has been developed. The second part of the paper covers new paradigms associated with risk assessment of a hydrogen infrastructure such as a refueling station. In particular approaches involving one-to-one coupling between CFD and FEA modelling are summarized. The advantages of using such approaches are illustrated. This can have wide-ranging implications on the design of things like protection walls against hydrogen explosions.
A Critical Time for UK Energy Policy What Must be Done Now to Deliver the UK’s Future Energy System: A Report for the Council for Science and Technology
Oct 2015
Publication
Time is rapidly running out to make the crucial planning decisions and secure investment to keep the UK on track to deliver a reliable affordable and decarbonised energy system to meet future emissions regulation enshrined in the 2008 Climate Change Act according to a report published today by the Royal Academy of Engineering.
Prepared for the Prime Minister's Council for Science and Technology A critical time for UK energy policy details the actions needed now to create a secure and affordable low carbon energy system for 2030 and beyond.
The study looks at the future evolution of the UK’s energy system in the short to medium term. It considers how the system is expected to develop across a range of possible trajectories identified through modelling and scenarios.
The following actions for government are identified as a matter of urgency:
The report notes that the addition of shale gas or tight oil is unlikely to have a major impact on the evolution of the UK's energy system as we already have secure and diverse supplies of hydrocarbons from multiple sources.
Dr David Clarke FREng who led the group that produced the report says: “Updating the UK energy system to meet the ‘trilemma’ of decarbonisation security and affordability is a massive undertaking. Meeting national targets affordably requires substantial decarbonisation of the electricity system by 2030 through a mix of nuclear power CCS and renewables with gas generation for balancing. Beyond 2030 we must then largely decarbonise heat and transport potentially through electrification but also using other options such as hydrogen and biofuels. We also need to adapt our transmission and distribution networks to become ‘smarter’”.
"Failure to plan the development of the whole energy system carefully will result at best in huge increases in the cost of delivery or at worst a failure to deliver. Substantial investment is needed and current investment capacity is fragile. For example in the last month projects like Carlton’s new Trafford CCGT plant have announced further financing delays and the hoped-for investment by Drax in the White Rose CCS demonstrator has been withdrawn. The UK has also dropped four places to 11th in EY’s renewable energy country attractiveness index.”
Link to document download on Royal Society Website
Prepared for the Prime Minister's Council for Science and Technology A critical time for UK energy policy details the actions needed now to create a secure and affordable low carbon energy system for 2030 and beyond.
The study looks at the future evolution of the UK’s energy system in the short to medium term. It considers how the system is expected to develop across a range of possible trajectories identified through modelling and scenarios.
The following actions for government are identified as a matter of urgency:
- enable local or regional whole-system large scale pilot projects to establish real-world examples of how the future system will work. These must move beyond current single technology demonstrators and include all aspects of the energy systems along with consumer behaviour and financial mechanisms
- drive forward new capacity in the three main low carbon electricity generating technologies: nuclear carbon capture and storage (CCS) and offshore wind
- develop policies to accelerate demand reduction especially in domestic heating and introduce smarter demand management
- clarify and stabilise market mechanisms and incentives in order to give industry the confidence to invest.
The report notes that the addition of shale gas or tight oil is unlikely to have a major impact on the evolution of the UK's energy system as we already have secure and diverse supplies of hydrocarbons from multiple sources.
Dr David Clarke FREng who led the group that produced the report says: “Updating the UK energy system to meet the ‘trilemma’ of decarbonisation security and affordability is a massive undertaking. Meeting national targets affordably requires substantial decarbonisation of the electricity system by 2030 through a mix of nuclear power CCS and renewables with gas generation for balancing. Beyond 2030 we must then largely decarbonise heat and transport potentially through electrification but also using other options such as hydrogen and biofuels. We also need to adapt our transmission and distribution networks to become ‘smarter’”.
"Failure to plan the development of the whole energy system carefully will result at best in huge increases in the cost of delivery or at worst a failure to deliver. Substantial investment is needed and current investment capacity is fragile. For example in the last month projects like Carlton’s new Trafford CCGT plant have announced further financing delays and the hoped-for investment by Drax in the White Rose CCS demonstrator has been withdrawn. The UK has also dropped four places to 11th in EY’s renewable energy country attractiveness index.”
Link to document download on Royal Society Website
Mechanisms of Hydrogen Embrittlement in Steels: Discussion
Jun 2017
Publication
This discussion session interrogated the current understanding of hydrogen embrittlement mechanisms in steels. This article is a transcription of the recorded discussion of ‘Hydrogen in steels’ at the Royal Society Scientific Discussion Meeting ‘The challenges of hydrogen and metals’ 16–18 January 2017.
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
The text is approved by the contributors. E.L.S. transcribed the session. M.P. assisted in the preparation of the manuscript
Link to document download on Royal Society Website
Hot Surface Ignition in Flowing Streams of Hydrogen-Air Mixtures
Sep 2019
Publication
A set of original experiments is presented covering the topic of hydrogen-air mixture ignition by a hot surface. The hot surface is a 30 mm long/10 mm diameter heated coil which temperature is controlled by IR techniques. The coil is placed into the flowing stream of hydrogen air mixtures. The variable parameters are the composition of the flammable atmosphere (4 to 75% H2 v/v) the flow speed (from 0.5 m/s to 30 m/s) and its temperature (from -110°C to ambient). The experimental techniques and results are presented and a tentative interpretation is proposed based on ignition theories and highspeed video recordings. It is shown that the ignition temperature (600°C) is insensitive to flowing conditions which is a very unexpected result.
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
Safety Code Equivalencies in Hydrogen Infrastructure Deployment
Sep 2019
Publication
Various studies and market trends show that the number of hydrogen fuelling stations will increase to the thousands in the US by 2050. NFPA 2 Hydrogen Technologies Code (NFPA2) the nationally adopted primary code governing hydrogen safety is relatively new and hydrogen vehicle technology is a relatively new and rapidly developing technology. In order to effectively aid and accelerate the deployment of standardized retail hydrogen fuelling facilities the permitting of hydrogen fuelling stations employing outdoor bulk liquid storage in the state of California.
In an effort to better understand how the applicants consultants and more importantly the Authorities Having Jurisdiction (AHJ)s are interpreting and applying the NFPA 2 especially for complex applications the newest hydrogen stations with the largest amount of bulk hydrogen storage in urban environment settings were identified and the permit applications and permit approval outcomes of the said stations were analysed. Utilizing the pubic record request process LH2 station permit applications were reviewed along with the approval outcomes directly from the municipalities that issued the permits. AHJs with H2 station permitting experience were interviewed. Case studies of permit hydrogen fuelling station permit applications were then complied to document both the perspectives of the applicant and the AHJ and the often iterative and collaborative nature of permitting.
The current permitting time for Liquid Hydrogen (LH2) stations can range from 9 to 18 months in the California. Five out of the six LH2 stations applications required Alternative Means & Methods (AM&Ms) proposals and deviations from the prescriptive requirements of the Code were granted. Furthermore AHJs often requested additional documents and studies specific to application parameters in addition to NFPA 2 requirements.
In an effort to better understand how the applicants consultants and more importantly the Authorities Having Jurisdiction (AHJ)s are interpreting and applying the NFPA 2 especially for complex applications the newest hydrogen stations with the largest amount of bulk hydrogen storage in urban environment settings were identified and the permit applications and permit approval outcomes of the said stations were analysed. Utilizing the pubic record request process LH2 station permit applications were reviewed along with the approval outcomes directly from the municipalities that issued the permits. AHJs with H2 station permitting experience were interviewed. Case studies of permit hydrogen fuelling station permit applications were then complied to document both the perspectives of the applicant and the AHJ and the often iterative and collaborative nature of permitting.
The current permitting time for Liquid Hydrogen (LH2) stations can range from 9 to 18 months in the California. Five out of the six LH2 stations applications required Alternative Means & Methods (AM&Ms) proposals and deviations from the prescriptive requirements of the Code were granted. Furthermore AHJs often requested additional documents and studies specific to application parameters in addition to NFPA 2 requirements.
The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances
Jan 2022
Publication
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply e.g. as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system burner design and other boundary conditions these changes may cause higher combustion temperatures and laminar combustion velocities while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas these effects may cause risk of flashback reduced operational safety material deterioration higher nitrogen oxides emissions (NOx) and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
Comparison of Regulations Codes and Standards for Hydrogen Refueling Stations in Japan and France
Sep 2019
Publication
The states of Regulations Codes and Standards (RCS) of hydrogen refueling stations (HRSs) in Japan and France are compared and specified items to understand correspondence and differences among each RCSs for realizing harmonization in RCS. Japan has been trying to reform its RCSs to reduce HRS installation and operation costs as a governmental target. Specific crucial regulatory items such as safety distances mitigation means materials for hydrogen storage and certification of anti-explosion proof equipments are compared in order to identify the origins of the current obstacles for disseminating HRS.
Site Selection Methodology for the Wind-powered Hydrogen Refueling Station Based on AHP-GIS in Adrar, Algeria
May 2019
Publication
This paper deals with site selection problems for hydrogen production plants and aims to propose a structural procedure for determining the most feasible sites. The study area is Adrar province Algeria which has a promising wind potential. The methodology is mainly composed of two stages: the first stage is to evaluate and select the best locations for wind-powered hydrogen production using GIS and MCDM technique. the AHP is applied to weigh the criteria and compute a LSI to evaluate potential sites and the second stage is applying different filtration constraints to select the suitable petrol stations for such hydrogen refuelling station modification. The result map showed that the entire Adrar province is almost suitable for wind-powered hydrogen production with varying suitability index. The LSI model groups sites into three categories: High suitable areas Medium suitable areas and Low suitable. As a result 2.95 % (12808.97 km2) of the study area has high suitability 54.59 % (236320.16 km2) has medium suitability 1.12 %(4842.94 km2) has low suitability and 41.34 % (178950.35 km2) of the study area is not suitable for wind hydrogen production. By applying the constraints about 4 stations are suitable for wind-powered hydrogen refuelling system retrofitting in Adrar province.
Observation of the Hydrogen Dispersion by Using Raman Scattering Measurement and Increase of Measurable Distance
Sep 2017
Publication
Preparing for the arrival of the hydrogen society it is necessary to develop suitable sensors to use hydrogen safely. There are many methods to know the hydrogen concentration by using conventional sensors but it is difficult to know the behavior of hydrogen gas from long distance. This study measured hydrogen dispersion by using Raman scattering light. Generally some delays occur when using conventional sensors but there are almost no delays by using the new Raman sensor. In the experiments 6mm & 1mm diameter holes are used as a spout nozzle to change initial velocities. To ensure the result a special sheets are used which turns transparent when it detected hydrogen and visualized the hydrogen behaviour. As a result the behaviour of the hydrogen gas in the small container was observed. In addition measurable distance is increased by the improvement of the device.
Disrupting the UK energy system: Causes, Impacts and Policy Implications
Jun 2019
Publication
With government legislating for net-zero by 2050 what does this mean for UK energy markets and business models?<br/>Getting to net-zero will require economy-wide changes that extend well beyond the energy system leading to rapid and unprecedented change in all aspects of society.<br/>This report shines a light on the level of disruption that could be required by some sectors to meet net-zero targets. With many businesses making strong commitments to a net-zero carbon future the report highlights the stark future facing specific sectors. Some will need to make fundamental change to their business models and operating practices whilst others could be required to phase out core assets. Government may need to play a role in purposefully disrupting specific sectors to ensure the move away from high carbon business models facilitating the transition a zero-carbon economy. Sector specific impactsThe in-depth analysis presented in ‘Disrupting the UK energy systems: causes impacts and policy implications’ focuses on four key areas of the economy highlighting how they may need to change to remain competitive and meet future carbon targets.<br/>Heat: All approaches for heat decarbonisation are potentially disruptive with policymakers favouring those that are less disruptive to consumers. Since it is unlikely that rapid deployment of low carbon heating will be driven by consumers or the energy industry significant policy and governance interventions will be needed to drive the sustainable heat transformation.<br/>Transport: Following the ‘Road to Zero’ pathway for road transport is unlikely to be disruptive but it is not enough to meet our climate change targets. The stricter targets for phasing out conventional vehicles that will be required will lead to some disruption. Vehicle manufacturers the maintenance and repair sector and the Treasury may all feel the strain.<br/>Electricity: Strategies of the Big 6 energy companies have changed considerably in recent years with varying degrees of disruption to their traditional business model. It remains to be seen whether they will be able to continue to adapt to rapid change – or be overtaken by new entrants.<br/>Construction: To deliver low-carbon building performance will require disruptive changes to the way the construction sector operates. With new-build accounting for less than 1% of the total stock major reductions in energy demand will need to come through retrofit of existing buildings.<br/>The report identifies how policy makers plan for disruptions to existing systems. With the right tools and with a flexible and adaptive approach to policy implementation decision makers can better respond to unexpected consequences and ensure delivery of key policy objectives.
Compliance Measurements of Fuel Cell Electric Vehicle Exhaust
Sep 2019
Publication
The NREL Sensor Laboratory has been developing an analyzer that can verify compliance to the international United Nations Global Technical Regulation number 13 (GTR 13--Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) prescriptive requirements pertaining to allowable hydrogen levels in the exhaust of fuel cell electric vehicles (FCEV) [1]. GTR 13 prescribes that the FCEV exhaust shall remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 as verified with an analyzer with a response time (t90) of 300 ms or faster. GTR 13 has been implemented and is to serve as the basis for national regulations pertaining to hydrogen powered vehicle safety in the United States Canada Japan and the European Union. In the U.S. vehicle safety is overseen by the Department of Transportation (DOT) through the Federal Motor Vehicle Safety Standards (FMVSS) and in Canada by Transport Canada through the Canadian Motor Vehicle Safety Standard (CMVSS). The NREL FCEV exhaust analyzer is based upon a low-cost commercial hydrogen sensor with a response time (t90) of less than 250 ms. A prototype analyzer and gas probe assembly have been constructed and tested that can interface to the gas sampling system used by Environment and Climate Change Canada’s (ECCC) Emission Research and Measurement Section (ERMS) for the exhaust gas analysis. Through a partnership with Transport Canada ECCC will analyze the hydrogen level in the exhaust of a commercial FCEV. ECCC will use the NREL FCEV Exhaust Gas analyzer to perform these measurements. The analyzer was demonstrated on a FCEV operating under simulated road conditions using a chassis dynamometer at a private facility.
Continuous Hydrogen Regeneration Through the Oxygen Vacancy Control of Metal Oxides Using Microwave Irradiation
Nov 2018
Publication
The amount of hydrogen gas generated from metal oxide materials based on a thermochemical water-splitting method gradually reduces as the surface of the metal oxide oxidizes during the hydrogen generation process. To regenerate hydrogen the oxygen reduction process of a metal oxide at high temperatures (1000–2500 °C) is generally required. In this study to overcome the problem of an energy efficiency imbalance in which the required energy of the oxygen reduction process for hydrogen regeneration is higher than the generated hydrogen energy we investigated the possibility of the oxygen reduction of a metal oxide with a low energy using microwave irradiation. For this purpose a macroporous nickel-oxide structure was used as a metal oxide catalyst to generate hydrogen gas and the oxidized surface of the macroporous nickel-oxide structure could be reduced by microwave irradiation. Through this oxidation reduction process ∼750 μmol g−1 of hydrogen gas could be continuously regenerated. In this way it is expected that oxygen-enriched metal oxide materials can be efficiently reduced by microwave irradiation with a low power consumption of <∼4% compared to conventional high-temperature heat treatment and thus can be used for efficient hydrogen generation and regeneration processes in the future.
Techno-economic Analysis of In-situ Production by Electrolysis, Biomass Gasification and Delivery Systems for Hydrogen Refuelling Stations: Rome Case Study
Oct 2018
Publication
Starting from the Rome Hydrogen Refuelling Station demand of 65 kg/day techno-economics of production systems and balance of plant for small scale stations have been analysed. A sensitivity analysis has been done on Levelised Cost of Hydrogen (LCOH) in the range of 0 to 400 kg/day varying capacity factor and availability hours or travel distance for alkaline electrolysers biomass gasification and hydrogen delivery. As expected minimum LCOH for electrolyser and gasifier is found at 400 kg/day and 24 h/day equal to 12.71 €/kg and 5.99 €/kg however for operating hours over 12 and 10 h/day the differential cost reaches a plateau (below 5%) for electrolyser and gasifier respectively. For the Rome station design 160 kWe of electrolysers 24 h/day and 100 kWth gasifier at 8 h/day LCOH (11.85 €/kg) was calculated considering the modification of the cost structure due to the existing equipment which is convenient respect the use of a single technology except for 24 h/day gasification.
Hydrogen - Decarbonising Heat
Feb 2020
Publication
<br/>Our industry is beginning its journey on the transition to providing the world with sufficient sustainable affordable and low emission energy.<br/><br/>Decarbonisation is now a key priority. Steps range from reducing emissions from traditional oil and gas operations to investing in renewable energy and supplementing natural gas supplies with greener gasses such as hydrogen.<br/><br/>This paper looks at the role hydrogen could play in decarbonisation.
Annual Science Review 2019
Mar 2019
Publication
Having a robust evidence base enables us to tackle real issues causing pain and suffering in the workplace. Critically it enables us to better understand developing issues and ways of working to ensure that we support innovation rather than stifle it through lack of knowledge. For example the work on the use of 3D printers in schools demonstrates HSE’s bility to engage and understand the risks to encourage safe innovation in a developing area (see p47).<br/>Other examples in this report show just a selection of the excellent work carried out by our staff often collaborating with others which contributes to improving how we regulate health and safety risks proportionately and effectively.<br/>One of HSEs key priorities is to prevent future cases of occupational lung disease by improving the management and control of hazardous substances. The case study on measuring Respirable Crystalline Silica exposure contributes to this and to recognise developing and future issues such as the work on diacetyl in the coffee industry (see p24 and p39). This type of scientific investigation gives our regulators good trusted information enabling critical decisions on the actions needed to protect workers.<br/>The case study on publishing new guidance on the use of Metalworking Fluids (MWF) demonstrates the important contribution of collaborative science to improving regulation. If used inappropriately exposure to MWF mist can cause serious long-term lung disease and it was recognised that users needed help to control this risk. HSE scientists and regulators worked with industry stakeholders to produce new free guidance which reflects changes in scientific understanding in a practical easy to use guide. As well as enabling users to better manage the risks and as a bonus likely save money it has assisted regulation by providing clear benchmarks for all to judge control against. An excellent example of science contributing to controlling serious health risks (see p22).<br/>These case studies are excellent examples of how science contributes to reducing risk. Hopefully they will inspire you to think about how risk in your workplace could be improved and where further work might be needed.
The Clean Growth Strategy: Leading the Way to a Low Carbon Future
Oct 2017
Publication
Seizing the clean growth opportunity. The move to cleaner economic growth is one of the greatest industrial opportunities of our time. This Strategy will ensure Britain is ready to seize that opportunity. Our modern Industrial Strategy is about increasing the earning power of people in every part of the country. We need to do that while not just protecting but improving the environment on which our economic success depends. In short we need higher growth with lower carbon emissions. This approach is at the heart of our Strategy for clean growth. The opportunity for people and business across the country is huge. The low carbon economy could grow 11 per cent per year between 2015 and 2030 four times faster than the projected growth of the economy as a whole. This is spread across a large number of sectors: from low cost low carbon power generators to more efficient farms; from innovators creating better batteries to the factories putting them in less polluting cars; from builders improving our homes so they are cheaper to run to helping businesses become more productive. This growth will not just be seen in the UK. Following the success of the Paris Agreement where Britain played such an important role in securing the landmark deal the transition to a global low carbon economy is gathering momentum. We want the UK to capture every economic opportunity it can from this global shift in technologies and services.<br/>Our approach to clean growth is an important element of our modern Industrial Strategy: building on the UK’s strengths; improving productivity across the country; and ensuring we are the best place for innovators and new businesses to start up and grow. A good example of this is offshore wind where costs have halved in just a few years. A combination of sustained commitment – across different Governments – and targeted public sector innovation support harnessing the expertise of UK engineers working in offshore conditions and private sector ingenuity has created the conditions for a new industry to flourish while cutting emissions. We need to replicate this success in sectors across our economy. This Strategy delivers on the challenge that Britain embraced when Parliament passed the Climate Change Act. If we get it right we will not just deliver reduced emissions but also cleaner air lower energy bills for households and businesses an enhanced natural environment good jobs and industrial opportunity. It is an opportunity we will seize.
Ignitability and Mixing of Underexpanded Hydrogen Jets
Sep 2011
Publication
Reliable methods are needed to predict ignition boundaries that result from compressed hydrogen bulk storage leaks without complex modelling. To support the development of these methods a new high-pressure stagnation chamber has been integrated into Sandia National Laboratories’ Turbulent Combustion Laboratory so that relevant compressed gas release scenarios can be replicated. For the present study a jet with a 10:1 pressure ratio issuing from a small 0.75 mm radius nozzle has been examined. Jet exit shock structure was imaged by Schlieren photography while quantitative Planar Laser Rayleigh Scatter imaging was used to measure instantaneous hydrogen mole fractions downstream of the Mach disk. Measured concentration statistics and ignitable boundary predictions compared favorably to analytic reconstructions of downstream jet dispersion behaviour. Model results were produced from subsonic jet dispersion models and by invoking self-similarity jet scaling arguments with length scaling by experimentally measured effective source radii. Similar far field reconstructions that relied on various notional nozzle models to account for complex jet exit shock phenomena failed to satisfactorily predict the experimental findings. These results indicate further notional nozzle refinement is needed to improve the prediction fidelity. Moreover further investigation is required to understand the effect of different pressure ratios on measured virtual origins used in the jet dispersion model.
Data for the Evaluation of Hydrogen Risks Onboard Vehicles: Outcomes from the French Project Drive
Sep 2011
Publication
From 2006 to 2009 INERIS alongside with CEA PSA PEUGEOT CITROËN and IRPHE were involved in a project called DRIVE. Its objective was to provide data on the whole reaction chain leading to a hydrogen hazard onboard a vehicle. Out of the three types of leakage identified by the consortium (permeation chronic and accidental) the chronic leakage taking place within the engine was judged to be more problematic since it can feature a high probability of occurrence and a significant release flow rate (up to 100 NL/min). Ignition tests carried out within a real and dummy engine compartment showed that pressure effects due to an explosion will be relatively modest provided that the averaged hydrogen concentration in this area is limited to 10% vol/vol which would correspond to a maximum release flow of 10 NL/min. This maximum concentration could be used as a threshold value for detection or as a target while designing the vehicle. Jet fire experiments were also conducted in the frame of the DRIVE project. It was found that pressure-relief devices (PRDs) might be unsuited to protect humans from the explosion of a tank caused by a bonfire. Other solutions are proposed in this paper.
Hypothetical Accident Scenario Modelling for Condensed Hydrogen Storage Materials
Sep 2011
Publication
Hydrogen is seen as an ideal energy carrier for stationary and mobile applications. However the use of high energy density condensed hydrogen storage materials such as NH3BH3 comes with risks associated with their high reactivity with water exposure and their decomposition products reactivity in air. To predict their behaviour under these circumstances idealized finite element models of hypothetical accident scenarios have been developed. Empirical thermodynamic calculations based on precise thermal gravimetric analysis (TGA) and calorimetric experiments have been performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure.
Hydrogen Emergency Response Training for First Responders
Sep 2011
Publication
The U.S. Department of Energy supports the implementation of hydrogen fuel cell technologies by providing hydrogen safety and emergency response training to first responders. A collaboration was formed to develop and deliver a one-day course that uses a mobile fuel cell vehicle (FCV) burn prop designed and built by Kidde Fire Trainers. This paper describes the development of the training curriculum including the design and operation of the FCV prop; describes the successful delivery of this course to over 300 participants at three training centers in California; and discusses feedback and observations received on the course. Photographs and video clips of the training sessions will be presented.
Low Energy Hydrogen Sensor
Sep 2011
Publication
A new silicon-based hydrogen sensor for measurements at high concentrations near the lower flammable limit of hydrogen (40000 ppm) is presented. Due to operation at room temperature the power consumption of the sensor is smaller than that of other sensors on the market by several orders magnitude. Further development of the sensor system could lead to battery powered or even energy-independent operation. As sensor fabrication is based on semiconductor technology low-cost production can be achieved for the mass market. The sensor investigated showed good long-term stability combined with a fast response on the basis of cyclic thermal activations. This was demonstrated by a stress test that simulated the activation and measurement cycles experienced by the sensor in one year. Finite element method was used to further reduce the power consumption of the thermal activation. This resulted in an average power consumption of 2 × 10−6 W for the sensor activation.
The Analysis of Fire Test for the High Pressure Composite Cylinder
Sep 2011
Publication
A large number of natural gas vehicles (NGV) with composite cylinders run in the world. In order to store hydrogen using the composite cylinder has also reached commercialization for the hydrogen fuel cell vehicle (FCV) which is been developing on ECO Energy. Under these increasing circumstances the most important issue is that makes sure of safety of the hydrogen composite cylinder. In case of the composite cylinder a standards to verify the safety of cylinders obey several country's standards. For NGV ISO 11439 has adopted as international standards but for FCV it has been still developing and there is only ISO/TS 15869 as international technical standards. In contents of international standards the fire test is the weakest part. The fire test is that the pressure relief valves (PRD) normally operate or not in order to prevent cylinders bursting when a vehicle is covered by fire. However with present standards there is no method to check the problem from vehicles in local flame. This study includes fire test results that have been performed to establish the fire-test standards.
A New Technology for Hydrogen Safety: Glass Structures as a Storage System
Sep 2011
Publication
The storage of hydrogen poses inherent weight volume and safety obstacles. An innovative technology which allows for the storage of hydrogen in thin sealed glass capillaries ensures the safe infusion storage and controlled release of hydrogen gas under pressures up to 100 MPa. Glass is a non-flammable material which also guarantees high burst pressures. The pressure resistance of single and multiple capillaries has been determined for different glass materials. Borosilicate capillaries have been proven to have the highest pressure resistance and have therefore been selected for further series of advanced testing. The innovative storage system is finally composed of a variable number of modules. As such in the case of the release of hydrogen this modular arrangement allows potential hazards to be reduced to a minimum. Further advantage of a modular system is the arrangement of single modules in every shape and volume dependent on the final application. Therefore the typical locations of storage systems e.g. the rear of cars can be modified or shifted to places of higher safety and not directly involved in crashes. The various methods of refilling and releasing capillaries with compressed hydrogen the increase of burst pressures through pre-treatment as well as the theoretical analysis and experimental results of the resistance of glass capillaries will further be discussed in detail.
The Sixth Carbon Budget: The UK's Path to Net Zero
Dec 2020
Publication
The Sixth Carbon Budget report is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero advice. In support of the advice in this report we have also produced:
- A Methodology Report setting out the evidence and methodology behind the scenarios.
- A Policy Report setting out the changes to policy that could drive the changes necessary particularly over the 2020s.
- All the charts and data behind the report as well as a separate dataset for the Sixth Carbon Budget scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
Hydrogen Effects on X80 Pipeline Steel Under High-pressure Natural Gas & Hydrogen Mixtures
Oct 2015
Publication
Blending hydrogen into existing natural gas pipelines has been proposed as a means of increasing the output of renewable energy systems such as large wind farms. X80 pipeline steel is commonly used for transporting natural gas and such steel is subjected to concurrent hydrogen invasion with mechanical loading while being exposed to hydrogen containing environments directly resulting in hydrogen embrittlement (HE). In accordance with American Society for Testing and Materials (ASTM) standards the mechanical properties of X80 pipeline steel have been tested in natural gas/hydrogen mixtures with 0 5.0 10.0 20.0 and 50.0vol% hydrogen at the pressure of 12 MPa. Results indicate that X80 pipeline steel is susceptible to hydrogen-induced embrittlement in natural gas/hydrogen mixtures and the HE susceptibility increases with the hydrogen partial pressure. Additionally the HE susceptibility depends on the textured microstructure caused by hot rolling especially for the notch specimen. The design calculation by the measured fatigue data reveals that the fatigue life of the X80 steel pipeline is dramatically degraded by the added hydrogen.
Government Strategy on Hydrogen - The Netherlands
Apr 2020
Publication
Low-carbon gases are indispensable to any energy system that is reliable clean affordable safe and is suited to spatial integration and zero-carbon hydrogen is a crucial link in that chain1. The most common element in the universe seems to have a highly bonding effect in the Netherlands – particularly as a result of the unique starting position of our country. This is made clear in the agreements of the National Climate Agreement which includes an ambitious target for hydrogen supported by a large and broad group of stakeholders. Industrial clusters and ports regard hydrogen as an indispensable part of their future and sustainability strategy. For the transport sector hydrogen (in combination with fuel cells) is crucial to achieving zero emissions transport. The agricultural sector has identified opportunities for the production of hydrogen and for its use. Cities regions and provinces are keen to get started on implementing hydrogen.<br/>The government embraces these targets and recognises the power of the framework for action demonstrated by so many parties. The focus on clean hydrogen in the Netherlands will lead to the creation of new jobs improvements to air quality and moreover is crucial to the energy transition.
Hydrogen Flames in Tubes- Critical Run-up Distances
Sep 2007
Publication
The hazard associated with flame acceleration to supersonic speeds in hydrogen mixtures is discussed. A set of approximate models for evaluation of the run-up distances to supersonic flames in relatively smooth tubes and tubes with obstacles is presented. The model for smooth tubes is based on general relationships between the flame area turbulent burning velocity and the flame speed combined with an approximate description for the boundary layer thickness ahead of an accelerated flame. The unknown constants of the model are evaluated using experimental data. This model is then supplemented with the model for the minimum run-up distance for FA in tubes with obstacles developed earlier. On the basis of these two models solutions for the determination of the critical runup distances for FA and deflagration to detonation transition in tubes and channels for various hydrogen mixtures initial temperature and pressure tube size and tube roughness are presented.
The Structure and Flame Propagation Regimes in Turbulent Hydrogen Jets
Sep 2009
Publication
Experiments on flame propagation regimes in a turbulent hydrogen jet with velocity and hydrogen concentration gradients have been performed at the FZK hydrogen test site HYKA. Horizontal stationary hydrogen jets released at normal and cryogenic temperatures of 290K and 80 and 35K with different nozzle diameters and mass flow rates in the range from 0.3 to 6.5 g/s have been investigated. Sampling probe method and laser PIV technique have been used to evaluate distribution of hydrogen concentration and flow velocity along and across the jet axis. High-speed photography (1000 fps) combined with a Background Oriented Schlieren (BOS) system was used for the visual observation of the turbulent flame propagation. In order to investigate different flame propagation regimes the ignition position was changed along the jet axis. It was found that the maximum flame velocity and pressure loads can only occur if the hydrogen concentration at the ignition point exceeds 11% of hydrogen in air. In this case the flame propagates in both directions up- and downstream the jet flow whereas in the opposite case the flame propagates only downstream. Such a behavior is consistent with previous experiments according to that the flame is able to accelerate effectively only if the expansion rate σ of the H2-air mixture is higher than a critical value σ* = 3.75 (like for the 11% hydrogen-air mixture). The measured data allow conservative estimates of the safety distance and risk assessment for realistic hydrogen leaks.
Ignition of Hydrogen Jet Fires from High Pressure Storage
Sep 2013
Publication
Highly transient jets from hydrogen high pressure tanks were investigated up to 30 MPa. These hydrogen jets might self-initiate when released from small orifices of high pressure storage facilities. The related effects were observed by high speed video technics including time resolved spectroscopy. Ignition flame head jet velocity flame contours pressure wave propagation reacting species and temperatures were evaluated. The evaluation used video cross correlation method BOS brightness subtraction and 1 dimensional image contraction to obtain traces of all movements. On burst of the rupture disc the combustion of the jet starts close to the nozzle on the outer shell of it at the boundary layer to the surrounding air. It propagates with a deceleration approximated by a drag force of constant value which is obtained by analysing the head velocity. The burning at the outer shell develops to an explosion converting a nearly spherical volume at the jet head the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated on an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The results are compared to thermodynamic calculations and radiation measurements. The combustion process is composed of a shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume.
Analysis of the Physicochemical, Mechanical, and Electrochemical Parameters and Their Impact on the Internal and External SCC of Carbon Steel Pipelines
Dec 2020
Publication
The review presented herein is regarding the stress corrosion cracking (SCC) phenomena of carbon steel pipelines affected by the corrosive electrolytes that comes from external (E) and internal (I) environments as well as the susceptibility and tensile stress on the SCC. Some useful tools are presented including essential aspects for determining and describing the E-SCC and I-SCC in oil and gas pipelines. Therefore this study aims to present a comprehensive and critical review of a brief experimental summary and a comparison of physicochemical mechanical and electrochemical data affecting external and internal SCC in carbon steel pipelines exposed to corrosive media have been conducted. The SCC hydrogen-induced cracking (HIC) hydrogen embrittlement and sulfide stress cracking (SSC) are attributed to the pH and to hydrogen becoming more corrosive by combining external and internal sources promoting cracking such as sulfide compounds acidic soils acidic atmospheric compounds hydrochloric acid sulfuric acid sodium hydroxide organic acids (acetic acid mainly) bacteria induced corrosion cathodic polarization among others. SCC growth is a reaction between the microstructural chemical and mechanical effects and it depends on the external and internal environmental sources promoting unpredictable cracks and fractures. In some cases E-SCC could be initiated by hydrogen that comes from the over-voltage during the cathodic protection processes. I-SCC could be activated by over-operating pressure and temperature at flowing media during the production gathering storage and transportation of wet hydrocarbons through pipelines. The mechanical properties related to I-SCC were higher in comparison with those reviewed by E-SCC suggesting that pipelines suffer more susceptibility to I-SCC. When a pipeline is designed the internal fluid being transported (changes of environments) and the external environment concerning SCC should be considered. This review offers a good starting point for newcomers into the field it is written as a tutorial and covers a large number of basic standards in the area.
Hydrogen Safety, Training and Risk Assessment System
Sep 2007
Publication
The rapid evolution of information related to hydrogen safety is multidimensional ranging from developing codes and standards to CFD simulations and experimental studies of hydrogen releases to a variety of risk assessment approaches. This information needs to be transformed into system design risk decision-making and first responder tools for use by hydrogen community stakeholders. The Canadian Transportation Fuel Cell Alliance (CTFCA) has developed HySTARtm an interactive Hydrogen Safety Training And Risk System. The HySTARtm user interacts with a Web-based 3-D graphical user interface to input hydrogen system configurations. The system includes a Codes and Standards Expert System that identifies the applicable codes and standards in a number of national jurisdictions that apply to the facility and its components. A Siting Compliance and Planning Expert System assesses compliance with clearance distance requirements in these jurisdictions. Incorporating the results of other CTFCA projects HySTARtm identifies stand-out hydrogen release scenarios and their corresponding release condition that serves as input to built-in consequence and risk assessment programs that output a variety of risk assessment metrics. The latter include on- and off-site individual risk probability of loss of life and expected number of fatalities. These results are displayed on the graphical user interface used to set up the facility. These content and graphical tools are also used to educate regulatory approval and permitting officials and build a first-responder training guide.
Polymer Composites for Tribological Applications in Hydrogen Environment
Sep 2007
Publication
In the development of hydrogen technology special attention is paid to the technical problems of hydrogen storage. One possible way is cryogenic storage in liquid form. Generally cryo-technical machines need components with interacting surfaces in relative motion such as bearings seals or valves which are subjected to extreme conditions. Materials of such systems have to be resistant to friction-caused mechanical deformation at the surface low temperatures and hydrogen environment. Since materials failure can cause uncontrolled escape of hydrogen new material requirements are involved for these tribo-systems in particular regarding operability and reliability. In the past few years several projects dealing with the influence of hydrogen on the tribological properties of friction couples were conducted at the Federal Institute for Materials Research and Testing (BAM) Berlin. This paper reports some investigations carried out with polymer composites. Friction and wear were measured for continuous sliding and analyses of the worn surfaces were performed after the experiments. Tests were performed at room temperature in hydrogen as well as in liquid hydrogen.
Experimental and Numerical Investigation of Hydrogen Gas Auto-ignition
Sep 2007
Publication
This paper describes hydrogen self-ignition as a result of the formation of a shock wave in front of a high-pressure hydrogen gas propagating in the tube and the semi-confined space for which the numerical and experimental investigation was done. An increase in the temperature behind the shock wave leads to the ignition on the contact surface of the mixture of combustible gas with air. The required condition of combustible self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. Experimental technique was based on a high-pressure chamber inflating with hydrogen burst disk failure and pressurized hydrogen discharge into tube of round or rectangular cross section filled with air. A physicochemical model involving the gas dynamic transport of a viscous gas the detailed kinetics of hydrogen oxidation k-ω differential turbulence model and the heat exchange was used for calculations of the self-ignition of high-pressure hydrogen. The results of our experiments and model calculations show that self-ignition in the emitted jet takes place. The stable development of self-ignition naturally depends on the orifice size and the pressure in the vessel a decrease in which leads to the collapse of the ignition process. The critical conditions are obtained.
Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations
Sep 2011
Publication
In a near future with an increasing use of hydrogen as an energy vector gaseous hydrogen transport as well as high capacity storage may imply the use of high strength steel pipelines for economical reasons. However such materials are well known to be sensitive to hydrogen embrittlement (HE). For safety reasons it is thus necessary to improve and clarify the means of quantifying embrittlement. The present paper exposes the changes in mechanical properties of a grade API X80 steel through numerous mechanical tests i.e. tensile tests disk pressure test fracture toughness and fatigue crack growth measurements WOL tests performed either in neutral atmosphere or in high-pressure of hydrogen gas. The observed results are then discussed in front of safety considerations for the redaction of standards for the qualification of materials dedicating to hydrogen transport.
Risk Mitigation Strategies for Hydrogen Storage Materials
Sep 2011
Publication
Hydrogen is seen as an ideal energy carrier for stationary and mobile applications. However the use of high energy density materials such as hydrides comes with the drawback of risks associated to their high reactivity towards air and water exposure. We have developed novel strategies to mitigate these risks. These strategies were evaluated using standard UN tests and isothermal calorimetric measurements. Cycling experiments were conducted to assess the impact of the mitigants on the modified materials derived from 8LiH•3Mg(NH2)2 system. In some cases our results show an improvement in kinetics when compared to the unmodified material. Effective mitigants were also discovered for aluminium hydride (alane) and lithium borohydride completely inhibiting ignition.
Validation of CFD Calculations Against Ignited Impinging Jet Experiments
Sep 2007
Publication
Computational Fluid Dynamics (CFD) tools have been increasingly employed for carrying out quantitative risk assessment (QRA) calculations in the process industry. However these tools must be validated against representative experimental data in order to have a real predictive capability. As any typical accident scenario is quite complex it is important that the CFD tool is able to predict combined release and ignition scenarios reasonably well. However this kind of validation is not performed frequently primarily due to absence of good quality data. For that reason the recent experiments performed by FZK under the HySafe internal project InsHyde (http://www.hysafe.org) are important. These involved vertically upwards hydrogen releases with different release rates and velocities impinging on a plate in two different geometrical configurations. The dispersed cloud was subsequently ignited and pressures recorded. These experiments are important not only for corroborating the underlying physics of any large-scale safety study but also for validating the important assumptions used in QRA. Blind CFD simulations of the release and ignition scenarios were carried out prior to the experiments to predict the results (and possibly assist in planning) of the experiments. The simulated dispersion results are found to correlate reasonably well with experimental data in terms of the gas concentrations. The overpressures subsequent to ignition obtained in the blind predictions could not be compared directly with the experiments as the ignition points were somewhat different but the pressure levels were found to be similar. Simulations carried out after the experiments with the same ignition position as those in the experiments compared reasonably well with the measurements in terms of the pressure level. This agreement points to the ability of the CFD tool FLACS to model such complex scenarios well. Nevertheless the experimental set-up can be considered to be small-scale and less severe than many accidents and real-life situations. Future large-scale data of this type will be valuable to confirm ability to predict large-scale accident scenarios.
The International Energy Agency Hydrogen Implementing Agreement Task on Hydrogen Safety
Sep 2009
Publication
The International Energy Agency’s Hydrogen Implementing Agreement (www.ieahia.org) initiated a collaborative task on hydrogen safety in 1994 and this has proved to an effective method of pooling expert knowledge to address the most significant problems associated with the barriers to the commercial adoption of hydrogen energy. Presently there are approximately 10 countries participating in the task and it has proven a valuable method of efficiently combining efforts and resources. The task is now in the fifth year of a six year term and will end in October 2010. This paper will describe the scope of the task the progress made and plans for future work. There are also a number of other tasks underway and this paper will give a brief summary of those activities. Because of the nature of the International Energy Agency which is an international agreement between governments it is intended that such collaboration will complement other efforts to help build the technology base around which codes and standards can be developed. This paper describes the specific scope and work plan for the collaboration that has been developed to date.
Optimization of a Solar Hydrogen Storage System: Safety Considerations
Sep 2007
Publication
Hydrogen has been extensively used in many industrial applications for more than 100 years including production storage transport delivery and final use. Nevertheless the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarised with hydrogen technologies and properties.<br/>The road to the hydrogen economy passes by the development of safe practices in the production storage distribution and use of hydrogen. These issues are essential for hydrogen insurability. We have to bear in mind that a catastrophic failure in any hydrogen project could damage the insurance public perception of hydrogen technologies at this early step of development of hydrogen infrastructures.<br/>Safety is a key issue for the development of hydrogen economy and a great international effort is being done by different stakeholders for the development of suitable codes and standards concerning safety for hydrogen technologies [1 2]. Additionally to codes and standards different studies have been done regarding safety aspects of particular hydrogen energy projects during the last years [3 4]. Most of such have been focused on hydrogen production and storage in large facilities transport delivery in hydrogen refuelling stations and utilization mainly on fuel cells for mobile and stationary applications. In comparison safety considerations for hydrogen storage in small or medium scale facilities as usual in hydrogen production plants from renewable energies have received relatively less attention.<br/>After a brief introduction to risk assessment for hydrogen facilities this paper reports an example of risk assessment of a small solar hydrogen storage system applied to the INTA Solar Hydrogen Production and Storage facility as particular case and considers a top level Preliminary Failure Modes and Effects Analysis (FMEA) for the identification of hazard associated to the specific characteristics of the facility.
Biomass Potential for Producing Power via Green Hydrogen
Dec 2021
Publication
Hydrogen (H2 ) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein we explored and optimized the main variables that affect this power production. The process includes biomass fermentation bioethanol purification H2 production via ESR syngas cleaning by a CO-removal reactor and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production process efficiency and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17% when ESR temperature is 700 ◦C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2 -economy.
Risk Informed Separation Distances For Hydrogen Refuelling Stations
Sep 2011
Publication
The lay-out requirements developed for hydrogen systems operated in industrial environment are not suitable for the operating conditions specific to hydrogen refuelling stations (service pressure of up to 95 MPa facility for public use). A risk informed rationale has been developed to define and substantiate separation distance requirements in ISO 20100 Gaseous hydrogen – refuelling stations [1]. In this approach priority is given to preventing escalation of small incidents into majors ones with a focus on critical exposures such as places of occupancy (fuelling station retail shop) while optimizing use of the available space from a risk perspective a key objective for being able to retrofit hydrogen refuelling in existing stations.
Industrial Decarbonisation Strategy
Mar 2021
Publication
The UK is a world leader in the fight against climate change. In 2019 we became the first major economy in the world to pass laws to end its contribution to global warming by 2050. Reaching this target will require extensive systematic change across all sectors including industry. We must get this change right as the products made by industry are vital to life in the UK and the sector supports local economies across the country.<br/><br/>This strategy covers the full range of UK industry sectors: metals and minerals chemicals food and drink paper and pulp ceramics glass oil refineries and less energy-intensive manufacturing. These businesses account for around one sixth of UK emissions and transformation of their manufacturing processes is key if we are to meet our emissions targets over the coming decades (BEIS Final UK greenhouse gas emissions from national statistics: 1990 to 2018: Supplementary tables 2020).<br/><br/>The aim of this strategy is to show how the UK can have a thriving industrial sector aligned with the net zero target without pushing emissions and business abroad and how government will act to support this. An indicative roadmap to net zero for UK industry based on the content in this strategy is set out at the end of this summary. This strategy is part of a series of publications from government which combined show how the net zero transition will take place across the whole UK economy.
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The project is funded by the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671461. The HySEA project focuses on vented hydrogen deflagrations in containers and smaller enclosures with internal congestion representative of industrial applications. The structural response modelling involves one-way coupling of pressure loads taken either directly from experiments or from simulations with the computational fluid dynamics (CFD) tool FLACS to the non-linear finite element (FE) IMPETUS Afea Solver. The performance of the FE model is evaluated for a range of experiments from the HySEA project in both small-scale enclosures and 20-foot ISO containers. The paper investigates the sensitivity of results from the FE model to the specific properties of the geometry model. The performance of FLACS is evaluated for a selected set of experiments from the HySEA project. Furthermore the paper discusses uncertainties associated with the combined modelling approach.
Kinetic Modeling and Quantum Yields: Hydrogen Production via Pd‐TiO2 Photocatalytic Water Splitting under Near‐UV and Visible Light
Jan 2022
Publication
A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to produce hydrogen (H2) via water splitting under both near‐UV and visible light. Experiments were carried out in the Photo‐CREC Water‐II Reactor (PCW‐II) using a 0.25 wt% Pd‐TiO2 photocatalyst initial pH = 4 and 2.0 v/v% ethanol as an organic scavenger. After 6 h of near‐UV irradiation this photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore after 1 h of near‐UV photoreduc‐ tion followed by 5 h of visible light the 0.25 wt% Pd‐TiO2 photocatalyst yielded 5.25 cm3 STP of H2. The same photocatalyst photoreduced for 24 h under near‐UV and subsequently exposed to 5 h of visible light yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the production of hydrogen and by‐products such as methane ethane ethylene acetaldehyde carbon monoxide carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an “in series‐parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate equations were validated using statistical analysis for the experimental data and calculated kinetic parameters. Furthermore Quantum yields (QYୌ%) based on the H produced were also established at promising levels: (a) 34.8% under near‐UV light and 1.00 g L−1 photocatalyst concen‐ tration; (b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near‐UV.
Application of the Validated 3D Multiphase-multicomponent CFD Model to an Accidental Liquid Hydrogen Release Scenario in a Liquefication Plant
Sep 2017
Publication
Hydrogen-air mixtures are flammable in a wide range of compositions and have a low ignition energy compared to gaseous hydrocarbons. Due to its low density high buoyancy and diffusivity the mixing is strongly enhanced which supports distribution into large volumes if accidentally released. Economically valuable discontinuous transportation over large distances is only expected using liquid hydrogen (LH2). Releases of LH2 at its low temperature (20.3 K at 0.1 MPa) have additional hazards besides the combustible character of gaseous hydrogen (GH2). Hazard assessment requires simulation tools capable of calculating the pool spreading as well as the gas distribution for safety assessments of existing the future liquid hydrogen facilities. Evaluating possible risks the following process steps are useful:
- Possible accident release scenarios need to be identified for a given plant layout.
- Environmental boundary conditions such as wind conditions and humidity need to be identified and worst case scenarios have to be identified.
- A model approach based on this information which is capable of simulating LH2 releases vaporization rates and atmospheric dispersion of the gaseous hydrogen.
- Evaluate and verify safety distances identify new risks and/or extract certain design rules.
No more items...