- Home
- A-Z Publications
- Publications
Publications
Simulation of PEM Electrolyzer Power Management with Renewable Generation in Owerri, Nigeria
Jan 2025
Publication
Proton exchange membrane electrolyzers are an attractive technology for hydrogen production due to their high efficiency low maintenance cost and scalability. To receive these benefits however electrolyzers require high power reliability and have relatively high demand. Due to their intermittent nature integrating renewable energy sources like solar and wind has traditionally resulted in a supply too sporadic to consistently power a proton exchange membrane electrolyzer. This study develops an electrolyzer model operating with renewable energy sources at a highly instrumented university site. The simulation uses dynamic models of photovoltaic solar and wind systems to develop models capable of responding to changing climatic and seasonal conditions. The aim therefore is to observe the feasibility of operating a proton exchange membrane system fuel cell yearround at optimal efficiency. To address the problem of feasibility with dynamic renewable generation a case study demonstrates the proposed energy management system. A site with a river onsite is chosen to ensure sufficient wind resources. Aside from assessing the feasibility of pairing renewable generation with proton exchange membrane systems this project shows a reduction in the intermittency plaguing previous designs. Finally the study quantifies the performance and effectiveness of the PEM energy management system design. Overall this study highlights the potential of proton exchange membrane electrolysis as a critical technology for sustainable hydrogen production and the importance of modeling and simulation techniques in achieving its full potential.
Electrochemical Sensor for Hydrogen Leakage Detection at Room Temperature
Jan 2025
Publication
The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature combined with its lack of color taste and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor like sensing material sensing element and signal conditioning as well as the electronic protection and signaling module of the critical concentrations of H2. The sensing material consists of a catalyst type Vulcan XC72 40% Pt from FuelCellStore (Bryan TX USA). The sensing element is based on a membrane electrode assembly (MEA) system that includes a cathode electrode an ion-conducting membrane type Nafion 117 from FuelCellStore (Bryan TX USA). and an anode electrode mounted in a coin cell type CR2016 from Xiamen Tob New Energy Technology Co. Ltd (Xiamen City Fujian Province China). The electronic block for electrical signal conditioning which is delivered by the sensing element uses an INA111 from Burr-Brown by Texas Instruments Corporation (Dallas TX USA). instrumentation operational amplifier. The main characteristics of the electrochemical sensor for hydrogen leakage detection are operation at room temperature so it does not require a heater maximum amperometric response time of 1 s fast recovery time of maximum 1 s and extended range of hydrogen concentrations detection in a range of up to 20%.
The Effect of Carbon Taxonomy on Renewable Hydrogen Production: A Techno-economic and Environmental Assessment
Dec 2024
Publication
From navigating the rainbow of colours to the lack of consensus in establishing a common taxonomy the labelling and definition of green or renewable hydrogen presents a growing challenge. In this context carbon taxonomy is understood through five critical aspects: carbon intensity temporal and geographical correlation additionality of renewable energy generation and different system boundaries in Life Cycle Assessment (LCA). This study examines the effect of carbon taxonomy on the design and operation of Power-to-Gas (PtG) systems for renewable hydrogen production including the electricity supply portfolio via Power Purchase Agreements (PPA) and grid-connected electrolysis. To this end an optimisation model combining energy system modelling and LCA is developed and then applied to a case study in the Japanese context. The importance of the PPA portfolio in securing cheap and low-carbon electricity to produce hydrogen is addressed. To support this evaluation process an eco-efficiency metric is introduced and proved to be a comprehensive tool for evaluating renewable hydrogen production. Regarding carbon taxonomies the findings emphasize additionality as the key determinant factor followed by temporal correlation and the definition of carbon intensity thresholds. The application of a cradle-togate LCA boundary influenced the cabron intensity accounting playing an unexpected role on the design and optimal PtG dispatch strategy.
Assessing the Feasibility of a Green Hydrogen Economy in Selected African Regions with Composite Indicators
Jan 2025
Publication
This study offers a comprehensive analysis of the feasibility of green hydrogen economies in Western and Southern African regions focusing on the ECOWAS and SADC countries. Utilizing a novel approach based on composite indicators the research evaluates the potential readiness and overall feasibility of green hydrogen production and export across these regions. The study incorporates various factors including the technical potential of renewable energy sources water resource availability energy security and existing infrastructure for transport and export. Country-specific analyses reveal unique insights into the diverse potential of nations like South Africa Lesotho Ghana Nigeria Angola and Namibia each with its unique strengths and challenges in the context of green hydrogen. The research findings underscore the complexity of developing green hydrogen economies highlighting the need for nuanced region-specific approaches that consider technical socioeconomic geopolitical and environmental factors. The paper concludes that cooperation and integration between countries in the regions may be crucial for the success of a future green hydrogen economy
Bridging the Gap: Public Perception and Acceptance of Hydrogen Technology in the Philippines
Jan 2025
Publication
This study examines the effects of transitioning to hydrogen production in the National Capital Region (NCR) and Palawan Province Philippines focusing on technology environment and stakeholder impact. This research conducted through a July 2022 survey aimed to assess public awareness knowledge risk perception and acceptance of hydrogen and its environmentally friendly variant green hydrogen infrastructure. Disparities were found between urban NCR and rural Palawan with lower awareness in Palawan. Safety concerns were highlighted with NCR respondents generally considering hydrogen production safe while Palawan respondents had mixed feelings particularly regarding nuclear-based hydrogen generation. This report emphasizes the potential ecological advantages of hydrogen technology but highlights potential issues concerning water usage and land impacts. It suggests targeted public awareness campaigns robust safety assurance programs regional pilot projects and integrated environmental plans to facilitate the seamless integration of hydrogen technology into the Philippines’ energy portfolio. This collective effort aims to help the country meet climate action obligations foster sustainable development and enhance energy resilience.
Influence of Safety Culture on Safety Outcomes of a Hydrogen–CCS Plant
Jan 2025
Publication
: This article investigates how safety culture impacts the safety performance of blue hydrogen projects. Blue hydrogen refers to decarbonized hydrogen produced through natural gas reforming with carbon capture and storage (CCS) technology. It is crucial to decide on a suitable safety policy to avoid potential injuries financial losses and loss of public goodwill. The system dynamics approach is a suitable tool for studying the impact of factors controlling safety culture. This study examines the interactions between influencing factors and implications of various strategies using what-if analyses. The conventional risk and safety assessments fail to consider the interconnectedness between the technical system and its social envelope. After identifying the key factors influencing safety culture a system dynamics model will be developed to evaluate the impact of those factors on the safety performance of the facility. The emphasis on safety culture is directed by the necessity to prevent major disasters that could threaten a company’s survival as well as to prevent minor yet disruptive incidents that may occur during day-to-day operations. Enhanced focus on safety culture is essential for maintaining an organization’s long-term viability. H2-CCS is a complex socio-technical system comprising interconnected subsystems and sub-subsystems. This study focuses on the safety culture sub-subsystem illustrating how human factors within the system contribute to the occurrence of incidents. The findings from this research study can assist in creating effective strategies to improve the sustainability of the operation. By doing so strategies can be formulated that not only enhance the integrity and reliability of an installation as well as its availability within the energy networks but also contribute to earning a good reputation in the community that it serves.
Hydrogen Leakage Location Prediction in a Fuel Cell System of Skid-Mounted Hydrogen Refueling Stations
Jan 2025
Publication
Hydrogen safety is a critical issue during the construction and development of the hydrogen energy industry. Hydrogen refueling stations play a pivotal role in the hydrogen energy chain. In the event of an accidental hydrogen leak at a hydrogen refueling station the ability to quickly predict the leakage location is crucial for taking immediate and effective measures to prevent disastrous consequences. Therefore the development of precise and efficient technologies to predict leakage locations is vital for the safe and stable operation of hydrogen refueling stations. This paper studied the localization technology of high-risk leakage locations in the fuel cell system of a skid-mounted hydrogen refueling station. The hydrogen leakage and diffusion processes in the fuel cell system were predicted using CFD simulations and the hydrogen concentration data at various monitoring points were obtained. Then a multilayer feedforward neural network was developed to predict leakage locations using simulated concentration data as training samples. After multiple adjustments to the network structure and hyperparameters a final model with two hidden layers was selected. Each hidden layer consisted of 10 neurons. The hyperparameters included a learning rate of 0.0001 a batch size of 32 and 10-fold cross-validation. The Softmax classifier and Adam optimizer were used with a training set for 1500 epochs. The results show that the algorithm can predict leakage locations not included in the training set. The accuracy achieved by the model was 95%. This approach addresses the limitations of sensor detection in accurately locating leaks and mitigates the risks associated with manual inspections. This paper provides a feasible method for locating hydrogen leakage in hydrogen energy application scenarios.
Techno-economic and Environmental Assessment of Green Hydrogen Production via Biogas Reforming with Membrane-based CO2 Capture
Jan 2025
Publication
Reduction of the carbon dioxide emissions is a vital important environmental element in achieving the global climate neutrality. The integration of renewables and the Carbon Capture Utilization and Storage (CCUS) technologies is seen as an important pillar for overall decarbonization. This work presents several innovative concepts in which the biogas reforming process in integrated with pre- and post-combustion CO2 capture using membranes for green hydrogen production. The assessment evaluates the most relevant techno-economic and environmental performances for 100 MWth green hydrogen plant capacity. Several biogas reforming designs with and without CO2 capture capability were evaluated. In respect to the CO2 capture rate several pre- and postcombustion systems provided decarbonization yields between 55% up to 99%. The results show that the decarbonized membrane-based green hydrogen production shows attractive performances such as high energy efficiency (55–60%) reduced energy and cost penalties for CO2 capture (3.6–15.5 net efficiency points depending on the carbon capture rate) low specific CO2 emissions at system level (down to 2 kg/MWh green hydrogen) and overall negative carbon emission for whole biogas value chain (up to − 468 kg/MWh green hydrogen). This analysis clearly shows how the integration of renewables with CCUS technologies can deliver applications with negative CO2 emissions for climate neutrality.
HYDRIDE4MOBILITY: An EU Project on Hydrogen Powered Forklift using Metal Hydrides for Hydrogen Storage and H2 Compression
Jan 2025
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Ivan Tolj,
José Bellosta von Colbe,
Roman V. Denys,
Moegamat Wafeeq Davids,
S. Nyallang Nyamsi,
Dana Swanepoel,
V.V. Berezovets,
I.Yu. Zavaliy,
Suwarno Suwarno,
I.J. Puszkiel,
Julian Jepsen,
Inês Abreu Ferreira,
Claudio Pistidda,
Yuanyuan Shang,
Sivakumar Pasupathi and
Vladimir Linkov
The EU Horizon2020 RISE project 778307 “Hydrogen fuelled utility and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) worked on the commercialization of hydrogen powered forklifts using metal hydride (MH) based hydrogen stores. The project consortium joined forces of 9 academic and industrial partners from 4 countries. The work program included a) Development of the materials for hydrogen storage and compression; b) Theoretical modelling and optimisation of the materials performance and system integration; c) Advanced fibre reinforced composite cylinder systems for H2 storage and compression; d) System validation. Materials development was focused on i) Zr/Ti-based Laves type high entropy alloys; ii) Mg-rich composite materials; iii) REMNiSn intermetallics; iv) Mg based materials for the hydrolysis process; v) Cost-efficient alloys. For the optimized AB2±x alloys the Zr/Ti content was optimized at A = Zr78-88Ti12–22 while B=Ni10Mn5.83VFe. These alloys provided a) Low hysteresis of hydrogen absorption-desorption; b) Excellent kinetics of charge and discharge; c) Tailored thermodynamics; d) Long cycle life. Zr0.85Ti0.15TM2 alloy provided a reversible H storage and electrochemical capacity of 1.6 wt% H and 450 mAh/g. The tanks development targeted: i) High efficiency of heat and hydrogen exchange; ii) Reduction of the weight and increasing the working H2 pressure; iii) Modelling testing and optimizing the H2 stores with fast performance. The system for power generation was validated at the Implats plant in a fuel cell powered forklift with on-board MH hydrogen storage and on-site H2 refuelling. The outcome on the HYDRIDE4MOBILITY project (2017–2024) (http://hydride4mobility.fesb.unist. hr) was presented in 58 publications.
Mapping Local Green Hydrogen Cost-potentials by a Multidisciplinary Approach
Sep 2024
Publication
S. Ishmam,
Heidi Heinrichs,
C. Winkler,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendtf,
S. Brauner,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
V. Chiteculo,
Jane Olwoch,
Z. Getenga,
Jochen Linßen,
Detlef Stolten and
Wilhelm Kuckshinrichs
For fast-tracking climate change response green hydrogen is key for achieving greenhouse gas neutral energy systems. Especially Sub-Saharan Africa can benefit from it enabling an increased access to clean energy through utilizing its beneficial conditions for renewable energies. However developing green hydrogen strategies for Sub-Saharan Africa requires highly detailed and consistent information ranging from technical environmental economic and social dimensions which is currently lacking in literature. Therefore this paper provides a comprehensive novel approach embedding the required range of disciplines to analyze green hydrogen costpotentials in Sub-Saharan Africa. This approach stretches from a dedicated land eligibility based on local preferences a location specific renewable energy simulation locally derived sustainable groundwater limitations under climate change an optimization of local hydrogen energy systems and a socio-economic indicator-based impact analysis. The capability of the approach is shown for case study regions in Sub-Saharan Africa highlighting the need for a unified interdisciplinary approach.
Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production
Jun 2021
Publication
The Life Cycle Sustainability Assessment (LCSA) is a proven method for sustainability assessment. However the interpretation phase of an LCSA is challenging because many different single results are obtained. Additionally performing a Multi-Criteria Decision Analysis (MCDA) is one way—not only for LCSA—to gain clarity about how to interpret the results. One common form of MCDAs are outranking methods. For these type of methods it becomes of utmost importance to clarify when results become preferable. Thus thresholds are commonly used to prevent decisions based on results that are actually indifferent between the analyzed options. In this paper a new approach is presented to identify and quantify such thresholds for Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) based on uncertainty of Life Cycle Impact Assessment (LCIA) methods. Common thresholds and this new approach are discussed using a case study on finding a preferred location for sustainable industrial hydrogen production comparing three locations in European countries. The single LCSA results indicated different preferences for the environmental economic and social assessment. The application of PROMETHEE helped to find a clear solution. The comparison of the newly-specified thresholds based on LCIA uncertainty with default thresholds provided important insights of how to interpret the LCSA results regarding industrial hydrogen production.
Essentials of Hydrogen Storage and Power Systems for Green Shipping
Jan 2025
Publication
This paper establishes a framework of boundary conditions for implementing hydrogen energy systems in ships identifying what is feasible within maritime constraints. To support a comprehensive understanding of hydrogen systems onboard vessels an extensive technical review of hydrogen storage and power systems is provided covering the entire power value chain. Key aspects include equipment arrangement integration of fuel cell powertrain and presentation of the complete storage system in compliance with regulations. Engineering considerations such as material selection and insulation equipment specifications (e.g. pressure relief valves and hydrogen purity) and system configurations are analysed. Key findings reveal that fuel cells must achieve operational lifespans exceeding 46000 h to be viable for maritime applications. Additionally reliance solely on volumetric energy density underestimates storage needs necessitating provisions for cofferdams ullage space tank heels and hydrogen conditioning areas. Regulatory gaps are identified including inadequate safety provisions and inappropriate material guidelines.
Renewable Hydrogen Trade, in a Global Decarbonised Energy System
Jan 2025
Publication
Renewable hydrogen has emerged as a potentially critical energy carrier for achieving climate change mitigation goals. International trade could play a key role in meeting hydrogen demand in a globally decarbonized energy system. To better understand this role we have developed a modelling framework that incorporates hydrogen supply and demand curves and a market equilibrium model to maximize social welfare. Applying this framework we investigate two scenarios: an unrestricted trade scenario where hydrogen trade is allowed between all regions globally and a regional independence scenario where trade is restricted to be intra-regional only. Under the unrestricted trade scenario global hydrogen demand could reach 234 Mt by 2050 with 31.2% met through international trade. Key trade routes identified include North Africa to Europe the Middle East to Developing Asia and South America to Japan and South Korea. In the regional independence scenario most regions could meet their demand domestically except for Japan and South Korea due to self-insufficiency. Finally this analysis reveals that producers in North Africa and South America are likely to gain more economic value from international trade compared to other producing regions. The results offer key insights for policymakers and investors for shaping future hydrogen trade policies and investment decisions.
No more items...