Techno-economic and Environmental Assessment of Green Hydrogen Production via Biogas Reforming with Membrane-based CO2 Capture
Abstract
Reduction of the carbon dioxide emissions is a vital important environmental element in achieving the global climate neutrality. The integration of renewables and the Carbon Capture, Utilization and Storage (CCUS) technologies is seen as an important pillar for overall decarbonization. This work presents several innovative concepts in which the biogas reforming process in integrated with pre- and post-combustion CO2 capture using membranes for green hydrogen production. The assessment evaluates the most relevant techno-economic and environmental performances for 100 MWth green hydrogen plant capacity. Several biogas reforming designs with and without CO2 capture capability were evaluated. In respect to the CO2 capture rate, several pre- and postcombustion systems provided decarbonization yields between 55% up to 99%. The results show that the decarbonized membrane-based green hydrogen production shows attractive performances such as high energy efficiency (55–60%), reduced energy and cost penalties for CO2 capture (3.6–15.5 net efficiency points depending on the carbon capture rate), low specific CO2 emissions at system level (down to 2 kg/MWh green hydrogen) and overall negative carbon emission for whole biogas value chain (up to − 468 kg/MWh green hydrogen). This analysis clearly shows how the integration of renewables with CCUS technologies can deliver applications with negative CO2 emissions for climate neutrality.