- Home
- A-Z Publications
- Publications
Publications
Sustainable Integration of Green Hydrogen in Renewable Energy Systems for Residential and EV Applications
Jan 2024
Publication
The surge in interest surrounding renewable energy stems from concerns regarding pollution and the finite supply ofnonrenewable resources. Solar PV and wind hybrid renewable energy systems (HRES) are increasingly recognized as practicaland cost-effective solutions particularly in remote areas. However the intermittent nature of solar and wind power presents achallenge. To address this incorporating a hydrogen source into the system has been proposed. This study focuses onmodelling and sizing a hybrid energy system tailored for remote areas accommodating both home and electric vehicle loads.The simulation is conducted for Siliguri West Bengal India with the goal of optimizing productivity minimizing expensesand considering economic factors using HOMER Pro software. The integration of green hydrogen-based power generationwith photovoltaic and wind HRES emerges as an effective solution. Solar power in particular showcases promisingopportunities for the electrolysis process and HRES systems. The presented work facilitates the modelling of a green hydrogen-based green energy system taking into account capacity cost and emission constraints. Various case studies are conducted toenhance system efficiency and reduce the costs of energy (COE). In this paper three cases of grid-connected and three cases ofoff-grid or grid-disconnected systems are considered for highlighting the benefits of hydrogen energy incorporation in bothtypes of systems. This research contributes to sustainable energy solutions advancing a greener and more efficient energylandscape especially in addressing the recent development in load combinations of home and electric vehicle loads in bothgrid-connected as well as grid-disconnected system.
Efficient Solar-powered PEM Electrolysis for Sustainable Hydrogen Production: An Integrated Approach
Apr 2024
Publication
The coupling of photovoltaics (PVs) and PEM water electrolyzers (PEMWE) is a promising method for generating hydrogen from a renewable energy source. While direct coupling is feasible the variability of solar radiation presents challenges in efcient sizing. This study proposes an innovative energy management strategy that ensures a stable hydrogen production rate even with fuctuating solar irradiation. By integrating battery-assisted hydrogen production this approach allows for decentralized grid-independent renewable energy systems mitigating instability from PV intermittency. The system utilizes electrochemical storage to absorb excess energy during periods of low or very high irradiation which falls outside the electrolyzer’s optimal power input range. This stored energy then supports the PV system ensuring the electrolyzer operates near its nominal capacity and optimizing its lifetime. The system achieves an efciency of 7.78 to 8.81% at low current density region and 6.6% at high current density in converting solar energy into hydrogen.
Experimental Investigation of Hydrogen Enriched Natural Gas Combustion with a Focus on Nitrogen Oxide Formation on a Semi-industrial Scale
Mar 2024
Publication
Combustion of hydrogen-enriched natural gas is a valuable short-term strategy for reducing CO2 emissions from high temperature industrial heating. This paper presents several experiments on combustion characteristics and the formation of nitrogen oxides. The experiments included hydrogen contents up to 100% and fuel heat inputs up to 75 kW. Water-cooled lances were used to influence the furnace temperature. The analysis includes the distribution of furnace temperatures the composition of flue gas the cooling capacity of the lances under steady-state operating conditions and OH*-chemiluminescence imaging of the near burner region. The presented results demonstrate the dependence of furnace conditions and NOX formation on various factors such as different air inlet fluxes furnace temperature and fuel composition for constant heat inputs. Efficiency increased by up to 5.5% and significant changes in flame shaped along with a maximum increase in NOX emissions when comparing natural gas to hydrogen was measured at 167%.
Modeling of Hydrogen Dispersion, Jet Fires and Explosions Caused by Hydrogen Pipeline Leakage
Dec 2023
Publication
Accidental hydrogen releases from pipelines pose significant risks particularly with the expanding deployment of hydrogen infrastructure. Despite this there has been a lack of thorough investigation into hydrogen leakage from pipelines especially under complex real-world conditions. This study addresses this gap by modeling hydrogen gas dispersion jet fires and explosions based on practical scenarios. Various factors influencing accident consequences such as leak hole size wind speed wind direction and trench presence were systematically examined. The findings reveal that both hydrogen dispersion distance and jet flame thermal radiation distance increase with leak hole size and wind speed. Specifically the longest dispersion and radiation distances occur when the wind direction aligns with the trench which is 110 m where the hydrogen concentration is 4% and 76 m where the radiation is 15.8 kW/m2 in the case of a 325 mm leak hole and wind under 10 m/s. Meanwhile pipelines lacking trenching exhibit the shortest distances 0.17 m and 0.98 m at a hydrogen concentration of 4% and 15.8 kW/m2 radiation with a leak hole size of 3.25 mm and no wind. Moreover under relatively higher wind speeds hydrogen concentration stratification occurs. Notably the low congestion surrounding the pipeline results in an explosion overpressure too low to cause damage; namely the highest overpressure is 8 kPa but this lasts less than 0.2 s. This comprehensive numerical study of hydrogen pipeline leakage offers valuable quantitative insights serving as a vital reference for facility siting and design considerations to eliminate the risk of fire incidents.
Research on Characteristics of Hydrogen Dynamic Leakage and Combustion at High Pressure
Apr 2023
Publication
Hydrogen is promoted as an alternative energy given the global energy shortage and environmental pollution. A scientific basiscan be provided for the safe use and emergency treatment of hydrogen based on hydrogen leakage and combustion behavior.This study examined the stagnation parameters of dynamic hydrogen leakage and flame propagation in turbulent jets undernormal temperatures and high pressure. Based on van der Waals’ equation of state for gas a theoretical model for completelypredicting stagnation parameters outlet gas velocity and flow rate changes in the process of high-pressure hydrogen leakagecould be proposed and the calculation result of this model was compared with the experimental result with an error within±10%. The progression and propagation of the flame in turbulent jets after ignition were recorded using the background-oriented schlieren image technology and the propagation speed of flame from the ignition position downward and upwardwas calculated. Moreover the influence of initial pressure nozzle diameter and ignition position on the flame propagationprocess and propagation speed was analyzed.
Estimating Greenhouse Gas Emissions from Hydrogen-Blended Natural Gas Networks
Dec 2024
Publication
Methane is a significant contributor to anthropogenic greenhouse gas emissions. Blending hydrogen with natural gas in existing networks presents a promising strategy to reduce these emissions and support the transition to a carbon-neutral energy system. However hydrogen’s potential for atmospheric release raises safety and environmental concerns necessitating an assessment of its impact on methane emissions and leakage behavior. This study introduces a methodology for estimating how fugitive emissions change when a natural gas network is shifted to a 10% hydrogen blend by combining analytical flowrate models with data from sampled leaks across a natural gas network. The methodology involves developing conversion factors based on existing methane emission rates to predict corresponding hydrogen emissions across different sections of the network including mainlines service lines and facilities. Our findings reveal that while the overall volumetric emission rates increase by 5.67% on the mainlines and 3.04% on the service lines primarily due to hydrogen’s lower density methane emissions decrease by 5.95% on the mainlines and 8.28% on the service lines. However when considering the impact of a 10% hydrogen blend on the Global Warming Potential the net reduction in greenhouse gas emissions is 5.37% for the mainlines and 7.72% for the service lines. This work bridges the gap between research on hydrogen leakage and network readiness which traditionally focuses on safety and environmental sustainability studies on methane emission.
Minimization of Construction and Operation Costs of the Fuel Cell Bus Transportation System
Dec 2024
Publication
This paper took the actual bus transportation system as the object simulated the operating state of the system replaced all the current diesel engine buses with fuel cell buses using electrolysis-produced hydrogen and completed the existing timetable and routes. In the study the numbers of hydrogen production stations and hydrogen storage stations the maximum hydrogen storage capacity of the buses the supplementary hydrogen capacity of the buses and the hydrogen production capacity of the hydrogen storage stations were used as the optimal adjustment parameters for minimizing the ten-year construction and operating costs of the fuel cell bus transportation system by the artificial bee colony algorithm. Two hydrogen supply methods decentralized and centralized hydrogen production were analyzed. This paper used the actual bus timetable to simulate the operation of the buses including 14 transfer stations and 112 routes. The results showed that the use of centralized hydrogen production and partitioned hydrogen production transfer stations could indeed reduce the construction and operating costs of the fuel cell bus transportation system. Compared with the decentralized hydrogen production case the construction and operating costs could be reduced by 6.9% 12.3% and 14.5% with one two and three zones for centralized hydrogen production respectively.
Preliminary Assessment of a Hydrogen Farm Including Health and Safety and Capacity Needs
Dec 2024
Publication
The safety engineering design of hydrogen systems and infrastructure worker education and training regulatory compliance and engagement with other stakeholders are significant to the viability and public acceptance of hydrogen farms. The only way to ensure these are accomplished is for the field of hydrogen safety engineering (HSE) to grow and mature. HSE is described as the application of engineering and scientific principles to protect the environment property and human life from the harmful effects of hydrogen-related mishaps and accidents. This paper describes a whole hydrogen farm that produces hydrogen from seawater by alkaline and proton exchange membrane electrolysers then details how the hydrogen gas will be used: some will be stored for use in a combined-cycle gas turbine some will be transferred to a liquefaction plant and the rest will be exported. Moreover this paper describes the design framework and overview for ensuring hydrogen safety through these processes (production transport storage and utilisation) which include legal requirements for hydrogen safety safety management systems and equipment for hydrogen safety. Hydrogen farms are large-scale facilities used to create store and distribute hydrogen which is usually produced by electrolysis using renewable energy sources like wind or solar power. Since hydrogen is a vital energy carrier for industries transportation and power generation these farms are crucial in assisting the global shift to clean energy. A versatile fuel with zero emissions at the point of use hydrogen is essential for reaching climate objectives and decarbonising industries that are difficult to electrify. Safety is essential in hydrogen farms because hydrogen is extremely flammable odourless invisible and also has a small molecular size meaning it is prone to leaks which if not handled appropriately might cause fires or explosions. To ensure the safe and dependable functioning of hydrogen production and storage systems stringent safety procedures are required to safeguard employees infrastructure and the surrounding environment from any mishaps.
Simple Energy Model for Hydrogen Fuel Cell Vehicles: Model Development and Testing
Dec 2024
Publication
Hydrogen fuel cell vehicles (HFCVs) are a promising technology for reducing vehicle emissions and improving energy efficiency. Due to the ongoing evolution of this technology there is limited comprehensive research and documentation regarding the energy modeling of HFCVs. To address this gap the paper develops a simple HFCV energy consumption model using new fuel cell efficiency estimation methods. Our HFCV energy model leverages real-time vehicle speed acceleration and roadway grade data to determine instantaneous power exertion for the computation of hydrogen fuel consumption battery energy usage and overall energy consumption. The results suggest that the model’s forecasts align well with real-world data demonstrating average error rates of 0.0% and −0.1% for fuel cell energy and total energy consumption across all four cycles. However it is observed that the error rate for the UDDS drive cycle can be as high as 13.1%. Moreover the study confirms the reliability of the proposed model through validation with independent data. The findings indicate that the model precisely predicts energy consumption with an error rate of 6.7% for fuel cell estimation and 0.2% for total energy estimation compared to empirical data. Furthermore the model is compared to FASTSim which was developed by the National Renewable Energy Laboratory (NREL) and the difference between the two models is found to be around 2.5%. Additionally instantaneous battery state of charge (SOC) predictions from the model closely match observed instantaneous SOC measurements highlighting the model’s effectiveness in estimating real-time changes in the battery SOC. The study investigates the energy impact of various intersection controls to assess the applicability of the proposed energy model. The proposed HFCV energy model offers a practical versatile alternative leveraging simplicity without compromising accuracy. Its simplified structure reduces computational requirements making it ideal for real-time applications smartphone apps in-vehicle systems and transportation simulation tools while maintaining accuracy and addressing limitations of more complex models.
Collaborative Control Strategy of Electric–Thermal–Hydrogen-Integrated Energy System Based on Variable-Frequency Division Coefficient
Dec 2024
Publication
To address the issues of diverse energy supply demands and power fluctuations in integrated energy systems (IESs) this study takes an IES composed of power-generation units such as wind and photovoltaic units along with various energy-storage systems including electrical thermal and hydrogen storage as the research subject. A collaborative control strategy is proposed for the IES which comprehensively considers the status of diverse energy-storage systems like battery packs thermal tanks and hydrogen tanks. First a mathematical model of the IES is constructed. Then a dual-layer collaborative control strategy is designed considering different operating modes of the IES which includes a multi-energy-storage power allocation control layer based on second-order power-frequency processing and distribution and an adaptive adjustment layer for adjusting powerfrequency coefficients based on adaptive fuzzy control. Finally MATLAB is used to simulate and validate the proposed strategy. The results indicate that the collaborative control strategy based on variable-frequency coefficients optimizes the allocation of fluctuating power among multiple energy-storage systems enhances the stability of bus voltage reduces the deep charge and discharge time of battery packs and extends the service life of battery packs.
Hydrogen Strategy Update to the Market: December 2024
Dec 2024
Publication
Low carbon hydrogen is essential to achieve the Government’s Clean Energy Superpower and Growth Missions. It will be a crucial enabler of a low carbon and renewables-based energy system and will help to deliver new clean energy industries which can support good jobs in our industrial heartlands and coastal communities. Hydrogen presents significant growth and economic opportunities across the UK by enhancing our energy security providing flexible cleaner energy for our power system and helping to decarbonise vital UK industries. Hydrogen has a critical role in helping to achieve our Clean Energy Superpower Mission. It can provide flexible low carbon power generation meaning we can use hydrogen to produce electricity during extended periods of low renewable output. Hydrogen can also provide interseasonal energy storage through conversion of electricity into hydrogen and then back into electricity at times of need using a combination of hydrogen production storage and hydrogen to power. To advance our Clean Energy and Growth Missions hydrogen also has a unique role in transitioning crucial UK industries away from oil and gas and towards a clean homegrown source of fuel. Hydrogen can decarbonise hard-to-abate sectors like chemicals and heavy transport complementing our wider electrification efforts and accelerating our progress to net zero. Using our strong domestic expertise and favourable geology geography and infrastructure backing UK hydrogen can unlock significant economic opportunities and new low carbon jobs of the future. Government has an ambitious range of policies in place to incentivise and support industry to invest in low carbon hydrogen. The recent Hydrogen Skills Workforce Assessment an industry-led study undertaken by the Hydrogen Skills Alliance estimated that the UK hydrogen economy could support 29000 direct jobs and 64500 indirect jobs by 2030. Since establishing in Summer 2024 this Government has already made significant progress in delivering the UK hydrogen economy. This includes confirming support for the 11 successful Hydrogen Allocation Round 1 projects announcing up to £21.7 billion of available funding to launch the UK’s new carbon capture utilisation and storage industry and publishing our hydrogen to power consultation response with an aim to establish a new hydrogen to power business model. We have also launched three new bodies – the National Energy System Operator Great British Energy and the National Wealth Fund – which will help to deliver a world-class energy system including for low carbon hydrogen. This December 2024 Hydrogen Strategy Update to the Market sets out the key milestones achieved by the Department for Energy Security and Net Zero in 2024 to deliver the hydrogen economy and an ambitious forward look at our next steps and upcoming opportunities. To achieve net zero and create a thriving and resilient energy landscape we are already working at considerable pace to deliver a world-leading UK hydrogen sector.
Green Hydrogen Blending into the Tunisian Natural Gas Distributing System
Dec 2024
Publication
It is likely that blending hydrogen into natural gas grids could contribute to economy-wide decarbonization while retaining some of the benefits that natural gas networks offer energy systems. Hydrogen injection into existing natural gas infrastructure is recognised as a key solution for energy storage during periods of low electricity demand or high variable renewable energy penetration. In this scenario natural gas networks provide an energy vector parallel to the electricity grid offering additional energy transmission capacity and inherent storage capabilities. By incorporating green hydrogen into the NG network it becomes feasible to (i) address the current energy crisis (ii) reduce the carbon intensity of the gas grid and (iii) promote sector coupling through the utilisation of various renewable energy sources. This study gives an overview of various interchangeability indicators and investigates the permissible ratios for hydrogen blending with two types of natural gas distributed in Tunisia (ANG and MNG). Additionally it examines the impact of hydrogen injection on energy content variation and various combustion parameters. It is confirmed by the data that ANG and MNG can withstand a maximum hydrogen blend of up to 20%. The article’s conclusion emphasises the significance of evaluating infrastructure and safety standards related to Tunisia’s natural gas network and suggests more experimental testing of the findings. This research marks a critical step towards unlocking the potential of green hydrogen in Tunisia.
Optimization Operation Strategy for Comprehensive Energy System Considering Multi-Mode Hydrogen Transportation
Dec 2024
Publication
The transformation from a fossil fuel economy to a low-carbon economy has reshaped the way energy is transmitted. As most renewable energy is obtained in the form of electricity using green electricity to produce hydrogen is considered a promising energy carrier. However most studies have not considered the transportation mode of hydrogen. In order to encourage the utilization of renewable energy and hydrogen this paper proposes a comprehensive energy system optimization operation strategy considering multi-mode hydrogen transport. Firstly to address the shortcomings in the optimization operation of existing systems regarding hydrogen transport modeling is conducted for multi-mode hydrogen transportation through hydrogen tube trailers and pipelines. This model reflects the impact of multi-mode hydrogen delivery channels on hydrogen utilization which helps promote the consumption of new energy in electrolysis cells to meet application demands. Based on this the constraints of electrolyzers combined heat and power units hydrogen fuel cells and energy storage systems in integrated energy systems (IESs) are further considered. With the objective of minimizing the daily operational cost of the comprehensive energy system an optimization model for the operation considering multi-mode hydrogen transport is constructed. Lastly based on simulation examples the impact of multi-mode hydrogen transportation on the operational cost of the system is analyzed in detail. The results indicate that the proposed optimization strategy can reduce the operational cost of the comprehensive energy system. Hydrogen tube trailers and pipelines will have a significant impact on operational costs. Properly allocating the quantity of hydrogen tube trailers and pipelines is beneficial for reducing the operational costs of the system. Reasonable arrangement of hydrogen transportation channels is conducive to further promoting the green and economic operation of the system.
The UK Hydrogen Innovation Opportunity: Techno-economic Methodology
Apr 2024
Publication
This report outlines the methods and assumptions used in the hydrogen technology market analysis. The results of the analysis are presented in The UK Hydrogen Innovation Opportunity and the supporting report Hydrogen technology roadmaps. They include forecasts for the following market data:
○ Global hydrogen economy The overall size of the global hydrogen economy in 2023 2030 and 2050.
○ Global and UK hydrogen technology market by technology family
This is the proportion of the total future hydrogen economy attributable to hydrogen-related technologies in 2023 2030 and 2050. The hydrogen economy is defined as the ‘end-to-end’ value created from hydrogen production storage & distribution and use. This includes the direct economic value associated with production and distribution of hydrogen as a fuel or chemical feedstock hydrogen infrastructure technologies products services and the indirect economic value created through products and services that indirectly support the use of hydrogen in industry transport power generation and heating. This endto-end definition of the hydrogen economy is represented in Figure 1 overleaf.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
○ Global hydrogen economy The overall size of the global hydrogen economy in 2023 2030 and 2050.
○ Global and UK hydrogen technology market by technology family
This is the proportion of the total future hydrogen economy attributable to hydrogen-related technologies in 2023 2030 and 2050. The hydrogen economy is defined as the ‘end-to-end’ value created from hydrogen production storage & distribution and use. This includes the direct economic value associated with production and distribution of hydrogen as a fuel or chemical feedstock hydrogen infrastructure technologies products services and the indirect economic value created through products and services that indirectly support the use of hydrogen in industry transport power generation and heating. This endto-end definition of the hydrogen economy is represented in Figure 1 overleaf.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
The Role of Hydrogen in the Energy Mix: A Scenario Analysis for Turkey Using OSeMOSYS
Dec 2024
Publication
The urgent need to tackle climate change drives the research on new technologies to help the transition of energy systems. Hydrogen is under significant consideration by many countries as a means to reach zero-carbon goals. Turkey has also started to develop hydrogen projects. In this study the role of hydrogen in Turkey’s energy system is assessed through energy modeling using the cost optimization analytical tool Open Source Energy Modelling System (OSeMOSYS). The potential effects of hydrogen blending into the natural gas network in the Turkish energy system have been displayed by scenario development. The hydrogen is produced via electrolysis using renewable electricity. As a result by using hydrogen a significant reduction in carbon dioxide emissions was observed; however the accumulated capital investment value increased. Furthermore it was shown that hydrogen has the potential to reduce Turkey’s energy import dependency by decreasing natural gas demand.
Towards a Resilience Evaluation Framework for Hydrogen Supply Chains: A Systematic Literature Review and Future Research Agenda
Dec 2024
Publication
Hydrogen energy is crucial for achieving net zero targets making the resilience of hydrogen supply chains (HSCs) increasingly important. Understanding current research on HSC resilience is key to enhancing it. Few studies summarise HSC resilience evaluation methods and link them to the general supply chain resilience and complex adaptive system (CAS) evaluation approaches. This study addresses this gap by systematically reviewing the literature on HSC resilience evaluations defining HSC resilience and conducting content analysis. It proposes a conceptual framework integrating technical operational and organisational perspectives. Each perspective is further subdivided based on the course of events resulting in a system-based HSC resilience evaluation frame work with three layers of analysis. By linking HSC indicators with CAS theory and supply chain performance metrics the study offers novel insights into HSC resilience evaluations identifies research gaps provides prac tical guidance for practitioners and outlines future research directions for advancing HSC resilience understanding.
Reviewing Sector Coupling in Offshore Energy System Integration Modelling: The North Sea Context
Dec 2024
Publication
Offshore energy system integration is particularly important for realising a rapid and cost-effective low-carbon energy transition in the North Sea region. Effective implementation of strategies that require collaboration be tween countries developers and operators must be underpinned by robust and comprehensive modelling results. Intra-system interactions and diversity of sectors needed to facilitate the energy transition must be adequately captured within whole-system models. Historically consideration of the offshore energy environment within macro-scale models has been supplementary to the onshore system. However increased deployment of offshore wind focus on geological storage for energy security and technological development and investment in hydrogen and carbon storage projects highlights the importance of expanding the role of the offshore system within modelling. This study presents a comprehensive investigation of energy system integration challenges within offshore system modelling and how these define the requirements of the employed methodology. The findings suggest large-scale offshore system modelling studies typically include few energy vectors limited spatial resolution and simplified network flow characteristics. Despite the North Sea focus these challenges reflect fundamental barriers within large-scale offshore energy system modelling and thus extend to similar offshore contexts globally. Key approaches are identified to maximise sectoral and technological diversity while maintaining sufficient temporal and spatial resolution to suitably represent the evolving offshore system are identified. We make concrete suggestions for future work in this field based on identified best practice among the reviewed literature.
The Evolution of Green Hydrogen in Renewable Energy Research: Insights from a Bibliometric Perspective
Dec 2024
Publication
Green hydrogen generated from water through renewable energies like solar and wind is a key player in sus tainable energy. It only produces water when used making it a clean energy source. However the inconsistent nature of solar and wind energy highlights the need for storage solutions where green hydrogen is promising. This study uniquely combines green hydrogen (GH) and renewable energy (RE) domains using a comprehensive bibliometric approach covering 2018–2022. It identifies emerging trends collaboration networks and key contributors that shape the global landscape of GH research. Our findings show a significant yearly growth in this research field averaging 93.56 %. The study also identifies China Germany India and Italy as leaders among 76 countries involved in this area. Research trends have shifted from technical details to social and economic factors. Given the increasing global commitment to achieving carbon neutrality understanding the evolution and integration of GH within RE systems is essential for guiding future research policy-making and technology development. The analysis categorizes the research into seven main themes focusing on green hydrogen’s role in energy transition and storage. Other vital topics include improving hydrogen production methods assessing its climate impact examining its environmental benefits and exploring various production techniques like water electrolysis and photocatalysis. Our analysis reveals a 93.56 % annual growth rate in GH research highlighting key challenges in storage integration and policy development and offering a roadmap for future studies. The study highlights areas needing more exploration such as better storage methods integration with existing energy infrastructures risk management and policy development. The advancement of green hydrogen as a sustainable energy solution depends on innovative research international collaboration and supportive policy frameworks.
Bibliometric Analysis of Global Publications on Management, Trends, Energy, and the Innovation Impact of Green Hydrogen Production
Dec 2024
Publication
The aim of this bibliometric analysis was to evaluate the evolution of scientific research in hydrogen focusing on green hydrogen production storage and utilization. Articles from prominent databases were analyzed revealing a strong emphasis on sustainable hydrogen technologies through keywords like “hydrogen production” “green hydrogen” and “solar power generation”. Mature research areas include production methods and electrolysis while emerging topics such as energy efficiency and policy are gaining traction. The most-cited papers from Energy Conversion and Management to the International Journal of Hydrogen Energy cover techno-economic assessments and case studies on deploying hydrogen technologies. Key findings highlight the variability of the Levelized Cost of Hydrogen (LCOH) across technologies and regions. Deep learning applications including Fast Fourier Transform-based forecasting and explainable AI models are transforming production optimization while Life Cycle Assessment (LCA) emphasizes renewable energy’s role in reducing carbon intensity and resource consumption. Diverse strategies such as fiscal incentives for wind energy and use of urban waste underline the importance of local solutions. This analysis reflects the rapid growth of hydrogen research driven by international collaboration and innovations in sustainable production storage and optimization. It is hoped that this paper will help to shed more light on the current and future understanding of green hydrogen.
Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea
Dec 2024
Publication
This study evaluated the greenhouse gas (GHG) emissions associated with hydrogen production in South Korea (hereafter referred to as Korea) using water electrolysis. Korea aims to advance hydrogen as a clean fuel for transportation and power generation. To support this goal we employed a life cycle assessment (LCA) approach to evaluate the emissions across the hydrogen supply chain in a well-to-pump framework using the Korean clean hydrogen certification tiers. Our assessment covered seven stages from raw material extraction for power plant construction to hydrogen production liquefaction storage and distribution to refueling stations. Our findings revealed that among the sixteen power sources evaluated hydroelectric and onshore wind power exhibited the lowest emissions qualifying as the Tier 2 category of emissions between 0.11 and 1.00 kgCO2e/kgH2 under a well-to-pump framework and Tier 1 category of emissions below 0.10 kgCO2e/kgH2 under a well-to-gate framework. They were followed by photovoltaics nuclear energy and offshore wind all of which are highly dependent on electrolysis efficiency and construction inputs. Additionally the study uncovered a significant impact of electrolyzer type on GHG emissions demonstrating that improvements in electrolyzer efficiency could substantially lower GHG outputs. We further explored the potential of future energy mixes for 2036 2040 and 2050 as projected by Korea’s energy and environmental authorities in supporting clean hydrogen production. The results suggested that with progressive decarbonization of the power sector grid electricity could meet Tier 2 certification for hydrogen production through electrolysis and potentially reach Tier 1 when considering well-to-gate GHG emissions.
No more items...