- Home
- A-Z Publications
- Publications
Publications
Coupling Wastewater Treatment with Fuel Cells and Hydrogen Technology
Apr 2024
Publication
Fuel cells (FCs) and hydrogen technologies are emerging renewable energy sources with promising results when applied to wastewater treatment (WWT). These devices serve not only for power generation but some specific FCs can be employed for degradation of pollutants and synthesis of intermediates needed in WWT. Microbial FCs are potent devices for WWT even containing refractory pollutants. Despite being a nascent technology with high capital expenses the use of cost-effective materials reduction of operational cost and increased generation of energy and value-added chemicals such as hydrogen will facilitate the market penetration through selected niches and hybridization with alternative WWT technologies.
Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art
Dec 2023
Publication
To achieve a more ecologically friendly energy transition by the year 2050 under the European “green” accord hydrogen has recently gained significant scientific interest due to its efficiency as an energy carrier. This paper focuses on large-scale hydrogen production systems based on marine renewable-energy-based wind turbines and tidal turbines. The paper reviews the different technologies of hydrogen production using water electrolyzers energy storage unit base hydrogen vectors and fuel cells (FC). The focus is on large-scale hydrogen production systems using marine renewable energies. This study compares electrolyzers energy storage units and FC technologies with the main factors considered being cost sustainability and efficiency. Furthermore a review of aging models of electrolyzers and FCs based on electrical circuit models is drawn from the literature and presented including characterization methods of the model components and the parameters extraction methods using a dynamic current profile. In addition industrial projects for producing hydrogen from renewable energies that have already been completed or are now in progress are examined. The paper is concluded through a summary of recent hydrogen production and energy storage advances as well as some applications. Perspectives on enhancing the sustainability and efficiency of hydrogen production systems are also proposed and discussed. This paper provides a review of behavioral aging models of electrolyzers and FCs when integrated into hydrogen production systems as this is crucial for their successful deployment in an ever-changing energy context. We also review the EU’s potential for renewable energy analysis. In summary this study provides valuable information for research and industry stakeholders aiming to promote a sustainable and environmentally friendly energy transition.
Hydrogen as a Panacea for Decarbonising Everything? Exploring Contested Hydrogen Pathways in Germany
Oct 2023
Publication
Technological change is often seen as part of the solution to problems of global sustainability. A wide-ranging literature on how path dependent—often fossil fuel-based—socio-technical configurations can be overcome by more sustainable configurations has emerged over the last two decades. One potential transition pathway to transform electricity heat and mobility systems as well as industrial production is the use of hydrogen. In recent years hydrogen has received increasing attention as part of decarbonisation strategies in many countries as well as by international organisations such as the International Energy Agency or the International Renewable Energy Agency. Also in Germany it has become a central component of climate change policy and is seen by some actors almost as a kind of panacea where the use of hydrogen is expected to decarbonise a wide range of sectors. Policy makers have the ambition for Germany to become a leader in hydrogen development and therefore help to contribute to what Grubler called ‘grand patterns of technological change’. The aim of this paper is to analyse whether relevant actors share expectations for transition pathways based on hydrogen which would foster wide diffusion. Our empirical analysis shows that there are multiple contested pathways both in terms of how hydrogen is produced as well as in which applications or sectors it is to be used. This causes uncertainty and slows down hydrogen developments in Germany. We contribute to an emerging literature on the politics of contested transition pathways and also critically engage with Grubler’s ‘grand patterns’ argument. Results support the idea that the concept of socio-technical pathways allows to expose tensions between competing values and interests. The German government is under considerable pressure regarding competing visions on hydrogen transition pathways. A targeted political prioritisation of hydrogen applications could mitigate tensions and support a shared vision.
Pressure Evolution from Head-on Reflection of High-speed Deflagration in Hydrogen Mixtures
Sep 2023
Publication
Our previous reported experiments revealed that the reflection of high-speed deflagrations in hydrogenair and hydrogen-oxygen mixtures produces higher mechanical loading and reflected pressures than reflecting detonations. This surprising result was shown to correlate with the onset of detonation in the gases behind the reflected shock. We revisit these experiments with the aim of developing a closed-form model for the pressure evolution due to the shock-induced ignition and rapid transition to detonation. We find that the reflection condition of fast deflagrations corresponds to the chain-branching crossover regime of hydrogen ignition in which the reduced activation energy is very large and the reaction characteristic time is very short compared to the induction time. We formulate a closed-form model in the limit of fast reaction times as compared to the induction time which is used to predict a square wave pressure profile generated by self-similar propagation of internal Chapman-Jouguet detonation waves followed by Taylor expansion waves. The model predictions are compared with Navier-Stokes numerical simulations with full chemistry as well as simple Euler calculations using calibrated one-step or twostep chain-branching models. Both simplified numerical models were found to be in good agreement with the full chemistry model. We thus demonstrate that the end pressure evolution due to the reflection of high-speed deflagrations can be well predicted analytically and numerically using relatively simple models in this ignition regime of main interest for safety analysis and explosion mitigations. The slight departures from the square wave model are investigated based on the physical wave processes occurring in the shocked gases controlling the shock-to-detonation transition. Using the two-step model we study how the variations of the rate of energy release control the pressure evolution in the end gas extending the analysis of Sharpe to very large rates of energy release.
Towards Low-carbon Power Networks: Optimal Location and Sizing of Renewable Energy Sources and Hydrogen Storage
Apr 2024
Publication
This paper proposes a systematic optimization framework to jointly determine the optimal location and sizing decisions of renewables and hydrogen storage in a power network to achieve the transition to low-carbon networks efficiently. We obtain these strategic decisions based on the multi-period alternating current optimal power flow (AC MOPF) problem that jointly analyzes power network renewable and hydrogen storage interactions at the operational level by considering the uncertainty of renewable output seasonality of electricity demand and electricity prices. We develop a tailored solution approach based on second-order cone programming within a Benders decomposition framework to provide globally optimal solutions. In a test case we show that the joint integration of renewable sources and hydrogen storage and consideration of the AC MOPF model significantly reduces the operational cost of the power network. In turn our findings can provide quantitative insights to decision-makers on how to integrate renewable sources and hydrogen storage under different settings of the hydrogen selling price renewable curtailment cost emission tax price and conversion efficiency.
Hydrogen Production, Storage, and Transportation: Recent Advances
Feb 2024
Publication
One such technology is hydrogen-based which utilizes hydrogen to generate energy without emission of greenhouse gases. The advantage of such technology is the fact that the only by-product is water. Efficient storage is crucial for the practical application of hydrogen. There are several techniques to store hydrogen each with certain advantages and disadvantages. In gaseous hydrogen storage hydrogen gas is compressed and stored at high pressures requiring robust and expensive pressure vessels. In liquid hydrogen storage hydrogen is cooled to extremely low temperatures and stored as a liquid which is energy-intensive. Researchers are exploring advanced materials for hydrogen storage including metal hydrides carbonbased materials metal–organic frameworks (MOFs) and nanomaterials. These materials aim to enhance storage capacity kinetics and safety. The hydrogen economy envisions hydrogen as a clean energy carrier utilized in various sectors like transportation industry and power generation. It can contribute to decarbonizing sectors that are challenging to electrify directly. Hydrogen can play a role in a circular economy by facilitating energy storage supporting intermittent renewable sources and enabling the production of synthetic fuels and chemicals. The circular economy concept promotes the recycling and reuse of materials aligning with sustainable development goals. Hydrogen availability depends on the method of production. While it is abundant in nature obtaining it in a clean and sustainable manner is crucial. The efficiency of hydrogen production and utilization varies among methods with electrolysis being a cleaner but less efficient process compared to other conventional methods. Chemisorption and physisorption methods aim to enhance storage capacity and control the release of hydrogen. There are various viable options that are being explored to solve these challenges with one option being the use of a multilayer film of advanced metals. This work provides an overview of hydrogen economy as a green and sustainable energy system for the foreseeable future hydrogen production methods hydrogen storage systems and mechanisms including their advantages and disadvantages and the promising storage system for the future. In summary hydrogen holds great promise as a clean energy carrier and ongoing research and technological advancements are addressing challenges related to production storage and utilization bringing us closer to a sustainable hydrogen economy.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
Process Path for Reducing Carbon Emissions from Steel Industry—Combined Electrification and Hydrogen Reduction
Jan 2024
Publication
This review focuses on the energy structure of iron and steel production and a feasible development path for carbon reduction. The process path and feasible development direction of carbon emission reduction in the iron and steel industry have been analyzed from the perspective of the carbon–electricity–hydrogen ternary relationship. Frontier technologies such as “hydrogen replacing carbon” are being developed worldwide. Combining the high efficiency of microwave electric-thermal conversion with the high efficiency and pollution-free advantages of hydrogen-reducing agents may drive future developments. In this review a process path for “microwave + hydrogen” synergistic metallurgy is proposed. The reduction of magnetite powder by H2 (CO) in a microwave field versus in a conventional field is compared. The driving effect of the microwave field is found to be significant and the synergistic reduction effect of microwaves with H2 is far greater than that of CO.
Optimization of Hydrogen Production System Performance Using Photovoltaic/Thermal-Coupled PEM
Oct 2024
Publication
A proton exchange membrane electrolyzer can effectively utilize the electricity generated by intermittent solar power. Different methods of generating electricity may have different efficiencies and hydrogen production rates. Two coupled systems namely PV/T- and CPV/T-coupling PEMEC respectively are presented and compared in this study. A maximum power point tracking algorithm for the photovoltaic system is employed and simulations are conducted based on the solar irradiation intensity and ambient temperature of a specific location on a particular day. The simulation results indicate that the hydrogen production is relatively high between 11:00 and 16:00 with a peak between 12:00 and 13:00. The maximum hydrogen production rate is 99.11 g/s and 29.02 g/s for the CPV/T-PEM and PV/T-PEM systems. The maximum energy efficiency of hydrogen production in CPV/T-PEM and PV/T-PEM systems is 66.7% and 70.6%. Under conditions of high solar irradiation intensity and ambient temperature the system demonstrates higher total efficiency and greater hydrogen production. The CPV/T-PEM system achieves a maximum hydrogen production rate of 2240.41 kg/d with a standard coal saving rate of 15.5 tons/day and a CO2 reduction rate of 38.0 tons/day. Compared to the PV/T-PEM system the CPV/T-PEM system exhibits a higher hydrogen production rate. These findings provide valuable insights into the engineering application of photovoltaic/thermal-coupled hydrogen production technology and contribute to the advancement of this field.
Enhancing Safety through Optimal Placement of Components in Hydrogen Tractor: Rollover Angle Analysis
Feb 2024
Publication
Hydrogen tractors are being developed necessitating consideration of the variation in the center of gravity depending on the arrangement of components such as power packs and cooling modules that replace traditional engines. This study analyzes the effects of component arrangement on stability and rollover angle in hydrogen tractors through simulations and proposes an optimal configuration. Stability is evaluated by analyzing rollover angles in various directions with rotations around the tractor’s midpoint. Based on the analysis of rollover angles for Type 1 Type 2 and Type 3 hydrogen tractors Type 2 demonstrates superior stability compared to the other types. Specifically when comparing lateral rollover angles at 0◦ rotation Type 2 exhibits a 2% increase over Type 3. Upon rotations at 90◦ and 180◦ Type 2 consistently displays the highest rollover angles with differences ranging from approximately 6% to 12% compared to the other types. These results indicate that Type 2 with its specific component arrangement offers the most stable configuration among the three types of tractors. It is confirmed that the rollover angle changes based on component arrangement with a lower center of gravity resulting in greater stability. These findings serve as a crucial foundation for enhancing stability in the future design and manufacturing phases of hydrogen tractors.
Economic Framework for Green Shipping Corridors: Evaluating Cost-effective Transition from Fossil Fuels Towards Hydrogen
Aug 2024
Publication
Global warming’s major cause is the emission of greenhouse-effect gases (GHG) especially carbon dioxide (CO2) whose main source is the combustion of fossil fuels. Fossil fuels serve as the primary energy source in many industries including shipping which is the focus of this study. One of the measures proposed to tackle GHG emissions is the development of green shipping corridors - carbon-free shipping routes that require the transition to alternative fuels which are gaining competitiveness. One of the reasons for that is carbon pricing which taxes CO2 emissions. However the lack of consensus on the most cost-advantageous alternative fuel in the long run results in the delay of the implementation of green shipping corridors. To make it more accessible for stakeholders to conduct an economic analysis of the various options a framework to determine and minimize the costs of transitioning from fossil fuels to any alternative fuel is proposed over the period of one voyage considering the lost opportunity cost the deployment cost of bunkering vessels at the necessary call ports the cost of converting the vessel the car-bon emissions tax cost and the fuel cost. This will allow stakeholders to choose the most economical alternative fuel accelerating the development of green shipping corridor initiatives. To validate the effectiveness of the framework it was applied in a case study involving a shipowner seeking to transition from heavy fuel oil (HFO) to Ammonia Hydrogen Liquefied Natural Gas (LNG) or Methanol. This study faced limitations due to the unknown costs of installing bunkering vessels for Ammonia and Hydrogen. However it evaluates the cost-effectiveness of alternative fuels providing insights into their short-term economic viability. The results showed that Hydrogen is the most costadvantageous fuel until a deployment cost per bunkering vessel of 1990285$ for a sailing speed of 22 knots and 2190171$ for a sailing speed of 18 knots is reached after which LNG becomes the most economical option regardless of variations in the carbon tax. Moreover a sensitivity analysis was conducted to determine the effects of variations in parameters such as carbon tax fuel prices and vessel conversion costs in the total cost of each fuel option. Results highlighted that even though HFO remains the most economical fuel option even when considering a high increase in carbon tax the cost gap between HFO and alternative fuels narrows significantly with the increase in carbon tax. Furthermore the sailing speed impacts the fuels’ competitiveness as the cost difference between HFO and alternative fuels decreases at higher speeds.
Impact of Medium-pressure Direct Injection Engine Fueled by Hydrogen
Dec 2023
Publication
In the automotive sector hydrogen is being increasingly explored as an alternative fuel to replace conventional carbon-based fuels. Its combustion characteristics make it well-suited for adaptation to internal combustion engines. The wide flammability range of hydrogen allows for higher dilution conditions resulting in enhanced combustion efficiency. When combined with lean combustion strategies hydrogen significantly reduces environmental impact virtually eliminating carbon dioxide and nitrogen oxide emissions while maintaining high thermal efficiency. This paper aims to assess the potential of using an outwardly opening poppet valve hydrogen direct injection (DI) system in a small engine for light-duty applications. To achieve this a comparison of performance emission levels and combustion parameters is conducted on a single-cylinder spark-ignition (SI) research engine fueled by hydrogen using both port fuel injection (PFI) and this new direct injection system. Two different engine loads are measured at multiple air dilution and injection timing conditions. The results demonstrate notable efficiency improvements ranging from 0.6% to 1.1% when transitioning from PFI to DI. Accurate control of injection timing is essential for achieving optimal performance and low emissions. Delaying the start of injection results in a 7.6% reduction in compression work at low load and a 3.9% reduction at high load. This results in a 3.1-3.2% improvement in ISFC in both load conditions considered.
Nanomaterials for Hydrogen Storage Applications: A Review
Sep 2008
Publication
Nanomaterials have attracted great interest in recent years because of the unusual mechanical electrical electronic opticalmagnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respectto energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of thisnew class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes nano-magnesiumbased hydrides complex hydride/carbon nanocomposites boron nitride nanotubes TiS2/MoS2 nanotubes alanates polymernanocomposites and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen.Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related tothe nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomicor molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides forimproving the thermodynamics and hydrogen reaction kinetics are discussed. In addition various carbonaceous nanomaterialsand novel sorbent systems (e.g. carbon nanotubes fullerenes nanofibers polyaniline nanospheres and metal organic frameworksetc.) and their hydrogen storage characteristics are outlined.
Energy-exergy Evaluation of Liquefied Hydrogen Production System Based on Steam Methane Reforming and LNG Revaporization
Jul 2023
Publication
The research motivation of this paper is to utilize the large amount of energy wasted during the LNG (liquefied natural gas) gasification process and proposes a synergistic liquefied hydrogen (LH2) production and storage process scheme for LNG receiving station and methane reforming hydrogen production process - SMR-LNG combined liquefied hydrogen production system which uses the cold energy from LNG to pre-cool the hydrogen and subsequently uses an expander to complete the liquefaction of hydrogen. The proposed process is modeled and simulated by Aspen HYSYS software and its efficiency is evaluated and sensitivity analysis is carried out. The simulation results show that the system can produce liquefied hydrogen with a flow rate of 5.89t/h with 99.99% purity when the LNG supply rate is 50t/h. The power consumption of liquefied hydrogen is 46.6kWh/kg LH2; meanwhile the energy consumption of the HL subsystem is 15.9kWh/kg LH2 lower than traditional value of 17~19kWh/kg LH2. The efficiency of the hydrogen production subsystem was 16.9%; the efficiency of the hydrogen liquefaction (HL) subsystem was 29.61% which was significantly higher than the conventional industrial value of 21%; the overall energy efficiency (EE1) of the system was 56.52% with the exergy efficiency (EE2) of 22.2% reflecting a relatively good thermodynamic perfection. The energy consumption of liquefied hydrogen per unit product is 98.71 GJ/kg LH2.
Exergy Analysis in Intensification of Sorption-enhanced Steam Methane Reforming for Clean Hydrogen Production: Comparative Study and Efficiency Optimisation
Feb 2024
Publication
Hydrogen has a key role to play in decarbonising industry and other sectors of society. It is important to develop low-carbon hydrogen production technologies that are cost-effective and energy-efficient. Sorption-enhanced steam methane reforming (SE-SMR) is a developing low-carbon (blue) hydrogen production process which enables combined hydrogen production and carbon capture. Despite a number of key benefits the process is yet to be fully realised in terms of efficiency. In this work a sorption-enhanced steam methane reforming process has been intensified via exergy analysis. Assessing the exergy efficiency of these processes is key to ensuring the effective deployment of low-carbon hydrogen production technologies. An exergy analysis was performed on an SE-SMR process and was then subsequently used to incorporate process improvements developing a process that has theoretically an extremely high CO2 capture rate of nearly 100 % whilst simultaneously demonstrating a high exergy efficiency (77.58 %) showcasing the potential of blue hydrogen as an effective tool to ensure decarbonisation in an energy-efficient manner.
Fuel Cell Vehicle Hydrogen Emissions Testing
Sep 2023
Publication
The NREL Hydrogen Sensor Laboratory is comprised of researchers dedicated to furthering hydrogen sensor technology and detection methodology. NREL has teamed up with researchers at Environment and Climate Change Canada (ECCC) and Transport Canada (TC) to conduct research to quantify hydrogen emissions from Fuel Cell Electric Vehicles (FCEV). Test protocols will have a large effect on monitoring and regulating the hydrogen emissions from FCEVs. How emissions are tested will play an important role when understanding the safety and environmental implications of using FCEVs. NREL Sensor Laboratory personnel have partnered with other entities to conduct multiple variations of emissions testing for FCEVs. This experimentation includes testing different models of FCEVs under various driving conditions while monitoring the hydrogen concentration of the exhaust using several different test methods and apparatus. Researchers look to support regulatory bodies by providing useful data that can support more consistent and relevant safety and environmental standards. We plan to present on the current test methods and results from recent emissions measurements at ECCC.
Optimal Operation Strategy for Wind–Photovoltaic Power-Based Hydrogen Production Systems Considering Electrolyzer Start-Up Characteristics
Aug 2024
Publication
Combining electrolytic hydrogen production with wind–photovoltaic power can effectively smooth the fluctuation of power and enhance the schedulable wind–photovoltaic power which provides an effective solution to solve the problem of wind–photovoltaic power accommodation. In this paper the optimization operation strategy is studied for the wind–photovoltaic power-based hydrogen production system. Firstly to make up for the deficiency of the existing research on the multi-state and nonlinear characteristics of electrolyzers the three-state and power-current nonlinear characteristics of the electrolyzer cell are modeled. The model reflects the difference between the cold and hot starting time of the electrolyzer and the linear decoupling model is easy to apply in the optimization model. On this basis considering the operation constraints of the electrolyzer hydrogen storage tank battery and other equipment the optimization operation model of the wind–photovoltaic power-based hydrogen production system is developed based on the typical scenario approach. It also considers the cold and hot starting time of the electrolyzer with the daily operation cost as the goal. The results show that the operational benefits of the system can be improved through the proposed strategy. The hydrogen storage tank capacity will have an impact on the operation income of the wind–solar hydrogen coupling system and the daily operation income will increase by 0.32% for every 10% (300 kg) increase in the hydrogen storage tank capacity.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Feb 2024
Publication
A compact wireless near-field hydrogen gas sensor is proposed which detects leaking hydrogen near its source to achieve fast responses and high reliability. A semiconductor-type sensing element is implemented in the sensor which can provide a significant response in 100 ms when stimulated by pure hydrogen. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results which will be within 200 ms compared with over 25 s for spatial concentration sensors under the worst conditions. Over 1 year maintenance intervals are enabled by wireless design based on the Bluetooth low energy protocol. The average energy consumption during a single alarm process is 153 µJ/s. The whole sensor is integrated on a 20 × 26 mm circuit board for compact use.
Numerical Investigation and Simulation of Hydrogen Blending into Natural Gas Combustion
Aug 2024
Publication
This study reviews existing simulation models and describes a selected model for analysing combustion dynamics in hydrogen and natural gas mixtures specifically within non-ferrous melting furnaces. The primary objectives are to compare the combustion characteristics of these two energy carriers and assess the impact of hydrogen integration on furnace operation and efficiency. Using computational fluid dynamics (CFD) simulations incorporating actual furnace geometries and a detailed combustion and NOx emission prediction model this research aims to accurately quantify the effects of hydrogen blending. Experimental tests on furnaces using only natural gas confirmed the validity of these simulations. By providing precise predictions for temperature distribution and NOx emissions this approach reduces the need for extensive laboratory testing facilitates broader exploration of design modifications accelerates the design process and ultimately lowers product development costs.
Green with Envy? Hydrogen Production in a Carbon-constrained World
Jan 2024
Publication
Hydrogen is widely recognized as a key component of a decarbonized global energy system serving as both a fuel source and an energy storage medium. While current hydrogen production relies almost entirely on emissionsintensive processes two low-emissions production pathways – natural-gas-derived production combined with carbon capture and storage and electrolysis using carbon-free electricity – are poised to change the global supply mix. Our study assesses the financial conditions under which natural-gas-based hydrogen production combined with carbon capture and storage would be available at a cost lower than hydrogen produced through electrolysis and the degree to which these conditions are likely to arise in a transition to a net-zero world. We also assess the degree to which emissions reduction policies namely carbon pricing and carbon capture and storage tax credits affect the relative costs of hydrogen production derived from different pathways. We show that while carbon pricing can improve the relative cost of both green and blue hydrogen production compared with unabated grey hydrogen targeted tax credits favouring either blue or green hydrogen explicitly may increase emissions and/or increase the costs of the energy transition.
No more items...