- Home
- A-Z Publications
- Publications
Publications
The Current Status of Hydrogen Energy: An Overview
Sep 2023
Publication
Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the world's energy in the future replacing the present fossil fuel-based energy infrastructure. Hydrogen is expected to solve the problem of energy shortages in the near future especially in complex geographical areas (hills arid plateaus etc.) and harsh climates (desert ice etc.). Thus in this report we present a current status of achievable hydrogen fuel based on various scopes including production methods storage and transportation techniques the global market and the future outlook. Its objectives include analyzing the effectiveness of various hydrogen generation processes and their effects on the economy society and environment. These techniques are contrasted in terms of their effects on the environment manufacturing costs energy use and energy efficiency. In addition hydrogen energy market trends over the next decade are also discussed. According to numerous encouraging recent advancements in the field this review offers an overview of hydrogen as the ideal renewable energy for the future society its production methods the most recent storage technologies and transportation strategies which suggest a potential breakthrough towards a hydrogen economy. All these changes show that this is really a profound revolution in the development process of human society and has been assessed as having the same significance as the previous industrial revolution.
Zero-emission Propulsion System Featuring, Flettner Rotors, Batteries and Fuel Cells, for a Merchant Ship
Jul 2024
Publication
To meet the International Maritime Organization’s (IMO) goal of decarbonising the shipping sector by 2050 zero-emission ship propulsion systems should be developed to replace conventional fossil fuel-based ones. In this study we propose a zero-emission hybrid hydrogen-wind-powered propulsion system to be retrofitted to a benchmark merchant ship with a conventional propulsion system. The ship and its propulsion systems are modelled using an in-house platform. We analyse power and energy requirements for the ship over a realistic route and one-year schedule factoring in actual sea and weather conditions. Initially we examine the battery-powered propulsion system which proves impractical even with a reduction in the ship’s speed and the addition of a charging station. This retrofitted battery-powered propulsion system will occupy a significant portion of the existing ship’s deadweight due to its substantial weight consequently reducing the ship’s cargo capacity. To address this we evaluate integrating a hydrogen-powered fuel cell system with power equal to the non-propulsive constant load in the ship. We demonstrate that under these conditions and with four Flettner rotors and the charging station positioned mid-port on the ship’s route the size of the zero-emission propulsion system can be approximately 20% of the deadweight rendering such a system feasible.
Efficiency and Consistency Enhancement for Alkaline Electrolyzers Driven by Renewable Energy Sources
May 2023
Publication
Low-cost alkaline water electrolysis from renewable energy sources (RESs) is suitable for large-scale hydrogen production. However fluctuating RESs lead to poor performance of alkaline water electrolyzers (AWEs) at low loads. Here we explore two urgent performance issues: inefficiency and inconsistency. Through detailed operation process analysis of AWEs and the established equivalent electrical model we reveal the mechanisms of inefficiency and inconsistency of low-load AWEs are related to the physical structure and electrical characteristics. Furthermore we propose a multi-mode self-optimization electrolysis converting strategy to improve the efficiency and consistency of AWEs. In particular compared to a conventional dc power supply we demonstrate using a lab-scale and large-scale commercially available AWE that the maximum efficiency can be doubled while the operation range of the electrolyzer can be extended from 30–100% to 10–100% of rated load. Our method can be easily generalized and can facilitate hydrogen production from RESs.
An Analytical Model for the Electrolyser Performance Derived from Materials Parameters
Oct 2017
Publication
Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction of CO2 to synthetic hydrocarbons. Hydrogen can be produced by electrolysis decomposing water in oxygen and hydrogen. This paper presents an overview of the three major electrolysis technologies: acidic (PEM) alkaline (AEL) and solid oxide electrolysis (SOEC). An updated list of existing electrolysers and commercial providers is provided. Most interestingly the specific prices of commercial devices are also given when available. Despite tremendous development of the PEM technology in the past decades the largest and most efficient electrolysers are still alkaline. Thus this technology is expected to play a key role in the transition to the hydrogen society. A detailed description of the components in an alkaline electrolyser and an analytical model of the process are provided. The analytical model allows investigating the influence of the different operating parameters on the efficiency. Specifically the effect of temperature on the electrolyte conductivity—and thus on the efficiency—is analyzed. It is found that in the typical range of operating temperatures for alkaline electrolysers of 65˚C - 220˚C the efficiency varies by up to 3.5 percentage points increasing from 80% to 83.5% at 65˚C and 220˚C respectively.
Decarbonized Green Hydrogen Production by Sorption-enhanced Biomass Gasification: An Integrated Techno-econonic and Environmental Evaluation
Nov 2024
Publication
Deployment of innovative renewable-based energy applications are critical for reducing CO2 emissions and achieving global climate neutrality. This work evaluates the production of decarbonized green H2 based on sorption-enhanced biomass (sawdust) gasification. The calcium-based sorbent was evaluated in a looping cycle configuration as sorption material to enhance both the CO2 capture rate and the energy-efficient hydrogen production. The investigated concept is set to produce 100 MWth high purity hydrogen (>99.95% vol.) with very high decarbonization yield (>98–99%) using woody biomass as a fuel. Conventional biomass (sawdust) gasification systems with and without CO2 capture capability are also assessed for the calculation of energy and economic penalties induced by decarbonization. The results show that the decarbonized green hydrogen manufacture by sorption-enhanced biomass gasification shows attractive performances e.g. high overall energy efficiency (about 50%) reduced energy and economic penalties for almost total decarbonization (down to 8 net efficiency points) low specific carbon emissions at system level (lower than 7 kg/MWh) and negative CO2 emission for whole biomass value chain (about − 518.40 kg/MWh). However significant developments (e.g. improving reactor design and fuel/sorbent conversion yields reducing sorbent make-up etc.) are still needed to advance this innovative concept from present level to industrial sizes.
Advancing Hydrogen Gas Utilization in Industrial Boilers: Impacts on Critical Boiler Components, Mitigation Measures, and Future Perspectives
Sep 2024
Publication
This review sets out to investigate the detrimental impacts of hydrogen gas (H2 ) on critical boiler components and provide appropriate state-of-the-art mitigation measures and future research directions to advance its use in industrial boiler operations. Specifically the study focused on hydrogen embrittlement (HE) and high-temperature hydrogen attack (HTHA) and their effects on boiler components. The study provided a fundamental understanding of the evolution of these damage mechanisms in materials and their potential impact on critical boiler components in different operational contexts. Subsequently the review highlighted general and specific mitigation measures hydrogen-compatible materials (such as single-crystal PWA 1480E Inconel 625 and Hastelloy X) and hydrogen barrier coatings (such as TiAlN) for mitigating potential hydrogen-induced damages in critical boiler components. This study also identified strategic material selection approaches and advanced approaches based on computational modeling (such as phase-field modeling) and data-driven machine learning models that could be leveraged to mitigate potential equipment failures due to HE and HTHA under elevated H2 conditions. Finally future research directions were outlined to facilitate future implementation of mitigation measures material selection studies and advanced approaches to promote the extensive and sustainable use of H2 in industrial boiler operations.
Technology for Green Hydrogen Production: Desk Analysis
Sep 2024
Publication
The use of green hydrogen as a high-energy fuel of the future may be an opportunity to balance the unstable energy system which still relies on renewable energy sources. This work is a comprehensive review of recent advancements in green hydrogen production. This review outlines the current energy consumption trends. It presents the tasks and challenges of the hydrogen economy towards green hydrogen including production purification transportation storage and conversion into electricity. This work presents the main types of water electrolyzers: alkaline electrolyzers proton exchange membrane electrolyzers solid oxide electrolyzers and anion exchange membrane electrolyzers. Despite the higher production costs of green hydrogen compared to grey hydrogen this review suggests that as renewable energy technologies become cheaper and more efficient the cost of green hydrogen is expected to decrease. The review highlights the need for cost-effective and efficient electrode materials for large-scale applications. It concludes by comparing the operating parameters and cost considerations of the different electrolyzer technologies. It sets targets for 2050 to improve the efficiency durability and scalability of electrolyzers. The review underscores the importance of ongoing research and development to address the limitations of current electrolyzer technology and to make green hydrogen production more competitive with fossil fuels.
Overview of Hydrogen Production Technologies for Fuel Cell Utilization
Jun 2023
Publication
With rapidly depleting fossil fuels and growing environmental alarms due to their usage hydrogen as an energy vector provides a clean and sustainable solution. However the challenge lies in replacing mature fossil fuel technology with efficient and economical hydrogen production. This paper provides a technoeconomic and environmental overview of H2 production technologies. Reforming of fossil fuels is still considered as the backbone of large-scale H2 production. Whereas renewable hydrogen has technically advanced and improved its cost remains an area of concern. Finding alternative catalytic materials would reduce such costs for renewable hydrogen production. Taking a mid-term timeframe a viable scenario is replacing fossil fuels with solar hydrogen production integrated with water splitting methods or from biomass gasification. Gasification of biomass is the preferred option as it is carbon neutral and costeffective producing hydrogen at 1.77 – 2.77 $/kg of H2. Among other uses of hydrogen in industrial applications the most viable approach is to use it in hydrogen fuel cells for generating electricity. Commercialization of fuel cell technology is hindered by a lack of hydrogen infrastructure. Fuel cells and hydrogen production units should be integrated to achieve desired results. Case studies of different fuel cells and hydrogen production technologies are presented at the end of this paper depicting a viable and environmentally acceptable approach compared with fossil fuels.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review
Nov 2023
Publication
The depletion of fossil fuels in the current world has been a major concern due to their role as a primary source of energy for many countries. As non-renewable sources continue to deplete there is a need for more research and initiatives to reduce reliance on these sources and explore better alternatives such as renewable energy. Hydrogen is one of the most intriguing energy sources for producing power from fuel cells and heat engines without releasing carbon dioxide or other pollutants. The production of hydrogen via the electrolysis of water using renewable energy sources such as solar energy is one of the possible uses for solid oxide electrolysis cells (SOECs). SOECs can be classified as either oxygen-ion conducting or proton-conducting depending on the electrolyte materials used. This article aims to highlight broad and important aspects of the hybrid SOEC-based solar hydrogen-generating technology which utilizes a mixed-ion conductor capable of transporting both oxygen ions and protons simultaneously. In addition to providing useful information on the technological efficiency of hydrogen production in SOEC this review aims to make hydrogen production more efficient than any other water electrolysis system.
Reducing the Environmental Impact of International Aviationg through Sustainable Aviation Fuel with Integrated Carbon Capture and Storage
Feb 2024
Publication
Sustainable aviation fuels (SAFs) represent the short-term solution to reduce fossil carbon emissions from aviation. The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) was globally adopted to foster and make SAFs production economically competitive. Fischer-Tropsch synthetic paraffinic kerosene (FTSPK) produced from forest residue is a promising CORSIA-eligible fuel. FT conversion pathway permits the integration of carbon capture and storage (CCS) technology which provides additional carbon offsetting ca pacities. The FT-SPK with CCS process was modelled to conduct a comprehensive analysis of the conversion pathway. Life-cycle assessment (LCA) with a well-to-wake approach was performed to quantify the SAF’s carbon footprint considering both biogenic and fossil carbon dynamics. Results showed that 0.09 kg FT-SPK per kg of dry biomass could be produced together with other hydrocarbon products. Well-to-wake fossil emissions scored 21.6 gCO2e per MJ of FT-SPK utilised. When considering fossil and biogenic carbon dynamics a negative carbon flux (-20.0 gCO2eMJ− 1 ) from the atmosphere to permanent storage was generated. However FT-SPK is limited to a 50 %mass blend with conventional Jet A/A1 fuel. Using the certified blend reduced Jet A/A1 fossil emissions in a 37 % and the net carbon flux resulted positive (30.9 gCO2eMJ− 1 ). Sensitivity to variations in process as sumptions was investigated. The lifecycle fossil-emissions reported in this study resulted 49 % higher than the CORSIA default value for FT-SPK. In a UK framework only 0.7 % of aviation fuel demand could be covered using national resources but the emission reduction goal in aviation targeted for 2037 could be satisfied when considering CCS.
A Thermodynamic Model for Cryogenic Liquid Hydrogen Fuel Tanks
Apr 2024
Publication
Hydrogen is used as a fuel in various fields such as aviation space and automobiles due to its high specific energy. Hydrogen can be stored as a compressed gas at high pressure and as a liquid at cryogenic temperatures. In order to keep liquid hydrogen at a cryogenic temperature the tanks for storing liquid hydrogen are required to have insulation to prevent heat leakage. When liquid hydrogen is vaporized by heat inflow a large pressure is generated inside the tank. Therefore a technology capable of predicting the tank pressure is required for cryogenic liquid hydrogen tanks. In this study a thermodynamic model was developed to predict the maximum internal pressure and pressure behavior of cryogenic liquid hydrogen fuel tanks. The developed model considers the heat inflow of the tank due to heat transfer the phase change from liquid to gas hydrogen and the fuel consumption rate. To verify the accuracy of the proposed model it was compared with the analyses and experimental results in the referenced literature and the model presented good results. A cryogenic liquid hydrogen fuel tank was simulated using the proposed model and it was confirmed that the storage time along with conditions such as the fuel filling ratio of liquid hydrogen and the fuel consumption rate should be considered when designing the fuel tanks. Finally it was confirmed that the proposed thermodynamic model can be used to sufficiently predict the internal pressure and the pressure behavior of cryogenic liquid hydrogen fuel tanks.
Explosions of Hydrogen Storages and the Safety Considerations in Hydrogen-Powered Railway Applications—A Review
Nov 2024
Publication
As one of the most promising clean energy sources hydrogen power has gradually emerged as a viable alternative to traditional energy sources. However hydrogen safety remains a significant concern due to the potential for explosions and the associated risks. This review systematically examines hydrogen explosions with a focus on high-pressure and low-temperature storage transportation and usage processes mostly based on the published papers from 2020. The fundamental principles of hydrogen explosions classifications and analysis methods including experimental testing and numerical simulations are explored. Key factors influencing hydrogen explosions are also discussed. The safety issues of hydrogen power on railway applications are focused and finally recommendations are provided for the safe application of hydrogen power in railway transportation particularly for long-distance travel and heavy-duty freight trains with an emphasis on storage safety considerations.
Electrochemical Compression Technologies for High-pressure Hydrogen: Current Status, Challenges and Perspective
Aug 2020
Publication
Hydrogen is an ideal energy carrier in future applications due to clean byproducts and high efciency. However many challenges remain in the application of hydrogen including hydrogen production delivery storage and conversion. In terms of hydrogen storage two compression modes (mechanical and non-mechanical compressors) are generally used to increase volume density in which mechanical compressors with several classifcations including reciprocating piston compressors hydrogen diaphragm compressors and ionic liquid compressors produce signifcant noise and vibration and are expensive and inefcient. Alternatively non-mechanical compressors are faced with issues involving large-volume requirements slow reaction kinetics and the need for special thermal control systems all of which limit large-scale development. As a result modular safe inexpensive and efcient methods for hydrogen storage are urgently needed. And because electrochemical hydrogen compressors (EHCs) are modular highly efcient and possess hydrogen purifcation functions with no moving parts they are becoming increasingly prominent. Based on all of this and for the frst time this review will provide an overview of various hydrogen compression technologies and discuss corresponding structures principles advantages and limitations. This review will also comprehensively present the recent progress and existing issues of EHCs and future hydrogen compression techniques as well as corresponding containment membranes catalysts gas difusion layers and fow felds. Furthermore engineering perspectives are discussed to further enhance the performance of EHCs in terms of the thermal management water management and the testing protocol of EHC stacks. Overall the deeper understanding of potential relationships between performance and component design in EHCs as presented in this review can guide the future development of anticipated EHCs.
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
Feb 2024
Publication
Recently major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose a model that could predict the number of taxis was developed and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen.
Life-cycle Carbon-intensity Mapping for Hydrogen-driven Energy and Economy
Aug 2024
Publication
Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.
Performance Assessment of a 25 kW Solid Oxide Cell Module for Hydrogen Production and Power Generation
Jan 2024
Publication
Hydrogen produced via water electrolysis from renewable electricity is considered a key energy carrier to defossilize hard-to-electrify sectors. Solid oxide cells (SOC) based reactors can supply hydrogen not only in electrolysis but also in fuel cell mode when operating with (synthetic) natural gas or biogas at low conversion (polygeneration mode). However the scale-up of SOC reactors to the multi-MW scale is still a research topic. Strategies for transient operation depending on electricity intermittency still need to be developed. In this work a unique testing environment for SOC reactors allows reversible operation demonstrating the successful switching between electrolysis (− 75 kW) and polygeneration (25 kW) modes. Transient and steady state experiments show promising performance with a net hydrogen production of 53 kg day− 1 in SOEL operation with ca. − 75 kW power input. The experimental results validate the scaling approach since the reactor shows homogenous temperature profiles.
How Would Structural Change in Electricity and Hydrogen End Use Impact Low-Carbon Transition of an Energy System? A Case Study of China
Feb 2024
Publication
Driven by global targets to reduce greenhouse gas emissions energy systems are expected to undergo fundamental changes. In light of carbon neutrality policies China is expected to significantly increase the proportion of hydrogen and electricity in its energy system in the future. Nevertheless the future trajectory remains shrouded in uncertainty. To explore the potential ramifications of varying growth scenarios pertaining to hydrogen and electricity on the energy landscape this study employs a meticulously designed bottom-up model. Through comprehensive scenario calculations the research aims to unravel the implications of such expansions and provide a nuanced analysis of their effects on the energy system. Results show that with an increase in electrification rates cumulative carbon dioxide emissions over a certain planning horizon could be reduced at the price of increased unit reduction costs. By increasing the share of end-use electricity and hydrogen from 71% to 80% in 2060 the unit carbon reduction cost will rise by 17%. Increasing shares of hydrogen could shorten the carbon emission peak time by approximately five years but it also brings an increase in peak shaving demand.
Green Hydrogen and Wind Synergy: Assessing Economic Benefits and Optimal Operational Strategies
Aug 2024
Publication
Volatile electricity prices have raised concerns about the economic feasibility of wind projects in Finland. This study assesses the economic viability and optimal operational strategies for integrating wind-powered green hydrogen production systems. Utilizing modeling and optimization this research evaluates various wind farms in Western Finland over electricity market scenarios from 2019 to 2022 with forecasts extending to 2030. Key economic metrics considered include internal rate of return future value net present value (NPV) and the levelized cost of hydrogen (LCOH). Results indicate that integration of hydrogen production with wind farms shows economic benefits over standalone wind projects potentially reducing LCOH to €2.0/kgH2 by 2030 in regular and low electricity price scenarios and to as low as €0.6/kgH2 in high-price scenarios. The wind farm with the highest capacity factor achieves 47% reductions in LCOH and 22% increases in NPV underscoring the importance of strategic site selection and operational flexibility.
The Role of Power-to-hydrogen in Carbon Neutral Energy and Industrial Systems: Case Finland
Aug 2023
Publication
To combat climate change decarbonization measures are undertaken across the whole energy sector. Industry and transportation sectors are seen as difficult sectors to decarbonize with green hydrogen being proposed as a solution to achieve decarbonization in these sectors. While many methods of introducing hydrogen to these sectors are present in literature few systemlevel works study the specific impacts of large-scale introduction has on power and heat sectors in an energy system. This contribution examines the effects of introducing hydrogen into a Finnish energy system in 2040 by conducting scenario simulations in EnergyPLAN – software. Primary energy consumption and CO2 emissions of the base scenario and hydrogen scenarios are compared. Additionally the differences between a constant and flexible hydrogen production profile are studied. Introducing hydrogen increases electricity consumption by 31.9 % but reduces CO2 emissions by 71.5 % and fossil energy consumption by 72.6%. The flexible hydrogen profile lowers renewable curtailment and improves energy efficiency but requires economically unfeasible hydrogen storage. Biomass consumption remains high and is not impacted significantly by the introduction of hydrogen. Additional measures in other sectors are needed to ensure carbon neutrality.
No more items...