- Home
- A-Z Publications
- Publications
Publications
Current Standards and Configurations for the Permitting and Operation of Hydrogen Refueling Stations
Mar 2023
Publication
The literature lacks a systematic analysis of HRS equipment and operating standards. Researchers policymakers and HRS operators could find this information relevant for planning the network's future expansion. This study is intended to address this information need by providing a comprehensive strategic overview of the regulations currently in place for the construction and maintenance of hydrogen fueling stations. A quick introduction to fundamental hydrogen precautions and hydrogen design is offered. The paper therefore provides a quick overview of hydrogen's safety to emphasize HRS standards rules and regulations. Both gaseous and liquid safety issues are detailed including possible threats and installation and operating expertise. After the safety evaluation layouts equipment and operating strategies for HRSs are presented followed by a review of in-force regulations: internationally by presenting ISO IEC and SAE standards and Europeanly by reviewing the CEN/CENELEC standards. A brief and concise analysis of Italy's HRS regulations is conducted with the goal of identifying potential insights for strategic development and more convenient technology deployment.
Green Hydrogen Production—Fidelity in Simulation Models for Technical–Economic Analysis
Nov 2024
Publication
Green hydrogen production is a sustainable energy solution with great potential offering advantages such as adaptability storage capacity and ease of transport. However there are challenges such as high energy consumption production costs demand and regulation which hinder its largescale adoption. This study explores the role of simulation models in optimizing the technical and economic aspects of green hydrogen production. The proposed system which integrates photovoltaic and energy storage technologies significantly reduces the grid dependency of the electrolyzer achieving an energy self-consumption of 64 kWh per kilogram of hydrogen produced. By replacing the high-fidelity model of the electrolyzer with a reduced-order model it is possible to minimize the computational effort and simulation times for different step configurations. These findings offer relevant information to improve the economic viability and energy efficiency in green hydrogen production. This facilitates decision-making at a local level by implementing strategies to achieve a sustainable energy transition.
The Role of Long-term Hydrogen Storage in Decarbonizing Remote Communities in Canada: An Optimization Framework with Economic, Environmental and Social Objectives
Nov 2024
Publication
Many small Canadian communities lack access to electricity grids relying instead on costly and polluting diesel generators despite the local availability of renewable energies like solar and wind. The intermittent nature of these sources limits reliable power supply; thus hydrogen is proposed as a cost-effective and ecofriendly long-term energy storage solution. However it remains uncertain whether hydrogen storage can significantly contribute to a 100% renewable energy system (100RES) given the diverse characteristics of these communities. Additionally the potential for fully renewable infrastructure to reduce costs mitigate adverse environmental impacts and enhance social impact is still unclear. A multi-period optimization model that balances economic environmental and social objectives to determine the optimal configuration of 100RESs for isolated communities is introduced and utilized to evaluate hydrogen as an energy storage solution to seasonal fluctuations. By identifying the best combinations of technologies tailored to local conditions and priorities this study offers valuable insights for policymakers supporting the transition to sustainable energy and achieving national climate goals. The results demonstrate that hydrogen could serve as an excellent longterm energy storage option to address energy shortages during the winter. Different combinations and sizes of energy generation and storage technologies are selected based on the characteristics of each community. For instance a community in the northern territories with high wind speeds low solar radiation extremely low temperatures and limited biomass resources should optimally rely on wind turbines to meet 80.7% of its total energy demand resulting in a 62.0% cost reduction and a 49.5% decrease in environmental impact compared to the existing diesel-based system. By 2050 all communities are projected to reduce energy costs per capita with northern territories achieving 33% and coastal areas achieving 55% cost reductions eventually leading to the utilization of hydrogen as the main energy storage medium.
Machine Learning-powered Performance Monitoring of Proton Exchange Membrane Water Electrolyzers for Enhancing Green Hydrogen Production as a Sustainable Fuel for Aviation Industry
Aug 2024
Publication
Aviation is a major contributor to transportation carbon emissions but aims to reduce its carbon footprint. Sustainable and environmentally friendly green hydrogen fuel is essential for decarbonization of this industry. Using the extremely low temperature of liquid hydrogen in aviation sector unlocks the opportunity for cryoelectric aircraft concept which exploits the advantageous properties of superconductors onboard. A significant barrier for green hydrogen adoption relates to its high cost and the immediate need for large-scale production which Proton Exchange Membrane Water Electrolyzers (PEMWE) can address through optimal dynamic performance high lifetimes good efficiencies and importantly scalability. In PEMWE the cell is a crucial component that facilitates the electrolysis process and consists of a polymer membrane and electrodes. To control the required production rate of hydrogen the output power of cell should be monitored which usually is done by measuring the cell’s potential and current density. In this paper five different machine learning (ML) models based on different algorithms have been developed to predict this parameter. Findings of the work highlight that the model based on Cascade-Forward Neural Network (CFNN) is investigated to accurately predict the cell potential of PEMWE under different anodic material and working conditions with an accuracy of 99.998 % and 0.001884 in terms of R2 and root mean square error respectively. It can predict the cell potential with a relative error of less than 0.65 % and an absolute error of below 0.01 V. The Standard deviation of 0.000061 for 50 iterations of stability analysis indicated that this model has less sensitivity to the random selection of training data. By accurately estimating different cell’s output with one model and considering its ultra-fast response CFNN model has the potential to be used for both monitoring and the designing purposes of green hydrogen production.
Energy Asset Stranding in Resource-rich Developing Countries and the Just Transition - A Framework to Push Research Frontiers
Jun 2024
Publication
Climate policy will inevitably lead to the stranding of fossil energy assets such as production and transport assets for coal oil and natural gas. Resourcerich developing countries are particularly aected as they have a higher risk of asset stranding due to strong fossil dependencies and wider societal consequences beyond revenue disruption. However there is only little academic and political awareness of the challenge to manage the asset stranding in these countries as research on transition risk like asset stranding is still in its infancy. We provide a research framework to identify wider societal consequences of fossil asset stranding. We apply it to a case study of Nigeria. Analyzing dierent policy measures we argue that compensation payments come with implementation challenges. Instead of one policy alone to address asset stranding a problem-oriented mix of policies is needed. Renewable hydrogen and just energy transition partnerships can be a contribution to economic development and SDGs. However they can only unfold their potential if fair benefit sharing and an improvement to the typical institutional problems in resource-rich countries such as the lack of rule of law are achieved. We conclude with presenting a future research agenda for the global community and acade
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Dec 2022
Publication
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry; (v) the possibility to apply fuel cell systems on different ship types. This review aims to be a reference and a guide to state both the limitations and the developing potential of fuel cell systems for different maritime applications.
Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank
May 2023
Publication
The type IV hydrogen storage tank with a polymer liner is a promising storage solution for fuel cell electric vehicles (FCEVs). The polymer liner reduces the weight and improves the storage density of tanks. However hydrogen commonly permeates through the liner especially at high pressure. If there is rapid decompression damage may occur due to the internal hydrogen concentration as the concentration inside creates the pressure difference. Thus a comprehensive understanding of the decompression damage is significant for the development of a suitable liner material and the commercialization of the type IV hydrogen storage tank. This study discusses the decompression damage mechanism of the polymer liner which includes damage characterizations and evaluations influential factors and damage prediction. Finally some future research directions are proposed to further investigate and optimize tanks.
Hydrogen Refueling Station: Overview of the Technological Status and Research Enhancement
Jan 2023
Publication
Hydrogen refueling stations (HRSs) are key infrastructures rapidly spreading out to support the deployment of fuel cell electric vehicles for several mobility purposes. The research interest in these energy systems is increasing focusing on different research branches: research on innovation on equipment and technology proposal and development of station layout and research aiming to provide experimental data sets for perfor mance investigation. The present manuscript aims to present an overview of the most recent literature on hydrogen stations by presenting the technological status of the system at the global level and their research enhancement on the involved components and processes. After the review of the mentioned aspects this paper will present the already existing layouts and the potential configurations of such infrastructures considering several options of the delivery routes the end-user destination and hydrogen storage thermodynamic status whether liquid or gaseous.
Climate Neutrality of the French Energy System: Overview and Impacts of Sustainable Aviation Fuel Production
Aug 2024
Publication
CO2 emission reduction of sectors such as aviation maritime shipping road haulage and chemical production is challenging but necessary. Although these sectors will most likely continue to rely on carbonaceous energy carriers they are expected to gradually shift away from fossil fuels. In order to do so the prominent option is to utilize alternative carbon sources—like biomass and CO2 originating from carbon capture—for the production of non-fossil carbonaceous vectors (biofuels and e-fuels). However the limited availability of biomass and the varying nature of other carbon sources necessitate a comprehensive evaluation of trade-offs between potential carbon uses and existing sources. Then it is primordial to understand the origin of carbon used in sustainable aviation fuel (SAF) to understand the implications of defossilizing aviation for the energy system. Moreover the production of SAF implies deep changes to the energy system that are quantified in this work. This study utilizes the linear programming cost optimization tool EnergyScope TD to analyze the holistic French energy system encompassing transport industry electricity and heat sectors while ensuring net greenhouse gas neutrality. A novel method to model and quantify carbon flows within the system is introduced enabling a comprehensive assessment of greenhouse gas neutrality. This study highlights the significance of fulfilling clean energy requirements and implementing carbon dioxide removal measures as crucial steps toward achieving climate neutrality. Indeed to reach climate neutrality a production of 1046 TWh of electricity by non-fossil sources is needed. Furthermore the findings underscore the critical role of efficient carbon and energy valorization from biomass providing evidence that producing fuels by combining biomass and hydrogen is optimal. The study also offers valuable insights into the future cost and impact of SAF production for air travel originating from France. That is the European law ReFuelEU would increase the price of plane tickets by +33% and would require 126 TWh of hydrogen and 50 TWh of biomass to produce the necessary 91 TWh of jet fuel. Finally the implications of the assumption behind the production of SAF are discussed.
Economy of Scale for Green Hydrogen-derived Fuel Production in Nepal
Apr 2024
Publication
Opportunity for future green hydrogen development in Nepal comes with enduse infrastructural challenges. The heavy reliance of industries on fossil fuels (63.4%) despite the abundance of hydroelectricity poses an additional challenge to the green transition of Nepal. The presented work aims to study the possibility of storing and utilizing spilled hydroelectricity due to runoff rivers as a compatible alternative to imported petroleum fuels. This is achieved by converting green hydrogen from water electrolysis and carbon dioxide from carbon capture of hard-to-abate industries into synthetic methane for heating applications via the Sabatier process. An economy-of-scale study was conducted to identify the optimal scale for the reference case (Industries in Makwanpur District Nepal) for establishing the Synthetic Natural Gas (SNG) production industry. The technoeconomic assessment was carried out for pilot scale and reference scale production unit individually. Uncertainty and sensitivity analyses were performed to study the project profitability and the sensitivity of the parameters influencing the feasibility of the production plant. The reference scale for the production of Synthetic Natural Gas was determined to be 40 Tons Per Day (TPD) with a total capital investment of around 72.15 Million USD. Electricity was identified as the most sensitive parameter affecting the levelized cost of production (LCOP). The 40 TPD plant was found to be price competitive to LPG when electricity price is subsidized below 3.55 NPR/unit (2.7 c/unit) from 12 NPR/unit (9.2 c/unit). In the case of the 2 TPD plant for it to be profitable the price of electricity must be subsidized to well below 2 NPR/kWh. The study concludes that the possibility of SNG production in Nepal is profitable and price-competitive at large scales and at the same time limited by the low round efficiency due to conversion losses. Additionally it was observed that highly favorable conditions driven by government policies would be required for the pilot-scale SNG project to be feasible.
Wind-coupled Hydrogen Integration for Commercial Greenhouse Food and Power Production: A Case Study
Oct 2024
Publication
This study investigates the feasibility of using green hydrogen technology produced via Proton Exchange Membrane (PEM) electrolysis powered by a 200 MW wind farm for a commercial Greenhouse in Ontario Canada. Nine different scenarios are analyzed exploring various approaches to hydrogen (H2) production transportation and utilization for electricity generation. The aim is to transition from using natural gas to using varying combinations of H2 and natural gas that include 10 % 20 % and 100 % of H2 with 90 % 80 % and 0 % of natural gas to generate 13.3 MW from Combined Heat and Power (CHP) engines. The techno-economic parameters considered for the study are the levelized cost of hydrogen (LCOH) payback period (PBT) internal rate of return (IRR) and discounted payback period (DPB). The study found that a 10 % H2-Natural Gas blend using existing wired or transmission line (W-10H2) with 5 days of storage capacity and 2190 h of CHP operation per year had the lowest cost with a LCOH of USD 3.69/kg. However 100 % of H2 using existing wired or transmission line (W-100H2) with the same storage and operation hours revealed better PBT IRR and DPB with values of 6.205 years 15.16 % and 7.993 years respectively. It was found impractical to build a new pipeline or transport H2 via tube trailer from wind farm site to greenhouse. A sensitivity analysis was also conducted to understand what factors affect the LCOH value the most.
Analysis of Safety Technical Standards for Hydrogen Storage in Fuel Cell Vehicles
Jul 2024
Publication
Fuel cell vehicles are considered as the direct alternative to fuel vehicles due to their similar driving range and refueling time. The United Nations World Forum for Harmonization of Vehicle Regulations (UN/WP29) released the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR13) in July 2013 which was the first international regulation in the field of fuel cell vehicles. There exist some differences between GTR13 and the existing safety technical specifications and standards in China. This paper studied the safety requirements of the GTR13 compressed hydrogen storage system analyzed the current hydrogen storage safety standards for fuel cell vehicles in China and integrated the advantages of GTR13 to propose relevant suggestions for future revision of hydrogen storage standards for fuel cell vehicle in China.
A Study on the Thermal Behavior of Series and Parallel Connection Methods in the Process of Hydrogenation of Ship-Borne Hydrogen Storage Cylinder
Feb 2024
Publication
As a subdivision of the hydrogen energy application field ship-borne hydrogen fuel cell systems have certain differences from vehicle or other application scenarios in terms of their structural type safety environmental adaptability and test verification. The connection method of the ship-borne hydrogen storage cylinder (SHSC) is very important for the hydrogen fuel cell ship and the structural parameters of the SHSC are particularly important in the hydrogen refueling process. To ensure the safe and reliable operation of the hydrogen-powered ship research on the filling of the SHSC under different connection modes was carried out during refueling. In our study a thermal flow physical model of the SHSC was established to research the hydrogen refueling process of the series and parallel SHSCs. The influence of series and parallel modes of the SHSCs on the hydrogen refueling process was explored and the evolution law of the internal flow field pressure and temperature of series and parallel SHSCs under different filling parameters was analyzed by numerical simulation. Our results confirmed the superiority of the parallel modular approach in terms of thermal safety during refueling. The results can supply a technical basis for the future development of hydrogen refueling stations and ship-board hydrogenation control algorithms.
Environmental Assessment of a Hydrogen Supply Chain Using LOHC System with Novel Low-PGM Catalysts: A Life Cycle Approach
Nov 2024
Publication
Hydrogen has emerged as a key element in the transition to a sustainable energy model. Among hydrogen storage and transport technologies liquid organic hydrogen carriers (LOHCs) stand out as a promising alternative for large-scale long-term use. Catalysts essential in these systems are usually composed of platinum group metals (PGMs) over alumina known for their high cost and scarcity. This study analyzes the overall environmental impact of the LOHC benzyltoluene/perhydro-benzyltoluene-based hydrogen supply chain by means of the life cycle assessment (LCA) focusing on the synthesis processes of novel low-PGM catalysts which remain under explored in existing literature. The results identify dehydrogenation as the most impactful step due to significant heat consumption and highlight the substantial environmental footprint associated with the use of platinum in catalyst production. This research provides crucial insights into the environmental implications of LOHC systems particularly the role of novel low-PGM catalysts and offers guidance for their future large-scale applications.
Life Cycle Assessment of Renewable Hydrogen Transport by Ammonia
Nov 2024
Publication
Ammonia is a promising hydrogen carrier for enabling the efficient transport of hydrogen as observed by the many hydrogen transport projects using ammonia. For the clean energy future understanding environmental impacts of the transport system is important. This study conducts life cycle assessment (LCA) for the marine transport of renewable hydrogen using ammonia as the hydrogen carrier. The LCA considered renewable hydrogen produced from four systems; wind-powered electrolysis gasification of forest residue anaerobic digestion of food waste and landfill gas reforming; followed by Haber-Bosch ammonia synthesis using the renewable hydrogen and nitrogen produced from air separation. The ammonia was then transported 11000 km by sea to a destination facility where it was decomposed using either Ru or Ni catalysts to obtain hydrogen. Among the four hydrogen transport systems operated with renewable energy electrolysis-hydrogen system presented the highest global warming impact of 3.31 kg CO2 eq/kg H2 due to electricity use for the electrolysis whereas simpler processes based on a landfill gas system led to the lowest impact of 2.27 kg CO2 eq/kg H2. Process energy consumption was the major contributor to global warming impact with 27%–49.2% of contri bution. The consumption of metals and energy during wind turbine construction resulted in the most significant impact in six out of 12 midpoint impact categories for the electrolysis-hydrogen system which also led to the highest endpoint impacts. The endpoint impacts of the four systems were in the order of electrolysis > food waste > forest residue > landfill gas (from high to low) for both endpoint human health and ecosystems impacts. Ammonia decomposition using Ru catalysts exhibited slightly lower global warming impact than Ni catalysts while final purification of hydrogen by vanadium membrane presented 4.8% lower impacts than the purification by pressure swing adsorption. Large-scale hydrogen supply chains can be achieved by technological improve ment and support of policies and financial schemes.
A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications
Nov 2024
Publication
Hydrogen has been receiving a lot of attention in the last few years since it is seen as a viable yet not thoroughly dissected alternative for addressing climate change issues namely in terms of energy storage and therefore great investments have been made towards research and development in this area. In this context a study about the main options for hydrogen production along with the analysis of a variety of the main power electronics converter topologies for such applications is presented as the purpose of this paper. Much of the analyzed available literature only discusses a few types of hydrogen production methods so it becomes crucial to include an analysis of all known types of methods for producing hydrogen according to their production type along with the color code associated with each type and highlighting the respective contextualization as well as advantages and disadvantages. Regarding the topologies of power electronics converters most suitable for hydrogen production and more specifically for green hydrogen production a list of them was analyzed through the available literature and a discussion of their advantages and disadvantages is presented. These topologies present the advantage of having a low ripple current output which is a requirement for the production of hydrogen.
Shifting to Low-carbon Hydrogen Production Supports Job Creation but Does Not Gurantee a Just Transition
Nov 2024
Publication
Transitioning from carbon-intensive steam methane reforming to low-carbon hydrogen production is essential for decarbonizing the European industrial sector. However the employment impact of such a transition remains unclear. Here we estimate the effects using a transition pathways optimization model and industrial survey data. The results show that an electrolysis-based hydrogen sector transition would create 40000 jobs in the hydrogen sector by 2050. However these jobs are not equally distributed with Western Europe hosting the largest share (40%) and 20% of current hydrogen-producing regions experiencing net job decreases. Even after accounting for renewable energy jobs created by electrolysis-driven electricity demand growth the 2050 low-carbon hydrogen workforce would provide only 10% of the jobs currently offered by European fossil fuel production. Numerous uncertainties and regional development inequities suggest the need for sector-diversified workforce transition plans and training programs to foster skills suited to multiple low-carbon opportunities.
Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives
Feb 2022
Publication
The recovery of energy and valuable compounds from exhaust gases in the iron and steel industry deserves specialattention due to the large power consumption and CO 2 emissions of the sector. In this sense the hydrogen content of coke oven gas(COG) has positioned it as a promising source toward a hydrogen-based economy which could lead to economic and environmentalbenefits in the iron and steel industry. COG is presently used for heating purposes in coke batteries or furnaces while in highproduction rate periods surplus COG is burnt in flares and discharged into the atmosphere. Thus the recovery of the valuablecompounds of surplus COG with a special focus on hydrogen will increase the efficiency in the iron and steel industry compared tothe conventional thermal use of COG. Different routes have been explored for the recovery of hydrogen from COG so far: i)separation/purification processes with pressure swing adsorption or membrane technology ii) conversion routes that provideadditional hydrogen from the chemical transformation of the methane contained in COG and iii) direct use of COG as fuel forinternal combustion engines or gas turbines with the aim of power generation. In this study the strengths and bottlenecks of themain hydrogen recovery routes from COG are reviewed and discussed.
Pieces of a Jigsaw: Opportunities and Challenges in the Nascent Australian Hydrogen Mobility Market
Mar 2023
Publication
Mobility has been a prominent target for proponents of the hydrogen economy. Given the complexities involved in the mobility value chain actors hoping to participate in this nascent market must overcome a range of challenges relating to the availability of vehicles the co-procurement of supporting infrastructure a favourable regulatory environment and a supportive community among others. In this paper we present a state-of-play account of the nascent hydrogen mobility market in Victoria Australia drawing on data from a workshop (N ¼ 15) and follow-up interviews (n ¼ 10). We interpret findings through a socio-technical framework to understand the ways in which fuel cell electric vehicles (FCEVs)dand hydrogen technologies more generallydare conceptualised by different stakeholder groups and how these conceptualisations mediate engagement in this unfolding market. Findings reveal prevailing efforts to make sense of the FCEV market during a period of considerable institutional ambiguity. Discourses embed particular worldviews of FCEV technologies themselves in addition to the envisioned roles the resultant products and services will play in broader environmental and energy transition narratives. Efforts to bring together stakeholders representing different areas of the FCEV market should be seen as important enablers of success for market participants.
A Perspective on Low-Temperature Water Electrolysis - Challenges in Alkaline and Acidic Technology
Dec 2017
Publication
Water electrolysis is considered as an important technology for an increased renewable energy penetration. This perspective on low-temperature water electrolysis joins the dots between the interdisciplinary fields of fundamental science describing physicochemical processes engineering for the targeted design of cell components and the development of operation strategies. Within this aim the mechanisms of ion conduction gas diffusion corrosion and electrocatalysis are reviewed and their influence on the optimum design of separators electrocatalysts electrodes and other cell components are discussed. Electrocatalysts for the water splitting reactions and metals for system components are critically accessed towards their stability and functionality. On the basis of the broad scientific analysis provided challenges for the design of water electrolyzers are elucidated with special regard to the alkaline or acidic media of the electrolyte.
No more items...