- Home
- A-Z Publications
- Publications
Publications
Environmental and Climate Impacts of a Large-scale Deployment of Green Hydrogen in Europe
Apr 2024
Publication
Green hydrogen is expected to play a vital role in decarbonizing the energy system in Europe. However large-scale deployment of green hydrogen has associated potential trade-offs in terms of climate and other environmental impacts. This study aims to shed light on a comprehensive sustainability assessment of this large-scale green hydrogen deployment based on the EMPIRE energy system modeling compared with other decarbonization paths. Process-based Life Cycle Assessment (LCA) is applied and connected with the output of the energy system model revealing 45% extra climate impact caused by the dedicated 50% extra renewable infrastructure to deliver green hydrogen for the demand in the sectors of industry and transport in Europe towards 2050. Whereas the analysis shows that green hydrogen eventually wins on the climate impact within four designed scenarios (with green hydrogen with blue hydrogen without green hydrogen and baseline) mainly compensated by its clean usage and renewable electricity supply. On the other hand green hydrogen has a lower performance in other environmental impacts including human toxicity ecotoxicity mineral use land use and water depletion. Furthermore a monetary valuation of Life Cycle Impact (LCI) is estimated to aggregate 13 categories of environmental impacts between different technologies. Results indicate that the total monetized LCI cost of green hydrogen production is relatively lower than that of blue hydrogen. In overview a large-scale green hydrogen deployment potentially shifts the environmental pressure from climate and fossil resource use to human health mineral resource use and ecosystem damage due to its higher material consumption of the infrastructure.
Coupling Wastewater Treatment with Fuel Cells and Hydrogen Technology
Apr 2024
Publication
Fuel cells (FCs) and hydrogen technologies are emerging renewable energy sources with promising results when applied to wastewater treatment (WWT). These devices serve not only for power generation but some specific FCs can be employed for degradation of pollutants and synthesis of intermediates needed in WWT. Microbial FCs are potent devices for WWT even containing refractory pollutants. Despite being a nascent technology with high capital expenses the use of cost-effective materials reduction of operational cost and increased generation of energy and value-added chemicals such as hydrogen will facilitate the market penetration through selected niches and hybridization with alternative WWT technologies.
The Role of Hydrogen in the Energy Transition of the Oil and Gas Industry
May 2024
Publication
Hydrogen primarily produced from steam methane reforming plays a crucial role in oil refining and provides a solution for the oil and gas industry's long-term energy transition by reducing CO2 emissions. This paper examines hydrogen’s role in this transition. Firstly experiences from oil and gas exploration including in-situ gasification can be leveraged for hydrogen production from subsurface natural hydrogen reservoirs. The produced hydrogen can serve as fuel for generating steam and heat for thermal oil recovery. Secondly hydrogen can be blended into gas for pipeline transportation and used as an alternative fuel for oil and gas hauling trucks. Additionally hydrogen can be stored underground in depleted gas fields. Lastly oilfield water can be utilized for hydrogen production using geothermal energy from subsurface oil and gas fields. Scaling up hydrogen production faces challenges such as shared use of oil and gas infrastructures increased carbon tax for promoting blue hydrogen and the introduction of financial incentives for hydrogen production and consumption hydrogen leakage prevention and detection.
Potential Capacity and Cost Assessments for Hydrogen Production from Marine Sources
May 2024
Publication
The current study comprehensively examines the application of wave tidal and undersea current energy sources of Turkiye for green hydrogen fuel production and cost analysis. The estimated potential capacity of each city is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Turkiye is projected to be 7.33 million tons using a proton exchange membrane electrolyser (PEMEL). Cities with the highest hydrogen production capacities from marine applications are Mugla Izmir Antalya and Canakkale with 998.10 kt 840.31 kt 605.46 kt and 550.42 kt respectively. The study calculations obviously show that there is a great potential by using excess power in producing hydrogen which will result in an economic value of 3.01 billion US dollars. This study further helps develop a detailed hydrogen map for every city in Turkiye using the identified potential capacities of renewable energy sources and the utilization of electrolysers to make green hydrogen by green power. The potentials and specific capacities for every city are also highlighted. Furthermore the study results are expected to provide clear guidance for government authorities and industries to utilize such a potential of renewable energy for investment and promote clean energy projects by further addressing concerns caused by the usage of carbon-based (fossil fuels dependent) energy options. Moreover green hydrogen production and utilization in every sector will help achieve the national targets for a net zero economy and cope with international targets to achieve the United Nation's sustainable development goals.
Towards Low-carbon Power Networks: Optimal Location and Sizing of Renewable Energy Sources and Hydrogen Storage
Apr 2024
Publication
This paper proposes a systematic optimization framework to jointly determine the optimal location and sizing decisions of renewables and hydrogen storage in a power network to achieve the transition to low-carbon networks efficiently. We obtain these strategic decisions based on the multi-period alternating current optimal power flow (AC MOPF) problem that jointly analyzes power network renewable and hydrogen storage interactions at the operational level by considering the uncertainty of renewable output seasonality of electricity demand and electricity prices. We develop a tailored solution approach based on second-order cone programming within a Benders decomposition framework to provide globally optimal solutions. In a test case we show that the joint integration of renewable sources and hydrogen storage and consideration of the AC MOPF model significantly reduces the operational cost of the power network. In turn our findings can provide quantitative insights to decision-makers on how to integrate renewable sources and hydrogen storage under different settings of the hydrogen selling price renewable curtailment cost emission tax price and conversion efficiency.
Hydrogen in Natural Gas Grids: Prospects and Recommendations About Gas Flow Meters
Aug 2024
Publication
To inject green hydrogen (H2) into the existing natural gas (NG) infrastructure is one way to decarbonize the European energy system. However asset readiness is necessary to be successful. Preliminary analysis and experimental results about the compatibility of hydrogen and natural gas mixtures (H2NG) with the actual gas grids make the scientific community confident about the feasibility. Nevertheless specific technical questions need more research. A significant topic of debate is the impact of H2NG mixtures on the performance of state-ofthe-art fiscal measuring devices which are essential for accurate billing. Identifying and addressing any potential degradation in their metrological performance due to H2NG is critical for decision-making. However the literature lacks data about the gas meters’ technologies currently installed in the NG grids such as a comprehensive overview of their readiness at different concentrations while data are fragmented among different sources. This paper addresses these gaps by analyzing the main characteristics and categorizing more than 20000 gas meters installed in THOTH2 project partners’ grids and by summarizing the performance of traditional technologies with H2NG mixtures and pure H2 based on literature review operators experience and manufacturers knowledge. Based on these insights recommendations are given to stakeholders on overcoming the identified barriers to facilitate a smooth transition.
Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems
Sep 2024
Publication
A promising energy carrier and storage solution for integrating renewable energies into the power grid currently being investigated is hydrogen produced via electrolysis. It already serves various purposes but it might also enable the development of hydrogen-based electricity storage systems made up of electrolyzers hydrogen storage systems and generators (fuel cells or engines). The adoption of hydrogen-based technologies is strictly linked to the electrification of end uses and to multicarrier energy grids. This study introduces a generic method to integrate and optimize the sizing and operation phases of hydrogen-based power systems using an energy hub optimization model which can manage and coordinate multiple energy carriers and equipment. Furthermore the uncertainty related to renewables and final demands was carefully assessed. A case study on an urban microgrid with high hydrogen demand for mobility demonstrates the method’s applicability showing how the multi-objective optimization of hydrogen-based power systems can reduce total costs primary energy demand and carbon equivalent emissions for both power grids and mobility down to −145%. Furthermore the adoption of the uncertainty assessment can give additional benefits allowing a downsizing of the equipment.
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Sep 2024
Publication
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First the power and energy requirements of the vehicle are determined through traction calculations and a real-time energy management strategy is used to ensure efficient power distribution. On this basis a multi-objective parameter configuration optimization model is developed which comprehensively considers economic cost and system weight and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13% respectively compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.
Technical–Economic Analysis of Renewable Hydrogen Production from Solar Photovoltaic and Hydro Synergy in a Pilot Plant in Brazil
Sep 2024
Publication
Renewable hydrogen obtained from renewable energy sources especially when produced through water electrolysis is gaining attention as a promising energy vector to deal with the challenges of climate change and the intermittent nature of renewable energy sources. In this context this work analyzes a pilot plant that uses this technology installed in the Itumbiara Hydropower Plant located between the states of Goiás and Minas Gerais Brazil from technical and economic perspectives. The plant utilizes an alkaline electrolyzer synergistically powered by solar photovoltaic and hydro sources. Cost data for 2019 when the equipment was purchased and 2020–2023 when the plant began continuous operation are considered. The economic analysis includes annualized capital maintenance and variable costs which determines the levelized cost of hydrogen (LCOH). The results obtained for the pilot plant’s LCOH were USD 13.00 per kilogram of H2 with an efficiency loss of 2.65% for the two-year period. Sensitivity analysis identified the capacity factor (CF) as the main determinant of the LCOH. Even though the analysis specifically applies to the Itumbiara Hydropower Plant the CF can be extrapolated to larger plants as it directly influences hydrogen production regardless of plant size or capacity
Net-Zero Greenhouse Gas Emission Electrified Aircraft Propulsion for Large Commercial Transport
Sep 2024
Publication
Until recently electrified aircraft propulsion (EAP) technology development has been driven by the dual objectives of reducing greenhouse gas (GHG) emissions and addressing the depletion of fossil fuels. However the increasing severity of climate change posing a significant threat to all life forms has resulted in the global consensus of achieving net-zero GHG emissions by 2050. This major shift has alerted the aviation electrification industry to consider the following: What is the clear path forward for EAP technology development to support the net-zero GHG goals for large commercial transport aviation? The purpose of this paper is to answer this question. After identifying four types of GHG emissions that should be used as metrics to measure the effectiveness of each technology for GHG reduction the paper presents three significant categories of GHG reduction efforts regarding the engine evaluates the potential of EAP technologies within each category as well as combinations of technologies among the different categories using the identified metrics and thus determines the path forward to support the net-zero GHG objective. Specifically the paper underscores the need for the aviation electrification industry to adapt adjust and integrate its EAP technology development into the emerging new engine classes. These innovations and collaborations are crucial to accelerate net-zero GHG efforts effectively.
Cost-optimal Design and Operation of Hydrogen Refueling Stations with Mechanical and Electrochemical Hydrogen Compressors
Sep 2024
Publication
Hydrogen refueling stations (HRS) can cause a significant fraction of the hydrogen refueling cost. The main cost contributor is the currently used mechanical compressor. Electrochemical hydrogen compression (EHC) has recently been proposed as an alternative. However its optimal integration in an HRS has yet to be investigated. In this study we compare the performance of a gaseous HRS equipped with different compressors. First we develop dynamic models of three process configurations which differ in the compressor technology: mechanical vs. electrochemical vs. combined. Then the design and operation of the compressors are optimized by solving multi-stage dynamic optimization problems. The optimization results show that the three configurations lead to comparable hydrogen dispensing costs because the electrochemical configuration exhibits lower capital cost but higher energy demand and thus operating cost than the mechanical configuration. The combined configuration is a trade-off with intermediate capital and operating cost.
Towards the Design of a Hydrogen-powered Ferry for Cleaner Passenger Transport
Aug 2024
Publication
The maritime transportation sector is a large and growing contributor of greenhouse gas and other emissions. Therefore stringent measures have been taken by the International Maritime Organization to mitigate the environmental impact of the international shipping. These lead to the adoption of new technical solutions involving clean fuels such as hydrogen and high efficiency propulsion technologies that is fuel cells. In this framework this paper proposes a methodological approach aimed at supporting the retrofit design process of a car-passenger ferry operating in the Greece’s western maritime zone whose conventional powertrain is replaced with a fuel cell hybrid system. To this aim first the energy/power requirements and the expected hydrogen consumption of the vessel are determined basing on a typical operational profile retrieved from data provided by the shipping company. Three hybrid powertrain configurations are then proposed where fuel cell and batteries are balanced out according to different design criteria. Hence a new vessel layout is defined for each of the considered options by taking into account on-board weight and space constraints to allocate the components of the new hydrogen-based propulsion systems. Finally the developed vessel configurations are simulated in a virtual towing tank environment in order to assess their hydrodynamic response and compare them with the original one thus providing crucial insights for the design process of new hydrogen-fueled vessel solutions. Findings from this study reveal that the hydrogen-based configurations of the vessel are all characterized by a slight reduction of the payload mainly due to the space required to allocate the hydrogen storage system; instead the hydrodynamic behavior of the H2 powered vessels is found to be similar to the one of the original Diesel configuration; also from a hydrodynamic point of view the results show that mid load operating conditions get relevance for the design process of the hybrid vessels.
Detailed Analysis of a Pure Hydrogen-fueled Dual-fuel Engine in Terms of Performance and Greenhouse Gas Emissions
Sep 2024
Publication
The current study seeks to greenhouse gas emissions reduction in an existing engine under dual-fuel combustion fueled with diesel fuel and natural gas due to great concerns about global warming. This simulation study focuses on the identification of areas prone to the formation of greenhouse gas emissions in engine cylinders. The simulation results of dual-fuel combustion confirmed that the possibility of incomplete combustion and the formation of greenhouse gas emissions in high levels are not far from expected. Therefore an efficient combustion strategy along with replacing natural gas with hydrogen was considered. Only changing the combustion mode to reactivity-controlled compression ignition has led to the improvement of the natural gas burning rate and guarantees a 32 % reduction in unburned methane and 50 % carbon monoxide. To further reduce engine emissions while changing the combustion mode a part of natural gas replacement with hydrogen to the complete elimination of it was evaluated. Increasing the share of hydrogen energy in the intake air-natural gas mixture up to 54 % without exhaust gas recirculation does not lead to diesel knock. Moreover improvement of engine load and efficiency can be achieved by up to 18 % and 6 % respectively. Natural gas consumption can be reduced by up to 67 %. Meanwhile the unburned methane and carbon dioxide mass known as greenhouse gas emissions can be reduced to less than 1 % and up to 50 % respectively. Continued replacement of natural gas with hydrogen until its complete elimination guarantees a reduction of 92000 cubic meters of natural gas per year in one engine cylinder. Although the engine efficiency and load face a decrease of 0.8 % and 5.0 % respectively; the amount of carbon dioxide can be decreased by about 4.5 times. Unburned methane carbon monoxide and nitrogen oxides can be reduced to below the relevant EURO VI range while the amount of unburned hydrogen compared to the hydrogen entering the engine is about 0.5 %.
Advances in Hospital Energy Systems: Genetic Algorithm Optimization of a Hybrid Solar and Hydrogen Fuel Cell Combined Heat and Power
Sep 2024
Publication
This paper presents an innovative Fuel Cell Combined Heat and Power (FC–CHP) system designed to enhance energy efficiency in hospital settings. The system primarily utilizes solar energy captured through photovoltaic (PV) panels for electricity generation. Excess electricity is directed to an electrolyzer for water electrolysis producing hydrogen which is stored in high-pressure tanks. This hydrogen serves a dual purpose: it fuels a boiler for heating and hot water needs and powers a fuel cell for additional electricity when solar production is low. The system also features an intelligent energy management system that dynamically allocates electrical energy between immediate consumption hydrogen production and storage while also managing hydrogen release for energy production. This study focuses on optimization using genetic algorithms to optimize key components including the peak power of photovoltaic panels the nominal power of the electrolyzer fuel cell and storage tank sizes. The objective function minimizes the sum of investment and electricity costs from the grid considering a penalty coefficient. This approach ensures optimal use of renewable energy sources contributing to energy efficiency and sustainability in healthcare facilities.
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
A Comprehensive Literature Review on Hydrogen Tanks: Storage, Safety, and Structural Integrity
Oct 2024
Publication
In recent years there has been a significant increase in research on hydrogen due to the urgent need to move away from carbon-intensive energy sources. This transition highlights the critical role of hydrogen storage technology where hydrogen tanks are crucial for achieving cleaner energy solutions. This paper aims to provide a general overview of hydrogen treatment from a mechanical viewpoint and to create a comprehensive review that integrates the concepts of hydrogen safety and storage. This study explores the potential of hydrogen applications as a clean energy alternative and their role in various sectors including industry automotive aerospace and marine fields. The review also discusses design technologies safety measures material improvements social impacts and the regulatory landscape of hydrogen storage tanks and safety technology. This work provides a historical literature review up to 2014 and a systematic literature review from 2014 to the present to fill the gap between hydrogen storage and safety. In particular a fundamental feature of this work is leveraging systematic procedural techniques for performing an unbiased review study to offer a detailed analysis of contemporary advancements. This innovative approach differs significantly from conventional review methods since it involves a replicable scientific and transparent process which culminates in minimizing bias and allows for highlighting the fundamental issues about the topics of interest and the main conclusions of the experts in the field of reference. The systematic approach employed in the paper was used to analyze 55 scientific articles resulting in the identification of six primary categories. The key findings of this review work underline the need for improved materials enhanced safety protocols and robust infrastructure to support hydrogen adoption. More importantly one of the fundamental results of the present review analysis is pinpointing the central role that composite materials will play during the transition toward hydrogen applications based on thin-walled industrial vessels. Future research directions are also proposed in the paper thereby emphasizing the importance of interdisciplinary collaboration to overcome existing challenges and facilitate the safe and efficient use of hydrogen.
Hydrogen Propulsion Systems for Aircraft, a Review on Recent Advances and Ongoing Challenges
Oct 2024
Publication
Air transportation contributes significantly to harmful and greenhouse gas emissions. To combat these issues there has been a recent emergence of aircraft electrification as a potential solution to mitigate environmental concerns and address fuel shortages. However current technologies related to batteries electric machinery and power systems are still in the developmental phase to meet the requirements for power and energy density weight safety and reliability. In the interim there is a focus on the more electric and hybrid electric propulsion systems for aircraft. Hydrogen with its high specific energy and carbon-free characteristics stands out as a promising alternative fuel for aviation. This paper is centred on the application of hydrogen in aircraft propulsion mainly fuel cell hybrid electric (FCHE) propulsion systems. Furthermore application of hydrogen as a fuel for the aircraft propulsion systems is considered. A comprehensive overview of the hydrogen propulsion systems in aviation is presented with an emphasis on the technical aspects crucial for creating a more sustainable and efficient air transportation sector. Additionally the paper acknowledges the technical and regulatory challenges that must be addressed to attain these goals.
A Review on Liquid Hydrogen Fuel Systems in Aircraft Applications for Gas Turbine Engines
Oct 2024
Publication
The transition from traditional aviation fuels to low-emission alternatives such as hydrogen is a crucial step towards a sustainable future for aviation. Conventional jet fuels substantially contribute to greenhouse gas emissions and climate change. Hydrogen fuel especially "green" hydrogen offers great potential for achieving full sustainability in aviation. Hybrid/electric/fuel cell technologies may be used for shorter flights while longrange aircraft are more likely to combust hydrogen in gas turbines. Liquid hydrogen is necessary to minimize storage tank weight but the required fuel systems are at a low technology readiness level and differ significantly from Jet A-1 systems in architecture operation and performance. This paper provides an in-depth review covering the development of liquid hydrogen fuel system design concepts for gas turbines since the 1950s compares insights from key projects such as NASA studies and ENABLEH2 alongside an analysis of recent publications and patent applications and identifies the technological advancements required for achieving zeroemission targets through hydrogen-fuelled propulsion.
Environmental Benefits of Hydrogen-Powered Buses: A Case Study of Coke Oven Gas
Oct 2024
Publication
This study conducted a Life Cycle Assessment (LCA) of alternative (electric and hydrogen) and conventional diesel buses in a large metropolitan area. The primary focus was on hydrogen derived from coke oven gas a byproduct of the coking process which is a crucial step in the steel production value chain. The functional unit was 1000000 km traveled over 15 years. LCA analysis using SimaPro v9.3 revealed significant environmental differences between the bus types. Hydrogen buses outperformed electric buses in all 11 environmental impact categories and in 5 of 11 categories compared to conventional diesel buses. The most substantial improvements for hydrogen buses were observed in ozone depletion (8.6% of diesel buses) and global warming (29.9% of diesel buses). As a bridge to a future dominated by green hydrogen employing grey hydrogen from coke oven gas in buses provides a practical way to decrease environmental harm in regions abundant with this resource. This interim solution can significantly contribute to climate policy goals.
Green Hydrogen and its Unspoken Challenges for Energy Justice
Oct 2024
Publication
Green hydrogen is often promoted as a key facilitator for the clean energy transition but its implementation raises concerns around energy justice. This paper examines the socio-political and techno-economic challenges that green hydrogen projects may pose to the three tenets of energy justice: distributive procedural and recognition justice. From a socio-political perspective the risk of neocolonial resource extraction uneven distribution of benefits exclusion of local communities from decision-making and disregard for indigenous rights and cultures threaten all three justice tenets. Techno-economic factors such as water scarcity land disputes and resource-related conflicts in potential production hotspots further jeopardise distributive and recognition justice. The analysis framed by an adapted PEST model reveals that while green hydrogen holds promise for sustainable development its implementation must proactively address these justice challenges. Failure to do so could perpetuate injustices exploitation and marginalisation of vulnerable communities undermining the sustainability goals it aims to achieve. The paper highlights the need for inclusive and equitable approaches that respect local sovereignty integrate diverse stakeholders and ensure fair access and benefit-sharing. Only by centring justice considerations can the transition to green hydrogen catalyse positive social change and realise its full potential as a driver of sustainable energy systems.
No more items...