- Home
- A-Z Publications
- Publications
Publications
Computational Predictions of Hydrogen-assisted Fatigue Crack Growth
May 2024
Publication
A new model is presented to predict hydrogen-assisted fatigue. The model combines a phase field description of fracture and fatigue stress-assisted hydrogen diffusion and a toughness degradation formulation with cyclic and hydrogen contributions. Hydrogen-assisted fatigue crack growth predictions exhibit an excellent agreement with experiments over all the scenarios considered spanning multiple load ratios H2 pressures and loading frequencies. These are obtained without any calibration with hydrogen-assisted fatigue data taking as input only mechanical and hydrogen transport material properties the material’s fatigue characteristics (from a single test in air) and the sensitivity of fracture toughness to hydrogen content. Furthermore the model is used to determine: (i) what are suitable test loading frequencies to obtain conservative data and (ii) the underestimation made when not pre-charging samples. The model can handle both laboratory specimens and large-scale engineering components enabling the Virtual Testing paradigm in infrastructure exposed to hydrogen environments and cyclic loading.
Cost of Green Hydrogen
Sep 2024
Publication
Acting in accordance with the requirements of the 2015 Paris Agreement Poland as well as other European Union countries have committed to achieving climate neutrality by 2050. One of the solutions to reduce emissions of harmful substances into the environment is the implementation of large-scale hydrogen technologies. This article presents the cost of producing green hydrogen produced using an alkaline electrolyzer with electricity supplied from a photovoltaic farm. The analysis was performed using the Monte Carlo method and for baseline assumptions including an electricity price of 0.053 EUR/kWh the cost of producing green hydrogen was 5.321 EUR/kgH2 . In addition this article presents a sensitivity analysis showing the impact of the electricity price before and after the energy crisis and other variables on the cost of green hydrogen production. The large change occurring in electricity prices (from 0.035 EUR/kWh to 0.24 EUR/kWh) significantly affected the levelized cost of green hydrogen (LCOH) which could change by up to 14 EUR/kgH2 in recent years. The results of the analysis showed that the parameters that successively have the greatest impact on the cost of green hydrogen production are the operating time of the plant and the unit capital expenditure. The development of green hydrogen production facilities along with the scaling of technology in the future can reduce the cost of its production.
Hydrogen in Burners: Economic and Environmental Implications
Nov 2024
Publication
For centuries fossil fuels have been the primary energy source but their unchecked use has led to significant environmental and economic challenges that now shape the global energy landscape. The combustion of these fuels releases greenhouse gases which are critical contributors to the acceleration of climate change resulting in severe consequences for both the environment and human health. Therefore this article examines the potential of hydrogen as a sustainable alternative energy source capable of mitigating these climate impacts. It explores the properties of hydrogen with particular emphasis on its application in industrial burners and furnaces underscoring its clean combustion and high energy density in comparison to fossil fuels and also examines hydrogen production through thermochemical and electrochemical methods covering green gray blue and turquoise pathways. It discusses storage and transportation challenges highlighting methods like compression liquefaction chemical carriers (e.g. ammonia) and transport via pipelines and vehicles. Hydrogen combustion mechanisms and optimized burner and furnace designs are explored along with the environmental benefits of lower emissions contrasted with economic concerns like production and infrastructure costs. Additionally industrial and energy applications safety concerns and the challenges of large-scale adoption are addressed presenting hydrogen as a promising yet complex alternative to fossil fuels.
Review of the Hydrogen Supply Chain and Use in Africa
Oct 2024
Publication
The high potential in renewable energy sources (RES) and the availability of strategic minerals for green hydrogen technologies place Africa in a promising position for the development of a climate-compatible economy leveraging on hydrogen. This study reviews the potential hydrogen value chain in Africa considering production and final uses while addressing perspectives on policies possible infrastructures and facilities for hydrogen logistics. Through scientific studies research and searching in relevant repositories this review features the collection analysis of technical data and georeferenced information about key aspects of the hydrogen value chain. Detailed maps and technical data for gas transport infrastructure and liquefaction terminals in the continent are reported to inform and elaborate findings about readiness for hydrogen trading and domestic use in Africa. Specific maps and technical data have been also collected for the identification of potential hydrogen offtakers focusing on individual industrial installations to produce iron and steel chemicals and oil refineries. Finally georeferenced data are presented for main road and railway corridors as well as for most important African ports as further end-use and logistic platforms. Beyond technical information this study collects and discusses more recent perspectives about policies and implementation initiatives specifically addressing hydrogen production logistics and final use also introducing potential criticalities associated with environmental and social impacts.
Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives
Oct 2024
Publication
The growing emphasis on renewable energy highlights hydrogen’s potential as a clean energy carrier. However traditional hydrogen production methods contribute significantly to carbon emissions. This review examines the integration of carbon capture and storage (CCS) technologies with hydrogen production processes focusing on their ability to mitigate carbon emissions. It evaluates various hydrogen production techniques including steam methane reforming electrolysis and biomass gasification and discusses how CCS can enhance environmental sustainability. Key challenges such as economic technical and regulatory obstacles are analyzed. Case studies and future trends offer insights into the feasibility of CCS–hydrogen integration providing pathways for reducing greenhouse gases and facilitating a clean energy transition.
Wind-coupled Hydrogen Integration for Commercial Greenhouse Food and Power Production: A Case Study
Oct 2024
Publication
This study investigates the feasibility of using green hydrogen technology produced via Proton Exchange Membrane (PEM) electrolysis powered by a 200 MW wind farm for a commercial Greenhouse in Ontario Canada. Nine different scenarios are analyzed exploring various approaches to hydrogen (H2) production transportation and utilization for electricity generation. The aim is to transition from using natural gas to using varying combinations of H2 and natural gas that include 10 % 20 % and 100 % of H2 with 90 % 80 % and 0 % of natural gas to generate 13.3 MW from Combined Heat and Power (CHP) engines. The techno-economic parameters considered for the study are the levelized cost of hydrogen (LCOH) payback period (PBT) internal rate of return (IRR) and discounted payback period (DPB). The study found that a 10 % H2-Natural Gas blend using existing wired or transmission line (W-10H2) with 5 days of storage capacity and 2190 h of CHP operation per year had the lowest cost with a LCOH of USD 3.69/kg. However 100 % of H2 using existing wired or transmission line (W-100H2) with the same storage and operation hours revealed better PBT IRR and DPB with values of 6.205 years 15.16 % and 7.993 years respectively. It was found impractical to build a new pipeline or transport H2 via tube trailer from wind farm site to greenhouse. A sensitivity analysis was also conducted to understand what factors affect the LCOH value the most.
Investments in Green Hydrogen as a Flexibility Source for the European Power System by 2050: Does it Pay Off?
Oct 2024
Publication
The European Union aims to deploy a high share of renewable energy sources in Europe’s power system by 2050. Large-scale intermittent wind and solar power production requires flexibility to ensure an adequate supply–demand balance. Green hydrogen (GH) can increase power systems’ flexibility and decrease renewable energy production’s curtailment. However investing in GH is costly and dependent on electricity prices which are important for operational costs in electrolysis. Moreover the use of GH for power system flexibility might not be economically viable if there is no hydrogen demand from the hydrogen market. If so questions would arise as to what would be the incentives to introduce GH as a source of flexibility in the power system and how would electrolyzer costs hydrogen demand and other factors affect the economic viability of GH usage for power system flexibility. The paper implements a European power system model formulated as a stochastic program to address these questions. The authors use the model to compare various instances with hydrogen in the power system to a no-hydrogen instance. The results indicate that by 2050 deployment of approximately 140 GW of GH will pay off investments and make the technology economically viable. We find that the price of hydrogen is estimated to be around €30/MWh.
Optimizing Sustainable Energy Systems: A Comparative Study of Geothermal-powered Desalination for Green Hydrogen Production
Oct 2024
Publication
The synergy between hydrogen and water is crucial in moving towards a sustainable energy future. This study explores the integration of geothermal energy with desalination and hydrogen production systems to address water and clean energy demands. Two configurations one using multi-effect distillation (MED) and the other reverse osmosis (RO) were designed and compared. Both configurations utilized geothermal energy with MED directly using geothermal heat and RO converting geothermal energy into electricity to power desalination. The systems are evaluated based on various performance indicators including net power output desalinated water production hydrogen production exergy efficiency and levelized costs. Multi-objective optimization using an artificial neural network (ANN) and genetic algorithm (GA) was conducted to identify optimal operational conditions. Results highlighted that the RO-based system demonstrated higher water production efficiency achieving a broader range of optimal solutions and lower levelized costs of water (LCOW) and hydrogen production while the MED-based system offered economic advantages under specific conditions. A case study focused on Canada illustrated the potential benefits of these systems in supporting hydrogen-powered vehicles and residential water needs emphasizing the significant impact of using high-quality desalinated water to enhance the longevity and efficiency of proton exchange membrane electrolyzers (PEME). This research provides valuable insights into the optimal use of geothermal energy for sustainable water and hydrogen production.
Data Hub for Life Cycle Assessment of Climate Change Solutions—Hydrogen Case Study
Nov 2024
Publication
Life cycle assessment which evaluates the complete life cycle of a product is considered the standard methodological framework to evaluate the environmental performance of climate change solutions. However significant challenges exist related to datasets used to quantify these environmental indicators. Although extensive research and commercial data on climate change technologies pathways and facilities exist they are not readily available to practitioners of life cycle assessment in the right format and structure using an open platform. In this study we propose a new open data hub platform for life cycle assessment considering a hierarchical data flow starting with raw data collected on climate change technologies at laboratory pilot demonstration or commercial scales to provide the information required for policy and decision-making. This platform makes data accessible at multiple levels for practitioners of life cycle assessment while making data interoperable across platforms. The proposed data hub platform and workflow are explained through the polymer electrolyte membrane electrolysis hydrogen production as a case study. The climate change environment impact of 1.17 ± 0.03 kg CO2 eq./kg H2 was calculated for the case study. The current data hub platform is limited to evaluating environmental impacts; however future additions of economic and social aspects are envisaged.
Optimizing Alkaline Water Electrolysis: A Dual-Model Approach for Enhanced Hydrogen Production Efficiency
Nov 2024
Publication
This study develops a semi-empirical model of an alkaline water electrolyzer (AWE) based on thermodynamic and electrochemical principles to investigate cell voltage behavior during electrolysis. By importing polarization curve test data under specific operational conditions eight undefined parameters are precisely fitted demonstrating the model’s high accuracy in describing the voltage characteristics of alkaline electrolyzers. Additionally an AWE system model is introduced to examine the influence of various operational parameters on system efficiency. This innovative approach not only provides detailed insights into the operational dynamics of AWE systems but also offers a valuable tool for optimizing performance and enhancing efficiency advancing the understanding and optimization of AWE technologies.
Utilization of Hydro Sources in Canada for Green Hydrogen Fuel Production
Oct 2024
Publication
The present study comprehensively examines the application of hydro wave tidal undersea current and geothermal energy sources of Canada for green hydrogen fuel production. The estimated potential capacity of each province is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Canada is projected to be 48.86 megatons. The economic value of the produced green hydrogen results in an equivalent of 21.30 billion US$. The top three provinces with the highest green hydrogen production potential using hydro resources including hydro wave tidal undersea current and geothermal are Alberta Quebec and British Columbia with 26.13 Mt 7.34 Mt and 4.39 Mt respectively. Quebec is ranked first by only considering the marine sources including 4.14 Mt with hydro 1.46 Mt with wave 0.27 Mt underwater current and 1.45 Mt with tidal respectively. Alberta is listed as the province with the highest capacity for hydrogen production from geothermal energy amounting up to 26.09 Mt. The primary objective is to provide comprehensive hydrogen maps for each province in Canada which will be based on the identified renewable energy potential and the utilization of electrolysers. This may further be examined within the framework of the prevailing policies implemented by local communities and officials in order to develop a sustainable energy plan for the nation.
A Techno-economic Assessment of the Viability of a Photovoltaic-wind-battery Storage-hydrogen Energy System for Electrifying Primary Healthcare Centre in Sub-Saharan Africa
Jun 2024
Publication
Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV wind turbines batteries and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multicriteria decision-making for sizing optimizing and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study the optimal energy system includes 5 kW PV 10 kW fuel cell 10 kW inverter 10 kW electrolyzer and 16 kg hydrogen tank. South Africa's optimal configuration has 5 kW PV 10 kW battery 10 kW inverter and 7.5 kW rectifier. Solar PV provides more than 90% of energy with dual axis tracking yielding the highest output: 8889kWh/yr for Nigeria and 10470kWh/yr for South Africa. The multi-criteria decisionmaking analysis reveals that Nigeria's preferred option is the hybrid system without tracking. In contrast the horizontal axis weekly adjustment tracking configuration is optimal for South Africa considering technical economic and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.
Evaluating the Economic Viability of Decentralised Solar PV-based Green Hydrogen for Cooking in Ghana
Jul 2024
Publication
Developing countries including Ghana face challenges ensuring access to clean and reliable cooking fuels and technologies. Traditional biomass sources mainly used in most developing countries for cooking contribute to deforestation and indoor air pollution necessitating a shift towards environmentally friendly alternatives. The study’s primary objective is to evaluate the economic viability of using solar PV-based green hydrogen as a sustainable fuel for cooking in Ghana. The study adopted well-established equations to investigate the economic performance of the proposed system. The findings revealed that the levelized cost of hydrogen using the discounted cash flow approach is about 89% 155% and 190% more than electricity liquefied petroleum gas (LPG) and charcoal. This implies that using the hydrogen produced for cooking fuel is not cost-competitive compared to LPG charcoal and electricity. However with sufficient capital subsidies to lower the upfront costs the analysis suggests solar PV-based hydrogen could become an attractive alternative cooking fuel. In addition switching from firewood to solar PVbased hydrogen for cooking yields the highest carbon dioxide (CO2) emissions savings across the cities analysed. Likewise replacing charcoal with hydrogen also offers substantial CO2 emissions savings though lower than switching from firewood. Correspondingly switching from LPG to hydrogen produces lower CO2 emissions savings than firewood and charcoal. The study findings could contribute to the growing body of knowledge on sustainable energy solutions offering practical insights for policymakers researchers and industry stakeholders seeking to promote clean cooking adoption in developing economies.
Investigation of a New Holistic Energy System for a Sustainable Airport with Green Hydrogen Fuels
Jun 2024
Publication
The advancement of sustainable solutions through renewable energy sources is crucial to mitigate carbon emissions. This study reports a novel system for an airport utilizing geothermal biomass and PV solar energy sources. The proposed system is capable of producing five useful outputs including electrical power hot water hydrogen kerosene and space heating. In open literature there has been no system reported with these combination of energy sources and outputs. The system is considered for Vancouver Airport using the most recent statistics available. The geothermal sub-system introduced is also unique which utilizes carbon dioxide captured as the heat transfer medium for power generation and heating. The present system is considered using thermodynamic analysis through energetic and exergetic approaches to determine the variation in system performance based on different annual climate conditions. Biomass gasification and kerosene production are evaluated based on the Aspen Plus models. The efficiencies of the geothermal system with the carbon dioxide reservoir are found to have energetic and energetic efficiencies of 78 % and 37 % respectively. The total hydrogen production projection is obtained to be 452 tons on an annual basis. The kerosene production mass flow rate is reported as 0.112 kg/s. The overall energetic and exergetic efficiencies of the system are found to be 41.8 % and 32.9 % respectively. This study offers crucial information for the aviation sector to adopt sustainable solutions more effectively.
Modelling Guided Energy Management System for a Hydrogen-fuelled Harbour Tug
May 2024
Publication
The use of hydrogen as a source of fuel for marine applications is relatively nascent. As the maritime industry pivots to the use of alternate low and zero-emission fuels to adapt to a changing regulatory landscape hydrogen energy needs to present and substantiate a technical and commercially viable use case to secure its value proposition in the future fuel mix. This paper leverages the technoeconomic and environmental assessment previously performed on HyForce a hydrogen-fuelled harbour tug which has shown encouraging results for both technical and commercial aspects. This study aims to create a digital twin of HyForce to accurately predict her operability in real-world scenarios. The results from this study identify the strengths and drawbacks of the proposed use case. This is achieved by embedding the detailed design of HyForce in a virtual environment to further evaluate its operational performance through Computational Fluid Dynamics (CFD) simulations of realistic environmental conditions such as wind wave sea currents and friction attributed to the properties of seawater. The results from this study indicate a base case power requirement of 93 kW to 1892 kW to achieve speeds of 5 to 12 knots in the absence of external environmental influences. Consequently the speed of HyForce has a profound impact on total resistance peaking at 97.3 kN at 12 knots. Seawater properties such as low seawater temperature of 0C and a high salinity of 50g/kg increased friction. Additionally wind speeds of 10 m/s acting on HyForce delivered a resistance of 3 kN. However these will be well mitigated through the design of the propulsion system which will be able to deliver a thrust power of 1892 kW and with assistance from the energy storage systems produce 2 MW of power to overcome the resistance experienced. The findings presented in this paper can serve as a foundation for constructing a robust model for the development of a predictive controller for future work. This controller has the potential to optimize the configuration of hydrogen and battery energy storage aligning with desired cost functions.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
Towards Safer Hydrogen Refuelling Stations: Insights from Computational Fluid Dynamics LH2 Leakage
May 2024
Publication
The transition to a sustainable future with hydrogen as a key energy carrier necessitates a comprehensive understanding of the safety aspects of hydrogen including liquid hydrogen (LH₂). Hence this study presents a detailed computational fluid mechanics analysis to explore accidental LH₂ leakage and dispersion in a hydrogen refuelling station under varied conditions which is essential to prevent fire and explosion. The correlated impact of influential parameters including wind direction wind velocity leak direction and leak rate were analysed. The study shows that hydrogen dispersion is significantly impacted by the combined effect of wind direction and surrounding structures. Additionally the leak rate and leak direction have a significant effect on the development of the flammable cloud volume (FCV) which is critical for estimating the explosion hazards. Increasing wind velocity from 2 to 4 m/s at a constant leak rate of 0.06 kg/s results in an 82% reduction in FCV. The minimum FCV occurs when leak and wind directions oppose at 4 m/s. The most critical situation concerning FCV arises when the leak and wind directions are perpendicular with a leak rate of 0.06 kg/s and a wind velocity of 2 m/s. These findings can aid in the development of optimised sensing and monitoring systems and operational strategies to reduce the risk of catastrophic fire and explosion consequences.
Multiplier Effect on Reducing Carbon Emissions of Joint Demand and Supply Side Measures in the Hydrogen Market
Jun 2024
Publication
Hydrogen energy is critical in replacing fossil fuels and achieving net zero carbon emissions by 2050. Three measures can be implemented to promote hydrogen energy: reduce the cost of low-carbon hydrogen through technological improvements increase the production capacity of low-carbon hydrogen by stimulating investment and enhance hydrogen use as an energy carrier and in industrial processes by demand-side policies. This article examines how effective these measures are if successfully implemented in boosting the hydrogen market and reducing global economy-wide carbon emissions using a global computable general equilibrium model. The results show that all the measures increase the production and use of low-carbon hydrogen whether implemented alone or jointly. Notably the emissions reduced by joint implementation of all the measures in 2050 become 2.5 times the sum of emissions reduced by individual implementation indicating a considerable multiplier effect. This suggests supply and demand side policies be implemented jointly to maximize their impact on reducing emissions.
Feasibility of Scaling Up the Cost-Competitive and Clean Electrolytic Hydrogen Supply in China
May 2024
Publication
Scaling up clean hydrogen supply in the near future is critical to achieving China’s hydrogen development target. This study established an electrolytic hydrogen development mechanism considering the generation mix and operation optimization of power systems with access to hydrogen. Based on the incremental cost principle we quantified the provincial and national clean hydrogen production cost performance levels in 2030. The results indicated that this mechanism could effectively reduce the production cost of clean hydrogen in most provinces with a national average value of less than 2 USD·kg−1 at the 40-megaton hydrogen supply scale. Provincial cooperation via power transmission lines could further reduce the production cost to 1.72 USD·kg−1. However performance is affected by the potential distribution of hydrogen demand. From the supply side competitiveness of the mechanism is limited to clean hydrogen production while from the demand side it could help electrolytic hydrogen fulfil a more significant role. This study could provide a solution for the ambitious development of renewables and the hydrogen economy in China.
Techno-economic Analysis for Advanced Methods of Green Hydrogen Production
May 2024
Publication
In the ongoing effort to reduce carbon emissions on a worldwide scale green hydrogen which is generated through environmentally responsible processes has emerged as a significant driving force. As the demand for clean energy continues to rise it is becoming increasingly important to have a solid understanding of the technological and economic elements of modern techniques of producing green hydrogen. In the context of green hydrogen generation understanding green hydrogen production's techno-economic features is necessary to reduce carbon emissions and transition to a low-carbon economy. associated with breakthroughs in technology the present study examines the most fascinating and relevant aspects of techno-economic analysis. Despite challenges green hydrogen can help the world move to a cleaner more sustainable energy future with solid analytical frameworks and legislation.
No more items...