- Home
- A-Z Publications
- Publications
Publications
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
Sep 2024
Publication
Climatic changes are reaching alarming levels globally seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However the widespread adoption of hydrogen energy is challenged by transportation and storage issues as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods as it uses self-generated power. Similarly solid storage of hydrogen is also attractive in many ways including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially but once the materials and methods are established they will become more attractive considering rising fuel prices depletion of fossil fuel resources and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient safe and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 ◦C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage and discusses current challenges in hydrogen generation and storage. This includes material selection and the structural and chemical modifications needed for optimal performance and potential applications.
A 500 kW Hydrogen Fuel Cell-powered Vessel: From Concept to Sailing
Sep 2024
Publication
This paper presents the “Three Gorges Hydrogen Boat No. 1” a novel green hydrogen-powered vessel that has been successfully delivered and is currently sailing. This vessel integrated with a hydrogen production and bunkering station at its dedicated dock achieves zero-carbon emissions. It stores 240 kg of 35 MPa gaseous hydrogen and has a fuel cell system rated at 500 kW. We analysed the engineering details of the marine hydrogen system including hydrogen bunkering storage supply fuel cell and the hybrid power system with lithium-ion batteries. In the first bunkering trial the vessel was safely refuelled with 200 kg of gaseous hydrogen in 156 min via a bunkering station 13 m above the water surface. The maximum hydrogen pressure and temperature recorded during bunkering were 35.05 MPa and 39.04 ◦C respectively demonstrating safe and reliable shore-toship bunkering. For the sea trial the marine hydrogen system operated successfully during a 3-h voyage achieving a maximum speed of 28.15 km/h (15.2 knots) at rated propulsion power. The vessel exhibited minimal noise and vibration and its dynamic response met load change requirements. To prevent rapid load changes to the fuel cells 68 s were used to reach 483 kW from startup and 62 s from 480 kW to zero. The successful bunkering and operation of this hydrogen-powered vessel demonstrates the feasibility of zero-carbon emission maritime transport. However four lessons were identified concerning bunkering speed hydrogen cylinder leakage hydrogen pressure regulator malfunctions and fuel cell room space. The novelty of this work lies in the practical demonstration of a fully operational hydrogen-powered maritime vessel achieving zero emissions encompassing its design building operation and lessons learned. These parameters and findings can be used as a baseline for further engineering research.
Stable Electrolytic Hydrogen Production Using Renewable Energy
Oct 2024
Publication
The inherent intermittency of upstream solar and wind power can result in fluctuating electrolytic hydrogen production which is incompatible with the feedstock requirements of many downstream hydrogen storage and utilisation applications. Suitable backup power or storage (hydrogen or energy) strategies are thus needed in overall system design. This work conducts technoeconomic modelling to design electrolytic production systems featuring stable hydrogen output for various locations across Australia based on hourly weather data and determines the levelised cost of hydrogen (LCOH) emissions intensities and annual electrolyser usage factors. A stable truly green hydrogen supply is consistently achieved by imposing annual usage factor requirements on the system which forces the system modules (i.e. solar wind electrolyser and hydrogen storage) to be oversized in order to achieve the desired usage factor. Whilst the resultant system designs are however very location-specific a design that ensures a 100% usage factor costs approximately 22% more on average than a system design which is optimised for cost alone.
Whole System Impacts of Decarbonising Transport with Hydrogen: A Swedish Case Study
Oct 2024
Publication
This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs coupled with the Swedish electricity system to study the inter-dependencies between them. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain designs comprehend centralised production decentralised production a combination of both and with/without seasonal variation in hydrogen demand. The supply chain design is modelled to minimize the overall cost while meeting the hydrogen demands. The outputs of the supply chain model include the hydrogen refuelling stations’ locations the electrolyser’s locations and their respective sizes as well as the operational schedule. The electricity system model shows that the average electricity prices in Sweden for zones SE1 SE2 SE3 and SE4 will be 4.28 1.88 8.21 and 8.19 €/MWh respectively. The electricity is mainly generated from wind and hydropower (around 42% each) followed by nuclear (14%) solar (2%) and then bio-energy (0.3%). In addition the hydrogen supply chain design that leads to a lower overall cost is the decentralised design with a cost of 1.48 and 1.68 €/kgH2 in scenarios without and with seasonal variation respectively. The seasonal variation in hydrogen demand increases the cost of hydrogen regardless of the supply chain design.
A Systematic Comparison of the Energy and Emissions Intensity of Hydrogen Production Pathways in the United Kingdom
Sep 2024
Publication
Meeting climate targets requires profound transformations in the energy system. Most energy uses should be electrified but where this is not feasible hydrogen can be part of the solution. However 98% of global hydrogen production involves greenhouse gas emissions with an average of 12 kg CO2e/kg H2. Therefore new hydrogen production pathways are needed in order to make hydrogen production compatible with climate targets. In this work we fill this gap by systematically comparing the energy and emissions intensity of 173 hydrogen production pathways suitable for the UK. Scenarios include onshore and offshore pathways and the use of repurposed infrastructure. Unlike fossil-fuel based pathways the results show that electrolytic hydrogen powered by fixed offshore wind could align with proposed emissions standards either onshore or offshore. However the embodied and fugitive emissions are important to consider for electrolytic pathways as they result in 10–50% of the total emissions intensity.
Pressure Dependence of CO2 Effect on Hydrogen-assisted Fatigue Crack Growth in Two Pipeline Steels
Oct 2024
Publication
This study investigated the pressure-dependent CO2 effect on the hydrogen embrittlement of X80 and GB20# pipeline steels by combining experiments and first-principles calculations. Results revealed that the CO2 effect enhanced the fatigue crack growth for GB20# steel in 10 MPa CO₂-enriched hydrogen mixtures. However the improved degree by the CO₂ effect at 10 MPa was less pronounced than at 0.4 MPa which was found for the first time. This was attributed to the decreased adsorption rate of CO₂ on iron as hydrogen pressure increased. Therefore in high-pressure CO₂-enriched hydrogen mixtures CO2 could not significantly accelerate the inherent rapid hydrogen uptake at high pressure.
Evaluating the Economic Influence of Water Sources on Green Hydrogen Production: A Cost Analysis Approach
Sep 2024
Publication
The production of green hydrogen requires significant water usage making the economic evaluation of different water sources crucial for optimizing the Levelized Cost of Hydrogen (LCOH). This study examines the economic impact of using seawater groundwater grid water industrial wastewater and rainwater for hydrogen production through PEM electrolysis considering the water abstraction transport treatment and storage costs across various plant sizes (1 MW 10 MW 20 MW 50 MW and 100 MW) were assessed and a sensitivity analysis on electricity prices was conducted. Findings reveal that while water-related costs are minimal.
Methods for Enhancing Electrolysis for Hydrogen Production: The Benefits of Applying Magnetic Fields
Sep 2024
Publication
The electrolysis of water is one of the most promising ways of producing green hydrogen. This produces hydrogen using electricity and does not generate additional carbon dioxide like the more conventional reforming of fossil fuels. However making electrolysis competitive with conventional methods for hydrogen production is a challenge because of the cost of electricity and because of inefficiencies and costs in electrolysis systems. Initially this review looks at the basic design of water electrolysis and asks where energy is lost. Then a selection of the latest results in the area of magnetic field-enhanced water electrolysis are examined and discussed in particular focusing on the empirical results of magnetic field-assisted electrolysis with the aim of comparing findings and identifying limitations of current studies such that recommendations can be made for advanced design of hydrogen producing electrolysis systems.
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Advancing Life Cycle Assessment of Sustainable Green Hydrogen Production Using Domain-Specific Fine-Tuning by Large Language Models Augmentation
Nov 2024
Publication
Assessing the sustainable development of green hydrogen and assessing its potential environmental impacts using the Life Cycle Assessment is crucial. Challenges in LCA like missing environmental data are often addressed using machine learning such as artificial neural networks. However to find an ML solution researchers need to read extensive literature or consult experts. This research demonstrates how customised LLMs trained with domain-specific papers can help researchers overcome these challenges. By starting small by consolidating papers focused on the LCA of proton exchange membrane water electrolysis which produces green hydrogen and ML applications in LCA. These papers are uploaded to OpenAI to create the LlamaIndex enabling future queries. Using the LangChain framework researchers query the customised model (GPT-3.5-turbo) receiving tailored responses. The results demonstrate that customised LLMs can assist researchers in providing suitable ML solutions to address data inaccuracies and gaps. The ability to quickly query an LLM and receive an integrated response across relevant sources presents an improvement over manually retrieving and reading individual papers. This shows that leveraging fine-tuned LLMs can empower researchers to conduct LCAs more efficiently and effectively.
Hydrogen Materials and Technologies in the Aspect of Utilization in the Polish Energy Sector
Nov 2024
Publication
Currently modern hydrogen technologies due to their low or zero emissions constitute one of the key elements of energy transformation and sustainable development. The growing interest in hydrogen is driven by the European climate policy aimed at limiting the use of fossil fuels for energy purposes. Although not all opinions regarding the technical and economic potential of hydrogen energy are positive many prepared forecasts and analyses show its prospective importance in several areas of the economy. The aim of this article is to provide a comprehensive review of modern materials current hydrogen technologies and strategies and show the opportunities problems and challenges Poland faces in the context of necessary energy transformation. The work describes the latest trends in the production transportation storage and use of hydrogen. The environmental social and economic aspects of the use of green hydrogen were discussed in addition to the challenges and expectations for the future in the field of hydrogen technologies. The main goals of the development of the hydrogen economy in Poland and the directions of actions necessary to achieve them were also presented. It was found that the existence of the EU CO2 emissions allowance trading system has a significant impact on the costs of hydrogen production. Furthermore the production of green hydrogen will become economically justified as the costs of energy obtained from renewable sources decrease and the costs of electrolysers decline. However the realisation of this vision depends on the progress of scientific research and technical innovations that will reduce the costs of hydrogen production. Government support mechanisms for the development of hydrogen infrastructure and technologies will also be of key importance.
Critical Perspective on Green Hydrogen-based Seasonal Operation of Energy-intensive Industry Sectors with Solid Products
Nov 2024
Publication
In the light of a future decarbonized power grid based primarily on non-dispatchable renewable energy sources the operation of industrial plants should be decarbonized and flexible. An innovative novel concept combining industrial plants with (i) a water electrolysis unit (ii) a hydrogen storage unit and (iii) a fuel cell unit would enable seasonal supply-demand balancing in the local power grid and storage of surplus energy in the form of stable solid products. The feasibility of this concept was demonstrated in a case study taking into account the overall energy balance and economics. The characteristics of the local power grid and the hydrogen round-trip efficiency must be carefully considered when dimensioning the hydrogen units. It was found that industries producing iron and steel cement ceramics glass aluminum paper and other metals have the potential for seasonal operation. Future research efforts in the fields of technology economics and social sciences should support the sustainable flexibility transition of energy-intensive industries with solid products.
A Prospective Approach to the Optimal Deployment of a Hydrogen Supply Chain for Sustainable Mobility in Island Territories: Application to Corsica
Oct 2024
Publication
This study develops a framework for designing hydrogen supply chains (HSC) in island territories using Mixed Integer Linear Programming (MILP) with a multi-period approach. The framework minimizes system costs greenhouse gas emissions and a risk-based index. Corsica is used as a case study with a Geographic Information System (GIS) identifying hydrogen demand regions and potential sites for production storage and distribution. The results provide an optimal HSC configuration for 2050 specifying the size location and technology while accounting for techno-economic factors. This work integrates the unique geographical characteristics of islands using a GIS-based approach incorporates technology readiness levels and utilizes renewable electricity from neighboring regions. The model proposes decentralized configurations that avoid hydrogen transport between grids achieving a levelized cost of hydrogen (LCOH) of €8.54/kg. This approach offers insight into future options and incentive mechanisms to support the development of hydrogen economies in isolated territories.
The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level
Nov 2024
Publication
The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels or a dispenser. This may lead to a hydrogen cloud occurring near the source of the release or at a given distance. The range of the cloud was analyzed in connection to the amount of the released gas and the wind velocity. The results of the calculations were compared for chosen structures in the station. Then potential fires and explosions were investigated. The hazard zones were calculated with respect to heat fluxes generated in the fires and the overpressure generated in explosions. The maximum ranges of these zones vary from about 14 to 30 m and from about 9 to 14 m for a fires and an explosions of hydrogen respectively. Finally human death probabilities are presented as functions of the distance from the sources of the uncontrolled hydrogen releases. These are shown for different amounts and pressures of the released gas. In addition the risk of human death is determined along with the area where it reaches the highest value in the whole station. The risk of human death in this area is 1.63 × 10−5 [1/year]. The area is approximately 8 square meters.
Synergy-based Hydrogen Pricing in Hydrogen-Integrated Electric Power System: Sensititivy Analysis
Nov 2024
Publication
Hydrogen price significantly impacts its potential as a viable alternative in the sustainable energy transition. This study introduces a synergy-based Hydrogen Pricing Mechanism (HPM) within an integrated framework. The HPM leverages synergy between a Renewable-Penetrated Electric Power System (RP-EPS) and a Hydrogen Energy System (HES). Utilizing the Alternating Direction Method of Multipliers (ADMM) it facilitates data exchange quantifying integration levels and simplifying the complexities. The study assesses the HPM’s operational sensitivity across various scenarios of hydrogen generation transportation and storage. It also evaluates the benefits of synergy-based versus stand-alone HPMs. Findings indicate that the synergy-based HPM effectively integrates infrastructure and operational improvements from both EPS and HES leading to optimized hydrogen pricing.
Analysis of the Combustion Speed in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline Blends at Different Air Fuel Ratios
Nov 2024
Publication
The use of hydrogen in internal combustion engines is a promising solution for the decarbonisation of the transport sector. The current transition scenario is marked by the unavailability and storage challenges of hydrogen. Dual fuel combustion of hydrogen and gasoline in current spark ignition engines is a feasible solution in the short and medium term as it can improve engine efficiency reduce pollutant emissions and contribute significantly in tank to wheel decarbonisation without major engine modification. However new research is needed to understand how the incorporation of hydrogen affects existing engines to effectively implement gasoline-hydrogen dual fuel option. Understanding the impact of hydrogen on the combustion process (e.g. combustion speed) will guide and optimize the operation of engines under dual fuel combustion conditions. In this work a commercial gasoline direct injection engine has been modified to operate with gasolinehydrogen fuels. The experiments have been carried out at various air–fuel ratios ranging from stoichiometric to lean combustion conditions at constant engine speed and torque. At each one of the 14 experimental points 200-cycle in-cylinder pressure traces were recorded and processed with a quasi-dimensional diagnostic model and a combustion speed analysis was then carried out. It has been understood that hydrogen mainly reduces the duration of the first combustion phase. Hydrogen also enables to increase air excess ratios (lean in fuel combustion) without significantly increasing combustion duration. Furthermore a correlation is proposed to predict combustion speed as a function of the fuel and air mixture properties. This correlation can be incorporated to calculate combustion duration in predictive models of engines operating under different fuel mixtures and different geometries of the combustion chamber with pent-roof cylinder head and flat piston head.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Overview and Prospects of Low-emissions Hydrogen (H2) Energy Systems: Roadmap for a Sustainable H2 Economy
Jul 2024
Publication
Hydrogen (2 ) has a big role to play in energy transition to achieve net-zero carbon emissions by 2050. For 2 to compete with other fuels in the energy market more research is required to mitigate key issues like greenhouse gas (GHG) emissions safety and end-use costs. For these reasons a software-supported technical overview of 2 production storage transportation and utilisation is introduced. Drawbacks and mitigation approaches for 2 technologies were highlighted. The recommended areas include solar thermal or renewable-powered plasma systems for feedstock preheating and oxy-hydrogen combustion to meet operating temperatures and heat duties due to losses; integration of electrolysis of 2 into hydrocarbon reforming methods to replace air separation unit (ASU); use of renewable power sources for electrical units and the introduction of thermoelectric units to maximise the overall efficiency. Furthermore a battolyser system for small-scale energy storage; new synthetic hydrides with lower absorption and desorption energy; controlled parameters and steam addition to the combustor/cylinder and combustors with fitted heat exchangers to reduce emissions and improve the overall efficiency are also required. This work also provided detailed information on any of these systems implementations based on location factors and established a roadmap for 2 production and utilisation. The proposed 2 production technologies are hybrid pyrolysis-electrolysis and integrated AD-MEC and DR systems using renewable bioelectrochemical and low-carbon energy systems. Production and utilisation of synthetic natural gas (NG) using renewablepowered electrolysis of 2 oxy-fuel and direct air capture (DAC) is another proposed 2 energy system for a sustainable 2 economy. By providing these factors and information researchers can work towards pilot development and further efficiency enhancement.
Transitioning to a Renewable Hydrogen System: Optimal Infrastructure for Self-sufficient Hydrogen Supply in Austria by 2030
Aug 2024
Publication
In this study we employ an optimization model to optimally design a self-sufficient independent of any imports and exports hydrogen infrastructure for Austria by 2030. Our approach integrates key hydrogen technologies within a detailed spatial investment and operation model – coupled with a European scale electricity market model. We focus on optimizing diverse infrastructure componentsincluding trailers pipelines electrolyzers and storages to meet Austria's projected hydrogen demand. To accurately estimate this demand in hourly resolution we combine existing hydrogen strategies and projections to account for developments in various industrial sectors consider demand driven by the transport sector and integrate hydrogen demand arising from its use in gas-powered plants. Accounting for the inherent uncertainty linked to such projections we run the analysis for two complementary scenarios. Our approach addresses the challenges of integrating large quantities of renewable hydrogen into a future energy system by recognizing the critical role of domestic production in the early market stages. The main contribution of this work is to address the gap in optimizing hydrogen infrastructure for effective integration of domestic renewable hydrogen production in Austria by 2030 considering sector coupling potentials optimal electrolyzer placement and the design of local hydrogen networks.
No more items...