- Home
- A-Z Publications
- Publications
Publications
It Is Not the Same Green: A Comparative LCA Study of Green Hydrogen Supply Network Pathways
Jul 2024
Publication
Green hydrogen (H2 ) a promising clean energy source garnering increasing attention worldwide can be derived through various pathways resulting in differing levels of greenhouse gas emissions. Notably Green H2 production can utilize different methods such as integrating standard photovoltaic panels thermal photovoltaic or concentrated photovoltaic thermal collectors with electrolyzers. Furthermore it can be conditioned to different states or carriers including liquefied H2 compressed H2 ammonia and methanol and stored and transported using various methods. This paper employs the Life Cycle Assessment methodology to compare 18 different green hydrogen pathways and provide recommendations for greening the hydrogen supply chain. The findings indicate that the production pathway utilizing concentrated photovoltaic thermal panels for electricity generation and hydrogen compression in the conditioning and transportation stages exhibits the lowest environmental impact emitting only 2.67 kg of CO2 per kg of H2 .
Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield
Dec 2023
Publication
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors measuring techniques and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis facilitating more competent inexpensive and feasible green hydrogen production.
Hydrogen Production, Transporting and Storage Processes—A Brief Review
Sep 2024
Publication
This review aims to enhance the understanding of the fundamentals applications and future directions in hydrogen production techniques. It highlights that the hydrogen economy depends on abundant non-dispatchable renewable energy from wind and solar to produce green hydrogen using excess electricity. The approach is not limited solely to existing methodologies but also explores the latest innovations in this dynamic field. It explores parameters that influence hydrogen production highlighting the importance of adequately controlling the temperature and concentration of the electrolytic medium to optimize the chemical reactions involved and ensure more efficient production. Additionally a synthesis of the means of transport and materials used for the efficient storage of hydrogen is conducted. These factors are essential for the practical feasibility and successful deployment of technologies utilizing this energy resource. Finally the technological innovations that are shaping the future of sustainable use of this energy resource are emphasized presenting a more efficient alternative compared to the fossil fuels currently used by society. In this context concrete examples that illustrate the application of hydrogen in emerging technologies are highlighted encompassing sectors such as transportation and the harnessing of renewable energy for green hydrogen production.
Strategic Analysis of Hydrogen Market Dynamics Across Collaboration Models
Oct 2024
Publication
The global energy landscape is experiencing a transformative shift with an increasing emphasis on sustainable and clean energy sources. Hydrogen remains a promising candidate for decarbonization energy storage and as an alternative fuel. This study explores the landscape of hydrogen pricing and demand dynamics by evaluating three collaboration scenarios: market-based pricing cooperative integration and coordinated decision-making. It incorporates price-sensitive demand environmentally friendly production methods and market penetration effects to provide insights into maximizing market share profitability and sustainability within the hydrogen industry. This study contributes to understanding the complexities of collaboration by analyzing those structures and their role in a fast transition to clean hydrogen production by balancing economic viability and environmental goals. The findings reveal that the cooperative integration strategy is the most effective for sustainable growth increasing green hydrogen’s market share to 19.06 % and highlighting the potential for environmentally conscious hydrogen production. They also suggest that the coordinated decision-making approach enhances profitability through collaborative tariff contracts while balancing economic viability and environmental goals. This study also underscores the importance of strategic pricing mechanisms policy alignment and the role of hydrogen hubs in achieving sustainable growth in the hydrogen sector. By highlighting the uncertainties and potential barriers this research offers actionable guidance for policymakers and industry players in shaping a competitive and sustainable energy marketplace.
Component and System Levels Limitations in Power-Hydrogen Systems: Analytical Review
Jun 2024
Publication
This study identifies limitations and research and development (R&D) gaps at both the component and system levels for hydrogen energy systems (HESs) and specifies how these limitations impact HES adoption within the electric power system (EPS) decarbonization roadmap. To trace these limitations and potential solutions an analytical review is conducted in electrification and integration of HESs renewable energy sources (RESs) and multi-carrier energy systems (MCESs) in sequence. The study also innovatively categorizes HES integration challenges into component and system levels. At the component level technological aspects of hydrogen generation storage transportation and refueling are explored. At the system level HES coordination hydrogen market frameworks and adoption challenges are evaluated. Findings highlight R&D gaps including misalignment between HES operational targets and techno-economic development integration insufficiency model deficiencies and challenges in operational complexity. This study provides insights for sustainable energy integration by supporting the transition to a decarbonized energy system.
A Systematic Study on Techno-Economic Evaluation of Hydrogen Production
Sep 2023
Publication
This paper aims to perform a systematic review with a bibliometric approach of the technoeconomic evaluation studies of hydrogen production. To achieve this objective a comprehensive outline of hydrogen production processes from fossil and renewable sources is presented. The results reveal that electrolysis classified as water splitting is the most investigated process in the literature since it contributes to a reduction in greenhouse gas emissions and presents other advantages such as maturity and applicability energy efficiency flexibility and energy storage potential. In addition the processes of gasification classified as thermochemical and steam reforming classified as catalytic reforming are worth mentioning. Regarding the biological category there is a balance between research on photo fermentation and dark fermentation. The literature on the techno-economic evaluation of hydrogen production highlights significant gaps including a scarcity of comprehensive studies a lack of emphasis on commercial viability an absence of sensitivity analysis and the need for comparative analyses between production technologies.
A Review on Liquid Hydrogen Fuel Systems in Aircraft Applications for Gas Turbine Engines
Oct 2024
Publication
The transition from traditional aviation fuels to low-emission alternatives such as hydrogen is a crucial step towards a sustainable future for aviation. Conventional jet fuels substantially contribute to greenhouse gas emissions and climate change. Hydrogen fuel especially "green" hydrogen offers great potential for achieving full sustainability in aviation. Hybrid/electric/fuel cell technologies may be used for shorter flights while longrange aircraft are more likely to combust hydrogen in gas turbines. Liquid hydrogen is necessary to minimize storage tank weight but the required fuel systems are at a low technology readiness level and differ significantly from Jet A-1 systems in architecture operation and performance. This paper provides an in-depth review covering the development of liquid hydrogen fuel system design concepts for gas turbines since the 1950s compares insights from key projects such as NASA studies and ENABLEH2 alongside an analysis of recent publications and patent applications and identifies the technological advancements required for achieving zeroemission targets through hydrogen-fuelled propulsion.
Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling
Jun 2024
Publication
To further optimize the low-carbon economy of the integrated energy system (IES) this paper establishes a two-stage P2G hydrogen-coupled electricity–heat–hydrogen–gas IES with carbon capture (CCS). First this paper refines the two stages of P2G and introduces a hydrogen fuel cell (HFC) with a hydrogen storage device to fully utilize the hydrogen energy in the first stage of power-to-gas (P2G). Then the ladder carbon trading mechanism is considered and CCS is introduced to further reduce the system’s carbon emissions while coupling with P2G. Finally the adjustable thermoelectric ratio characteristics of the combined heat and power unit (CHP) and HFC are considered to improve the energy utilization efficiency of the system and to reduce the system operating costs. This paper set up arithmetic examples to analyze from several perspectives and the results show that the introduction of CCS can reduce carbon emissions by 41.83%. In the CCS-containing case refining the P2G two-stage and coupling it with HFC and hydrogen storage can lead to a 30% reduction in carbon emissions and a 61% reduction in wind abandonment costs; consideration of CHP and HFC adjustable thermoelectric ratios can result in a 16% reduction in purchased energy costs.
Towards the Design of a Hydrogen-powered Ferry for Cleaner Passenger Transport
Aug 2024
Publication
The maritime transportation sector is a large and growing contributor of greenhouse gas and other emissions. Therefore stringent measures have been taken by the International Maritime Organization to mitigate the environmental impact of the international shipping. These lead to the adoption of new technical solutions involving clean fuels such as hydrogen and high efficiency propulsion technologies that is fuel cells. In this framework this paper proposes a methodological approach aimed at supporting the retrofit design process of a car-passenger ferry operating in the Greece’s western maritime zone whose conventional powertrain is replaced with a fuel cell hybrid system. To this aim first the energy/power requirements and the expected hydrogen consumption of the vessel are determined basing on a typical operational profile retrieved from data provided by the shipping company. Three hybrid powertrain configurations are then proposed where fuel cell and batteries are balanced out according to different design criteria. Hence a new vessel layout is defined for each of the considered options by taking into account on-board weight and space constraints to allocate the components of the new hydrogen-based propulsion systems. Finally the developed vessel configurations are simulated in a virtual towing tank environment in order to assess their hydrodynamic response and compare them with the original one thus providing crucial insights for the design process of new hydrogen-fueled vessel solutions. Findings from this study reveal that the hydrogen-based configurations of the vessel are all characterized by a slight reduction of the payload mainly due to the space required to allocate the hydrogen storage system; instead the hydrodynamic behavior of the H2 powered vessels is found to be similar to the one of the original Diesel configuration; also from a hydrodynamic point of view the results show that mid load operating conditions get relevance for the design process of the hybrid vessels.
Techno‐Economic Analysis of Hydrogen as a Storage Solution in an Integrated Energy System for an Industrial Area in China
Jun 2024
Publication
This study proposes four kinds of hybrid source–grid–storage systems consisting of pho‐ tovoltaic and wind energy and a power grid including different batteries and hydrogen storage systems for Sanjiao town. HOMER‐PRO was applied for the optimal design and techno‐economic analysis of each case aiming to explore reproducible energy supply solutions for China’s industrial clusters. The results show that the proposed system is a fully feasible and reliable solution for in‐ dustry‐based towns like Sanjiao in their pursuit of carbon neutrality. In addition the source‐side price sensitivity analysis found that the hydrogen storage solution was cost‐competitive only when the capital costs on the storage and source sides were reduced by about 70%. However the hydro‐ gen storage system had the lowest carbon emissions about 14% lower than the battery ones. It was also found that power generation cost reduction had a more prominent effect on the whole system’s NPC and LCOE reduction. This suggests that policy support needs to continue to push for genera‐ tion‐side innovation and scaling up while research on different energy storage types should be en‐ couraged to serve the needs of different source–grid–load–storage systems.
An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System
Jul 2024
Publication
When offshore wind farms are connected to a hydrogen plant with dedicated transmission lines for example high-voltage direct current the fluctuation of wind speed will influence the efficiency of the alkaline electrolyzer and deteriorate the techno-economic performance. To overcome this issue firstly an additional heating process is adopted to achieve insulation for the alkaline solution when power generated by wind farms is below the alkaline electrolyzer minimum power threshold while the alkaline electrolyzer overload feature is used to generate hydrogen when wind power is at its peak. Then a simplified piecewise model-based alkaline electrolyzer techno-economic analysis model is proposed. The improved economic performance of the islanded green hydrogen system with the proposed operation strategy is verified based on the wind speed data set simulation generated by the Weibull distribution. Lastly the sensitivity of the total return on investment to wind speed parameters was investigated and an islanded green hydrogen system capacity allocation based on the proposed analysis model was conducted. The simulation result shows the total energy utilization increased from 62.0768% to 72.5419% and the return on investment increased from 5.1303%/month to 5.9581%/month when the proposed control strategy is adopted.
A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning
Jul 2024
Publication
This research investigates the potential of using bedded salt formations for underground hydrogen storage. We present a novel artificial intelligence framework that employs spatial data analysis and multi-criteria decision-making to pinpoint the most appropriate sites for hydrogen storage in salt caverns. This methodology incorporates a comprehensive platform enhanced by a deep learning algorithm specifically a convolutional neural network (CNN) to generate suitability maps for rock salt deposits for hydrogen storage. The efficacy of the CNN algorithm was assessed using metrics such as Mean Absolute Error (MAE) Mean Squared Error (MSE) Root Mean Square Error (RMSE) and the Correlation Coefficient (R2 ) with comparisons made to a real-world dataset. The CNN model showed outstanding performance with an R2 of 0.96 MSE of 1.97 MAE of 1.003 and RMSE of 1.4. This novel approach leverages advanced deep learning techniques to offer a unique framework for assessing the viability of underground hydrogen storage. It presents a significant advancement in the field offering valuable insights for a wide range of stakeholders and facilitating the identification of ideal sites for hydrogen storage facilities thereby supporting informed decisionmaking and sustainable energy infrastructure development.
Comparative Analysis of Solar Cells and Hydrogen Fuels: A Mini Review
Jul 2024
Publication
The aim of this mini-review is to compare the effectiveness and potential of solar cells and hydrogen fuel technologies in clean energy generation. Key aspects such as efficiency scalability environmental footprint and technological maturity are examined. Solar cells are analyzed for their ability to convert sunlight into electricity efficiently and their potential for widespread deployment with minimal environmental impact. Hydrogen fuel technologies are assessed based on their efficiency in hydrogen production scalability and overall environmental footprint from production to end use. The review identifies significant challenges including high costs infrastructure needs and policy requirements as well as opportunities for innovation and market growth. The findings provide insights to guide decision-making towards a sustainable energy future.
Fuzzy Logic-Based Energy Management Strategy for Hybrid Fuel Cell Electric Ship Power and Propulsion System
Oct 2024
Publication
The growing use of proton-exchange membrane fuel cells (PEMFCs) in hybrid propulsion systems is aimed at replacing traditional internal combustion engines and reducing greenhouse gas emissions. Effective power distribution between the fuel cell and the energy storage system (ESS) is crucial and has led to a growing emphasis on developing energy management systems (EMSs) to efficiently implement this integration. To address this goal this study examines the performance of a fuzzy logic rule-based strategy for a hybrid fuel cell propulsion system in a small hydrogenpowered passenger vessel. The primary objective is to optimize fuel efficiency with particular attention on reducing hydrogen consumption. The analysis is carried out under typical operating conditions encountered during a river trip. Comparisons between the proposed strategy with other approaches—control based optimization based and deterministic rule based—are conducted to verify the effectiveness of the proposed strategy. Simulation results indicated that the EMS based on fuzzy logic mechanisms was the most successful in reducing fuel consumption. The superior performance of this method stems from its ability to adaptively manage power distribution between the fuel cell and energy storage systems.
Hydrogen Revolution in Europe: Bibliometric Review of Industrial Hydrogen Applications for a Sustainable Future
Jul 2024
Publication
Industrial applications of hydrogen are key to the transition towards a sustainable lowcarbon economy. Hydrogen has the potential to decarbonize industrial sectors that currently rely heavily on fossil fuels. Hydrogen with its unique and versatile properties has several in-industrial applications that are fundamental for sustainability and energy efficiency such as the following: (i) chemical industry; (ii) metallurgical sector; (iii) transport; (iv) energy sector; and (v) agrifood sector. The development of a bibliometric analysis of industrial hydrogen applications in Europe is crucial to understand and guide developments in this emerging field. Such an analysis can identify research trends collaborations between institutions and countries and the areas of greatest impact and growth. By examining the scientific literature and comparing it with final hydrogen consumption in different regions of Europe the main actors and technologies that are driving innovation in industrial hydrogen use on the continent can be identified. The results obtained allow for an assessment of the knowledge gaps and technological challenges that need to be addressed to accelerate the uptake of hydrogen in various industrial sectors. This is essential to guide future investments and public policies towards strategic areas that maximize the economic and environmental impact of industrial hydrogen applications in Europe.
National Gas FutureGrid Phase 1 Closure Report
Jul 2024
Publication
This project an essential part of the National Gas HyNTS programme endeavours to align the NTS with GB’s net zero ambitions by demonstrating the operational viability of the system with varying hydrogen blends using decommissioned assets typical of the natural gas network today ultimately aiming for 100% hydrogen conveyance. Several desktop studies were undertaken within the HyNTS programme to confirm the theoretical potential of the NTS to transport hydrogen safely and reliably. Further to these studies practical demonstration was deemed necessary to bridge the knowledge gaps and ensure the system’s transition maintains the utmost safety and reliability standards. A range of tests on decommissioned assets were conducted offline in a controlled environment to ensure robust outcomes that will ultimately start to build the safety case for a hydrogen network. The key deliverables and testing achievements of FutureGrid included: • Operational testing with natural gas and 2% 5% 20% and 100% hydrogen to verify the network’s ability to transport hydrogen and varying blends. • Standalone offline testing modules complementing evidence gathered on the main test facility. These address specific areas of concern including material permeation flange integrity asset leakage and rupture consequence which are essential for risk mitigation and safety assurance. FutureGrid is a global first facility and a critical part of National Gas’ hydrogen programme providing physical evidence of the capability of our network to transport hydrogen. It provides key evidence for hydrogen blending alongside 100% hydrogen pipelines which are planned under Project Union our Hydrogen Backbone across GB. FutureGrid is pivotal in the journey to reaching Net Zero by 2050 and is a fully operational proven technical demonstrator. FutureGrid’s repurposed assets are representative of today’s live high pressure gas network and have been subjected to testing at different blends of natural gas with hydrogen and 100% hydrogen; this was achieved with no major findings in differences in terms of how the assets interact with hydrogen. The overall project completion date was delayed from November 2023 to February 2024 due to technical issues with the newly built hydrogen re‑compressor. There were no changes made to the project costs.
Advances in Hospital Energy Systems: Genetic Algorithm Optimization of a Hybrid Solar and Hydrogen Fuel Cell Combined Heat and Power
Sep 2024
Publication
This paper presents an innovative Fuel Cell Combined Heat and Power (FC–CHP) system designed to enhance energy efficiency in hospital settings. The system primarily utilizes solar energy captured through photovoltaic (PV) panels for electricity generation. Excess electricity is directed to an electrolyzer for water electrolysis producing hydrogen which is stored in high-pressure tanks. This hydrogen serves a dual purpose: it fuels a boiler for heating and hot water needs and powers a fuel cell for additional electricity when solar production is low. The system also features an intelligent energy management system that dynamically allocates electrical energy between immediate consumption hydrogen production and storage while also managing hydrogen release for energy production. This study focuses on optimization using genetic algorithms to optimize key components including the peak power of photovoltaic panels the nominal power of the electrolyzer fuel cell and storage tank sizes. The objective function minimizes the sum of investment and electricity costs from the grid considering a penalty coefficient. This approach ensures optimal use of renewable energy sources contributing to energy efficiency and sustainability in healthcare facilities.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Storage Integrity During Underground Hydrogen Storage in Depleted Gas Reservoirs
Nov 2023
Publication
The transition from fossil fuels to renewable energy sources particularly hydrogen has emerged as a central strategy for decarbonization and the pursuit of net-zero carbon emissions. Meeting the demand for large-scale hydrogen storage a crucial component of the hydrogen supply chain has led to the exploration of underground hydrogen storage as an economically viable solution to global energy needs. In contrast to other subsurface storage options such as salt caverns and aquifers which are geographically limited depleted gas reservoirs have garnered increasing attention due to their broader distribution and higher storage capacity. However the safe storage and cycling of hydrogen in depleted gas reservoirs require the preservation of high stability and integrity in the caprock reservoir and wellbore. Nevertheless there exists a significant gap in the current research concerning storage integrity in underground hydrogen storage within depleted gas reservoirs and a systematic approach is lacking. This paper aims to address this gap by reviewing the primary challenges associated with storage integrity including geochemical reactions microbial activities faults and fractures and perspectives on hydrogen cycling. The study comprehensively reviews the processes and impacts such as abiotic and biotic mineral dissolution/precipitation reactivation and propagation of faults and fractures in caprock and host-rock wellbore instability due to cement degradation and casing corrosion and stress changes during hydrogen cycling. To provide a practical solution a technical screening tool has been developed considering controlling variables risks and consequences affecting storage integrity. Finally this paper highlights knowledge gaps and suggests feasible methods and pathways to mitigate these risks facilitating the development of large-scale underground hydrogen storage in depleted gas reservoirs.
Hopes and Fears for a Sustainable Energy Future: Enter the Hydrogen Acceptance Matrix
Feb 2024
Publication
Hydrogen-fuelled technologies for home heating and cooking may provide a low-carbon solution for decarbonising parts of the global housing stock. For the transition to transpire the attitudes and perceptions of consumers must be factored into policy making efforts. However empirical studies are yet to explore potential levels of consumer heterogeneity regarding domestic hydrogen acceptance. In response this study explores a wide spectrum of consumer responses towards the prospect of hydrogen homes. The proposed spectrum is conceptualised in terms of the ‘domestic hydrogen acceptance matrix’ which is examined through a nationally representative online survey conducted in the United Kingdom. The results draw attention to the importance of interest and engagement in environmental issues knowledge and awareness of renewable energy technologies and early adoption potential as key drivers of domestic hydrogen acceptance. Critically strategic measures should be taken to convert hydrogen scepticism and pessimism into hope and optimism by recognising the multidimensional nature of consumer acceptance. To this end resources should be dedicated towards increasing the observability and trialability of hydrogen homes in proximity to industrial clusters and hubs where the stakes for consumer acceptance are highest. Progress towards realising a net-zero society can be supported by early stakeholder engagement with the domestic hydrogen acceptance matrix.
No more items...