- Home
- A-Z Publications
- Publications
Publications
Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting
Oct 2012
Publication
Hydrogen is the ideal fuel for the future because it is clean energy efficient and abundant in nature. While various technologies can be used to generate hydrogen only some of them can be considered environmentally friendly. Recently solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies a review of photocatalytic water splitting over titania and non-titania based photocatalysts a discussion of the types of photocatalytic water-splitting approaches and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here the development of highly stable visible–light-active photocatalytic materials and the design of efficient low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.
Evaluation and Outlook for Australian Renewable Energy Export via Circular Liquid Hydrogen Carriers
Oct 2023
Publication
To combat global temperature rise we need affordable clean and renewable energy that does not add carbon to the atmosphere. Hydrogen is a promising option because it can be used as a carbon-free energy source. However storing and transporting pure hydrogen in liquid or gaseous forms is challenging. To overcome the limitations associated with conventional compressed and liquefied hydrogen or physio-chemical adsorbents for bulk storage and transport hydrogen can be attached to other molecules known as hydrogen carriers. Circular carriers which involve the production of CO2 or nitrogen during the hydrogen recovery process include substances such as methanol ammonia or synthetic natural gas. These carriers possess higher gravimetric and volumetric hydrogen densities (i.e. 12.5 wt% and 11.88 MJ/L for methanol) than cyclic carriers (i.e. 6.1 wt% and 5.66 MJ/L for methylcyclohexane (MCH)) which produce cyclic organic chemicals during dehydrogenation. This makes circular carriers particularly appealing for the Australian energy export market. Furthermore the production-decomposition cycle of circular carriers can be made carbon-neutral if they are derived from renewable H2 sources and combined with atmospheric or biomass-based CO2 or nitrogen. The key parameters are investigated in this study focusing on circular hydrogen carriers relevant to Australia. The parameters are ranked from 0 (worst) to 10 (best) depending on the bandwidth of the parameter in this review. Methanol shows great potential as a cost-effective solution for long-distance transport of renewable energy being a liquid at standard conditions with a boiling point of 64.7 °C. Methane is also an important hydrogen carrier due to the availability of natural gas infrastructure and its role as a significant export product for Australia.
Innovations in Clean Energy Technologies: A Comprehensive Exploration of Research at the Clean Energy Technologies Research Institute, University of Regina
Nov 2024
Publication
The Clean Energy Technology Research Institute (CETRI) at the University of Regina Canada serves as a collaborative hub where a dynamic team of researchers industry leaders innovators and educators come together to tackle the urgent challenges of climate change and the advancement of clean energy technologies. Specializing in low-carbon and carbon-free clean energy research CETRI adopts a unique approach that encompasses feasibility studies bench-scale and pilot-plant testing and pre-commercial demonstrations all consolidated under one roof. This holistic model distinguishes CETRI fostering a diverse and inclusive environment for technical scientific and hands-on learning experiences. With a CAD 3.3 million pre-commercial carbon capture demonstration plant capable of capturing 1 tonne of CO2 per day and a feed-flexible hydrogen demonstration pilot plant producing 6 kg of hydrogen daily CETRI emerges as a pivotal force in advancing innovative reliable and cost-competitive clean energy solutions essential for a safe prolific and sustainable world. This paper provides a comprehensive overview of the diverse and impactful research carried out in the center spanning various areas including decarbonization zeroemission hydrogen technologies carbon (CO2 ) capture utilization and storage the conversion of waste into renewable fuels and chemicals and emerging technologies such as small modular nuclear reactors and microgrids.
Voltage Losses in Zero-gap Alkaline Water Electrolysis
Apr 2021
Publication
Reducing the gap between the electrodes and diaphragm to zero is an often adopted strategy to reduce the ohmic drop in alkaline water electrolyzers for hydrogen production. We provide a thorough account of the current–voltage relationship in such a zero-gap configuration over a wide range of electrolyte concentrations and current densities. Included are voltage components that are not often experimentally quantified like those due to bubbles hydroxide depletion and dissolved hydrogen and oxygen. As is commonly found for zero-gap configurations the ohmic resistance was substantially larger than that of the separator. We find that this is because the relatively flat electrode area facing the diaphragm was not active likely due to separator pore blockage by gas the electrode itself and or solid deposits. Over an e-folding time-scale of ten seconds an additional ohmic drop was found to arise likely due to gas bubbles in the electrode holes. For electrolyte concentrations below 0.5 M an overpotential was observed associated with local depletion of hydroxide at the anode. Finally a high supersaturation of hydrogen and oxygen was found to significantly increase the equilibrium potential at elevated current densities. Most of these voltage losses are shown to be easily avoidable by introducing a small 0.2 mm gap greatly improving the performance compared to zero-gap.
Advances in Whole-cell Photobiological Hydrogen Production
Jan 2021
Publication
Solar energy is the largest energy source on Earth. In contrast to the limited andgreenhouse gases-emitting fossil fuels solar energy is inexhaustible carbonneutral and nonpolluting. The conversion of this most abundant but highlydiffused source into hydrogen is increasingly attractive. In nature photosyntheticmicroorganisms exploit solar energy to produce hydrogen via photosynthesiswhich is also known as photobiological hydrogen production. More recentlyvarious types of artificial materials have been developed to hybrid microorgan-isms for converting solar energy into hydrogen namely semiartificial photo-synthesis hydrogen production. Herein the strategies for converting solar energyinto hydrogen with whole-cell biocatalyst are summarized and their potentials forfuture social sustainable development are discussed.
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Sep 2024
Publication
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First the power and energy requirements of the vehicle are determined through traction calculations and a real-time energy management strategy is used to ensure efficient power distribution. On this basis a multi-objective parameter configuration optimization model is developed which comprehensively considers economic cost and system weight and uses a particle swarm optimization (PSO) algorithm to determine the optimal configuration of each power source. The optimization results show that the system economic cost is reduced by 8.76% and 18.05% and the weight is reduced by 11.47% and 9.13% respectively compared with the initial configuration. These results verify the effectiveness of the proposed optimization strategy and demonstrate its potential to improve the overall performance of the FCHPS.
A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles
Jul 2023
Publication
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles there can be various operational pressure and volume capacity of the tanks ranging from passenger vehicles to heavy-duty trucks. The current commercial hydrogen storage method for vehicles involves storing compressed hydrogen gas in high-pressure tanks at pressures of 700 bar for passenger vehicles and 350 bar to 700 bar for heavy-duty trucks. In particular hydrogen is stored in rapidly refillable onboard tanks meeting the driving range needs of heavy-duty applications such as regional and line-haul trucking. One of the most important factors for fuel cell vehicles to be successful is their cost-effectiveness. So in this review the cost analysis including the process analysis raw materials and manufacturing processes is reviewed. It aims to contribute to the optimization of both the cost and performance of compressed hydrogen storage tanks for various applications.
A Review of Green Hydrogen Production Based on Solar Energy; Techniques and Methods
Feb 2023
Publication
The study examines the methods for producing hydrogen using solar energy as a catalyst. The two commonly recognised categories of processes are direct and indirect. Due to the indirect processes low efficiency excessive heat dissipation and dearth of readily available heat-resistant materials they are ranked lower than the direct procedures despite the direct procedures superior thermal performance. Electrolysis bio photosynthesis and thermoelectric photodegradation are a few examples of indirect approaches. It appears that indirect approaches have certain advantages. The heterogeneous photocatalytic process minimises the quantity of emissions released into the environment; thermochemical reactions stand out for having low energy requirements due to the high temperatures generated; and electrolysis is efficient while having very little pollution created. Electrolysis has the highest exergy and energy efficiency when compared to other methods of creating hydrogen according to the evaluation.
Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives
Jul 2024
Publication
Hydrogen (H2 ) is considered a suitable substitute for conventional energy sources because it is abundant and environmentally friendly. However the widespread adoption of H2 as an energy source poses several challenges in H2 production storage safety and transportation. Recent efforts to address these challenges have focused on improving the efficiency and cost-effectiveness of H2 production methods developing advanced storage technologies to ensure safe handling and transportation of H2 and implementing comprehensive safety protocols. Furthermore efforts are being made to integrate H2 into the existing energy infrastructure and explore new opportunities for its application in various sectors such as transportation industry and residential applications. Overall recent developments in H2 production storage safety and transportation have opened new avenues for the widespread adoption of H2 as a clean and sustainable energy source. This review highlights potential solutions to overcome the challenges associated with H2 production storage safety and transportation. Additionally it discusses opportunities to achieve a carbon-neutral society and reduce the dependence on fossil fuels.
A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell
Feb 2024
Publication
This paper addresses the problem of the reduction in the huge energy demand of hospitals and health care facilities. The sharp increase in the natural gas price due to the Ukrainian–Russian war has significantly reduced economic savings achieved by combined heat and power (CHP) units especially for hospitals. In this framework this research proposes a novel system based on the integration of a reversible CHP solid oxide fuel cell (SOFC) and a photovoltaic field (PV). The PV power is mainly used for balancing the hospital load. The excess power production is exploited to produce renewable hydrogen. The SOFC operates in electrical tracking mode. The cogenerative heat produced by the SOFC is exploited to partially meet the thermal load of the hospital. The SOFC is driven by the renewable hydrogen produced by the plant. When this hydrogen is not available the SOFC is driven by natural gas. In fact the SOFC is coupled with an external reformer. The simulation model of the whole plant including the reversible SOFC PV and hospital is developed in the TRNSYS18 environment and MATLAB. The model of the hospital is calibrated by means of measured data. The proposed system achieves very interesting results with a primary energy-saving index of 33% and a payback period of 6.7 years. Therefore this energy measure results in a promising solution for reducing the environmental impact of hospital and health care facilities.
Current Standards and Configurations for the Permitting and Operation of Hydrogen Refueling Stations
Mar 2023
Publication
The literature lacks a systematic analysis of HRS equipment and operating standards. Researchers policymakers and HRS operators could find this information relevant for planning the network's future expansion. This study is intended to address this information need by providing a comprehensive strategic overview of the regulations currently in place for the construction and maintenance of hydrogen fueling stations. A quick introduction to fundamental hydrogen precautions and hydrogen design is offered. The paper therefore provides a quick overview of hydrogen's safety to emphasize HRS standards rules and regulations. Both gaseous and liquid safety issues are detailed including possible threats and installation and operating expertise. After the safety evaluation layouts equipment and operating strategies for HRSs are presented followed by a review of in-force regulations: internationally by presenting ISO IEC and SAE standards and Europeanly by reviewing the CEN/CENELEC standards. A brief and concise analysis of Italy's HRS regulations is conducted with the goal of identifying potential insights for strategic development and more convenient technology deployment.
Green Hydrogen Production—Fidelity in Simulation Models for Technical–Economic Analysis
Nov 2024
Publication
Green hydrogen production is a sustainable energy solution with great potential offering advantages such as adaptability storage capacity and ease of transport. However there are challenges such as high energy consumption production costs demand and regulation which hinder its largescale adoption. This study explores the role of simulation models in optimizing the technical and economic aspects of green hydrogen production. The proposed system which integrates photovoltaic and energy storage technologies significantly reduces the grid dependency of the electrolyzer achieving an energy self-consumption of 64 kWh per kilogram of hydrogen produced. By replacing the high-fidelity model of the electrolyzer with a reduced-order model it is possible to minimize the computational effort and simulation times for different step configurations. These findings offer relevant information to improve the economic viability and energy efficiency in green hydrogen production. This facilitates decision-making at a local level by implementing strategies to achieve a sustainable energy transition.
The Role of Long-term Hydrogen Storage in Decarbonizing Remote Communities in Canada: An Optimization Framework with Economic, Environmental and Social Objectives
Nov 2024
Publication
Many small Canadian communities lack access to electricity grids relying instead on costly and polluting diesel generators despite the local availability of renewable energies like solar and wind. The intermittent nature of these sources limits reliable power supply; thus hydrogen is proposed as a cost-effective and ecofriendly long-term energy storage solution. However it remains uncertain whether hydrogen storage can significantly contribute to a 100% renewable energy system (100RES) given the diverse characteristics of these communities. Additionally the potential for fully renewable infrastructure to reduce costs mitigate adverse environmental impacts and enhance social impact is still unclear. A multi-period optimization model that balances economic environmental and social objectives to determine the optimal configuration of 100RESs for isolated communities is introduced and utilized to evaluate hydrogen as an energy storage solution to seasonal fluctuations. By identifying the best combinations of technologies tailored to local conditions and priorities this study offers valuable insights for policymakers supporting the transition to sustainable energy and achieving national climate goals. The results demonstrate that hydrogen could serve as an excellent longterm energy storage option to address energy shortages during the winter. Different combinations and sizes of energy generation and storage technologies are selected based on the characteristics of each community. For instance a community in the northern territories with high wind speeds low solar radiation extremely low temperatures and limited biomass resources should optimally rely on wind turbines to meet 80.7% of its total energy demand resulting in a 62.0% cost reduction and a 49.5% decrease in environmental impact compared to the existing diesel-based system. By 2050 all communities are projected to reduce energy costs per capita with northern territories achieving 33% and coastal areas achieving 55% cost reductions eventually leading to the utilization of hydrogen as the main energy storage medium.
Machine Learning-powered Performance Monitoring of Proton Exchange Membrane Water Electrolyzers for Enhancing Green Hydrogen Production as a Sustainable Fuel for Aviation Industry
Aug 2024
Publication
Aviation is a major contributor to transportation carbon emissions but aims to reduce its carbon footprint. Sustainable and environmentally friendly green hydrogen fuel is essential for decarbonization of this industry. Using the extremely low temperature of liquid hydrogen in aviation sector unlocks the opportunity for cryoelectric aircraft concept which exploits the advantageous properties of superconductors onboard. A significant barrier for green hydrogen adoption relates to its high cost and the immediate need for large-scale production which Proton Exchange Membrane Water Electrolyzers (PEMWE) can address through optimal dynamic performance high lifetimes good efficiencies and importantly scalability. In PEMWE the cell is a crucial component that facilitates the electrolysis process and consists of a polymer membrane and electrodes. To control the required production rate of hydrogen the output power of cell should be monitored which usually is done by measuring the cell’s potential and current density. In this paper five different machine learning (ML) models based on different algorithms have been developed to predict this parameter. Findings of the work highlight that the model based on Cascade-Forward Neural Network (CFNN) is investigated to accurately predict the cell potential of PEMWE under different anodic material and working conditions with an accuracy of 99.998 % and 0.001884 in terms of R2 and root mean square error respectively. It can predict the cell potential with a relative error of less than 0.65 % and an absolute error of below 0.01 V. The Standard deviation of 0.000061 for 50 iterations of stability analysis indicated that this model has less sensitivity to the random selection of training data. By accurately estimating different cell’s output with one model and considering its ultra-fast response CFNN model has the potential to be used for both monitoring and the designing purposes of green hydrogen production.
Energy Asset Stranding in Resource-rich Developing Countries and the Just Transition - A Framework to Push Research Frontiers
Jun 2024
Publication
Climate policy will inevitably lead to the stranding of fossil energy assets such as production and transport assets for coal oil and natural gas. Resourcerich developing countries are particularly aected as they have a higher risk of asset stranding due to strong fossil dependencies and wider societal consequences beyond revenue disruption. However there is only little academic and political awareness of the challenge to manage the asset stranding in these countries as research on transition risk like asset stranding is still in its infancy. We provide a research framework to identify wider societal consequences of fossil asset stranding. We apply it to a case study of Nigeria. Analyzing dierent policy measures we argue that compensation payments come with implementation challenges. Instead of one policy alone to address asset stranding a problem-oriented mix of policies is needed. Renewable hydrogen and just energy transition partnerships can be a contribution to economic development and SDGs. However they can only unfold their potential if fair benefit sharing and an improvement to the typical institutional problems in resource-rich countries such as the lack of rule of law are achieved. We conclude with presenting a future research agenda for the global community and acade
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Dec 2022
Publication
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry; (v) the possibility to apply fuel cell systems on different ship types. This review aims to be a reference and a guide to state both the limitations and the developing potential of fuel cell systems for different maritime applications.
Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank
May 2023
Publication
The type IV hydrogen storage tank with a polymer liner is a promising storage solution for fuel cell electric vehicles (FCEVs). The polymer liner reduces the weight and improves the storage density of tanks. However hydrogen commonly permeates through the liner especially at high pressure. If there is rapid decompression damage may occur due to the internal hydrogen concentration as the concentration inside creates the pressure difference. Thus a comprehensive understanding of the decompression damage is significant for the development of a suitable liner material and the commercialization of the type IV hydrogen storage tank. This study discusses the decompression damage mechanism of the polymer liner which includes damage characterizations and evaluations influential factors and damage prediction. Finally some future research directions are proposed to further investigate and optimize tanks.
Hydrogen Refueling Station: Overview of the Technological Status and Research Enhancement
Jan 2023
Publication
Hydrogen refueling stations (HRSs) are key infrastructures rapidly spreading out to support the deployment of fuel cell electric vehicles for several mobility purposes. The research interest in these energy systems is increasing focusing on different research branches: research on innovation on equipment and technology proposal and development of station layout and research aiming to provide experimental data sets for perfor mance investigation. The present manuscript aims to present an overview of the most recent literature on hydrogen stations by presenting the technological status of the system at the global level and their research enhancement on the involved components and processes. After the review of the mentioned aspects this paper will present the already existing layouts and the potential configurations of such infrastructures considering several options of the delivery routes the end-user destination and hydrogen storage thermodynamic status whether liquid or gaseous.
Climate Neutrality of the French Energy System: Overview and Impacts of Sustainable Aviation Fuel Production
Aug 2024
Publication
CO2 emission reduction of sectors such as aviation maritime shipping road haulage and chemical production is challenging but necessary. Although these sectors will most likely continue to rely on carbonaceous energy carriers they are expected to gradually shift away from fossil fuels. In order to do so the prominent option is to utilize alternative carbon sources—like biomass and CO2 originating from carbon capture—for the production of non-fossil carbonaceous vectors (biofuels and e-fuels). However the limited availability of biomass and the varying nature of other carbon sources necessitate a comprehensive evaluation of trade-offs between potential carbon uses and existing sources. Then it is primordial to understand the origin of carbon used in sustainable aviation fuel (SAF) to understand the implications of defossilizing aviation for the energy system. Moreover the production of SAF implies deep changes to the energy system that are quantified in this work. This study utilizes the linear programming cost optimization tool EnergyScope TD to analyze the holistic French energy system encompassing transport industry electricity and heat sectors while ensuring net greenhouse gas neutrality. A novel method to model and quantify carbon flows within the system is introduced enabling a comprehensive assessment of greenhouse gas neutrality. This study highlights the significance of fulfilling clean energy requirements and implementing carbon dioxide removal measures as crucial steps toward achieving climate neutrality. Indeed to reach climate neutrality a production of 1046 TWh of electricity by non-fossil sources is needed. Furthermore the findings underscore the critical role of efficient carbon and energy valorization from biomass providing evidence that producing fuels by combining biomass and hydrogen is optimal. The study also offers valuable insights into the future cost and impact of SAF production for air travel originating from France. That is the European law ReFuelEU would increase the price of plane tickets by +33% and would require 126 TWh of hydrogen and 50 TWh of biomass to produce the necessary 91 TWh of jet fuel. Finally the implications of the assumption behind the production of SAF are discussed.
Economy of Scale for Green Hydrogen-derived Fuel Production in Nepal
Apr 2024
Publication
Opportunity for future green hydrogen development in Nepal comes with enduse infrastructural challenges. The heavy reliance of industries on fossil fuels (63.4%) despite the abundance of hydroelectricity poses an additional challenge to the green transition of Nepal. The presented work aims to study the possibility of storing and utilizing spilled hydroelectricity due to runoff rivers as a compatible alternative to imported petroleum fuels. This is achieved by converting green hydrogen from water electrolysis and carbon dioxide from carbon capture of hard-to-abate industries into synthetic methane for heating applications via the Sabatier process. An economy-of-scale study was conducted to identify the optimal scale for the reference case (Industries in Makwanpur District Nepal) for establishing the Synthetic Natural Gas (SNG) production industry. The technoeconomic assessment was carried out for pilot scale and reference scale production unit individually. Uncertainty and sensitivity analyses were performed to study the project profitability and the sensitivity of the parameters influencing the feasibility of the production plant. The reference scale for the production of Synthetic Natural Gas was determined to be 40 Tons Per Day (TPD) with a total capital investment of around 72.15 Million USD. Electricity was identified as the most sensitive parameter affecting the levelized cost of production (LCOP). The 40 TPD plant was found to be price competitive to LPG when electricity price is subsidized below 3.55 NPR/unit (2.7 c/unit) from 12 NPR/unit (9.2 c/unit). In the case of the 2 TPD plant for it to be profitable the price of electricity must be subsidized to well below 2 NPR/kWh. The study concludes that the possibility of SNG production in Nepal is profitable and price-competitive at large scales and at the same time limited by the low round efficiency due to conversion losses. Additionally it was observed that highly favorable conditions driven by government policies would be required for the pilot-scale SNG project to be feasible.
Wind-coupled Hydrogen Integration for Commercial Greenhouse Food and Power Production: A Case Study
Oct 2024
Publication
This study investigates the feasibility of using green hydrogen technology produced via Proton Exchange Membrane (PEM) electrolysis powered by a 200 MW wind farm for a commercial Greenhouse in Ontario Canada. Nine different scenarios are analyzed exploring various approaches to hydrogen (H2) production transportation and utilization for electricity generation. The aim is to transition from using natural gas to using varying combinations of H2 and natural gas that include 10 % 20 % and 100 % of H2 with 90 % 80 % and 0 % of natural gas to generate 13.3 MW from Combined Heat and Power (CHP) engines. The techno-economic parameters considered for the study are the levelized cost of hydrogen (LCOH) payback period (PBT) internal rate of return (IRR) and discounted payback period (DPB). The study found that a 10 % H2-Natural Gas blend using existing wired or transmission line (W-10H2) with 5 days of storage capacity and 2190 h of CHP operation per year had the lowest cost with a LCOH of USD 3.69/kg. However 100 % of H2 using existing wired or transmission line (W-100H2) with the same storage and operation hours revealed better PBT IRR and DPB with values of 6.205 years 15.16 % and 7.993 years respectively. It was found impractical to build a new pipeline or transport H2 via tube trailer from wind farm site to greenhouse. A sensitivity analysis was also conducted to understand what factors affect the LCOH value the most.
Analysis of Safety Technical Standards for Hydrogen Storage in Fuel Cell Vehicles
Jul 2024
Publication
Fuel cell vehicles are considered as the direct alternative to fuel vehicles due to their similar driving range and refueling time. The United Nations World Forum for Harmonization of Vehicle Regulations (UN/WP29) released the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR13) in July 2013 which was the first international regulation in the field of fuel cell vehicles. There exist some differences between GTR13 and the existing safety technical specifications and standards in China. This paper studied the safety requirements of the GTR13 compressed hydrogen storage system analyzed the current hydrogen storage safety standards for fuel cell vehicles in China and integrated the advantages of GTR13 to propose relevant suggestions for future revision of hydrogen storage standards for fuel cell vehicle in China.
A Study on the Thermal Behavior of Series and Parallel Connection Methods in the Process of Hydrogenation of Ship-Borne Hydrogen Storage Cylinder
Feb 2024
Publication
As a subdivision of the hydrogen energy application field ship-borne hydrogen fuel cell systems have certain differences from vehicle or other application scenarios in terms of their structural type safety environmental adaptability and test verification. The connection method of the ship-borne hydrogen storage cylinder (SHSC) is very important for the hydrogen fuel cell ship and the structural parameters of the SHSC are particularly important in the hydrogen refueling process. To ensure the safe and reliable operation of the hydrogen-powered ship research on the filling of the SHSC under different connection modes was carried out during refueling. In our study a thermal flow physical model of the SHSC was established to research the hydrogen refueling process of the series and parallel SHSCs. The influence of series and parallel modes of the SHSCs on the hydrogen refueling process was explored and the evolution law of the internal flow field pressure and temperature of series and parallel SHSCs under different filling parameters was analyzed by numerical simulation. Our results confirmed the superiority of the parallel modular approach in terms of thermal safety during refueling. The results can supply a technical basis for the future development of hydrogen refueling stations and ship-board hydrogenation control algorithms.
Environmental Assessment of a Hydrogen Supply Chain Using LOHC System with Novel Low-PGM Catalysts: A Life Cycle Approach
Nov 2024
Publication
Hydrogen has emerged as a key element in the transition to a sustainable energy model. Among hydrogen storage and transport technologies liquid organic hydrogen carriers (LOHCs) stand out as a promising alternative for large-scale long-term use. Catalysts essential in these systems are usually composed of platinum group metals (PGMs) over alumina known for their high cost and scarcity. This study analyzes the overall environmental impact of the LOHC benzyltoluene/perhydro-benzyltoluene-based hydrogen supply chain by means of the life cycle assessment (LCA) focusing on the synthesis processes of novel low-PGM catalysts which remain under explored in existing literature. The results identify dehydrogenation as the most impactful step due to significant heat consumption and highlight the substantial environmental footprint associated with the use of platinum in catalyst production. This research provides crucial insights into the environmental implications of LOHC systems particularly the role of novel low-PGM catalysts and offers guidance for their future large-scale applications.
Life Cycle Assessment of Renewable Hydrogen Transport by Ammonia
Nov 2024
Publication
Ammonia is a promising hydrogen carrier for enabling the efficient transport of hydrogen as observed by the many hydrogen transport projects using ammonia. For the clean energy future understanding environmental impacts of the transport system is important. This study conducts life cycle assessment (LCA) for the marine transport of renewable hydrogen using ammonia as the hydrogen carrier. The LCA considered renewable hydrogen produced from four systems; wind-powered electrolysis gasification of forest residue anaerobic digestion of food waste and landfill gas reforming; followed by Haber-Bosch ammonia synthesis using the renewable hydrogen and nitrogen produced from air separation. The ammonia was then transported 11000 km by sea to a destination facility where it was decomposed using either Ru or Ni catalysts to obtain hydrogen. Among the four hydrogen transport systems operated with renewable energy electrolysis-hydrogen system presented the highest global warming impact of 3.31 kg CO2 eq/kg H2 due to electricity use for the electrolysis whereas simpler processes based on a landfill gas system led to the lowest impact of 2.27 kg CO2 eq/kg H2. Process energy consumption was the major contributor to global warming impact with 27%–49.2% of contri bution. The consumption of metals and energy during wind turbine construction resulted in the most significant impact in six out of 12 midpoint impact categories for the electrolysis-hydrogen system which also led to the highest endpoint impacts. The endpoint impacts of the four systems were in the order of electrolysis > food waste > forest residue > landfill gas (from high to low) for both endpoint human health and ecosystems impacts. Ammonia decomposition using Ru catalysts exhibited slightly lower global warming impact than Ni catalysts while final purification of hydrogen by vanadium membrane presented 4.8% lower impacts than the purification by pressure swing adsorption. Large-scale hydrogen supply chains can be achieved by technological improve ment and support of policies and financial schemes.
A Review of Hydrogen Production Methods and Power Electronics Converter Topologies for Green Hydrogen Applications
Nov 2024
Publication
Hydrogen has been receiving a lot of attention in the last few years since it is seen as a viable yet not thoroughly dissected alternative for addressing climate change issues namely in terms of energy storage and therefore great investments have been made towards research and development in this area. In this context a study about the main options for hydrogen production along with the analysis of a variety of the main power electronics converter topologies for such applications is presented as the purpose of this paper. Much of the analyzed available literature only discusses a few types of hydrogen production methods so it becomes crucial to include an analysis of all known types of methods for producing hydrogen according to their production type along with the color code associated with each type and highlighting the respective contextualization as well as advantages and disadvantages. Regarding the topologies of power electronics converters most suitable for hydrogen production and more specifically for green hydrogen production a list of them was analyzed through the available literature and a discussion of their advantages and disadvantages is presented. These topologies present the advantage of having a low ripple current output which is a requirement for the production of hydrogen.
Shifting to Low-carbon Hydrogen Production Supports Job Creation but Does Not Gurantee a Just Transition
Nov 2024
Publication
Transitioning from carbon-intensive steam methane reforming to low-carbon hydrogen production is essential for decarbonizing the European industrial sector. However the employment impact of such a transition remains unclear. Here we estimate the effects using a transition pathways optimization model and industrial survey data. The results show that an electrolysis-based hydrogen sector transition would create 40000 jobs in the hydrogen sector by 2050. However these jobs are not equally distributed with Western Europe hosting the largest share (40%) and 20% of current hydrogen-producing regions experiencing net job decreases. Even after accounting for renewable energy jobs created by electrolysis-driven electricity demand growth the 2050 low-carbon hydrogen workforce would provide only 10% of the jobs currently offered by European fossil fuel production. Numerous uncertainties and regional development inequities suggest the need for sector-diversified workforce transition plans and training programs to foster skills suited to multiple low-carbon opportunities.
Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives
Feb 2022
Publication
The recovery of energy and valuable compounds from exhaust gases in the iron and steel industry deserves specialattention due to the large power consumption and CO 2 emissions of the sector. In this sense the hydrogen content of coke oven gas(COG) has positioned it as a promising source toward a hydrogen-based economy which could lead to economic and environmentalbenefits in the iron and steel industry. COG is presently used for heating purposes in coke batteries or furnaces while in highproduction rate periods surplus COG is burnt in flares and discharged into the atmosphere. Thus the recovery of the valuablecompounds of surplus COG with a special focus on hydrogen will increase the efficiency in the iron and steel industry compared tothe conventional thermal use of COG. Different routes have been explored for the recovery of hydrogen from COG so far: i)separation/purification processes with pressure swing adsorption or membrane technology ii) conversion routes that provideadditional hydrogen from the chemical transformation of the methane contained in COG and iii) direct use of COG as fuel forinternal combustion engines or gas turbines with the aim of power generation. In this study the strengths and bottlenecks of themain hydrogen recovery routes from COG are reviewed and discussed.
Pieces of a Jigsaw: Opportunities and Challenges in the Nascent Australian Hydrogen Mobility Market
Mar 2023
Publication
Mobility has been a prominent target for proponents of the hydrogen economy. Given the complexities involved in the mobility value chain actors hoping to participate in this nascent market must overcome a range of challenges relating to the availability of vehicles the co-procurement of supporting infrastructure a favourable regulatory environment and a supportive community among others. In this paper we present a state-of-play account of the nascent hydrogen mobility market in Victoria Australia drawing on data from a workshop (N ¼ 15) and follow-up interviews (n ¼ 10). We interpret findings through a socio-technical framework to understand the ways in which fuel cell electric vehicles (FCEVs)dand hydrogen technologies more generallydare conceptualised by different stakeholder groups and how these conceptualisations mediate engagement in this unfolding market. Findings reveal prevailing efforts to make sense of the FCEV market during a period of considerable institutional ambiguity. Discourses embed particular worldviews of FCEV technologies themselves in addition to the envisioned roles the resultant products and services will play in broader environmental and energy transition narratives. Efforts to bring together stakeholders representing different areas of the FCEV market should be seen as important enablers of success for market participants.
A Perspective on Low-Temperature Water Electrolysis - Challenges in Alkaline and Acidic Technology
Dec 2017
Publication
Water electrolysis is considered as an important technology for an increased renewable energy penetration. This perspective on low-temperature water electrolysis joins the dots between the interdisciplinary fields of fundamental science describing physicochemical processes engineering for the targeted design of cell components and the development of operation strategies. Within this aim the mechanisms of ion conduction gas diffusion corrosion and electrocatalysis are reviewed and their influence on the optimum design of separators electrocatalysts electrodes and other cell components are discussed. Electrocatalysts for the water splitting reactions and metals for system components are critically accessed towards their stability and functionality. On the basis of the broad scientific analysis provided challenges for the design of water electrolyzers are elucidated with special regard to the alkaline or acidic media of the electrolyte.
The Current Status of Hydrogen Energy: An Overview
Sep 2023
Publication
Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the world's energy in the future replacing the present fossil fuel-based energy infrastructure. Hydrogen is expected to solve the problem of energy shortages in the near future especially in complex geographical areas (hills arid plateaus etc.) and harsh climates (desert ice etc.). Thus in this report we present a current status of achievable hydrogen fuel based on various scopes including production methods storage and transportation techniques the global market and the future outlook. Its objectives include analyzing the effectiveness of various hydrogen generation processes and their effects on the economy society and environment. These techniques are contrasted in terms of their effects on the environment manufacturing costs energy use and energy efficiency. In addition hydrogen energy market trends over the next decade are also discussed. According to numerous encouraging recent advancements in the field this review offers an overview of hydrogen as the ideal renewable energy for the future society its production methods the most recent storage technologies and transportation strategies which suggest a potential breakthrough towards a hydrogen economy. All these changes show that this is really a profound revolution in the development process of human society and has been assessed as having the same significance as the previous industrial revolution.
Zero-emission Propulsion System Featuring, Flettner Rotors, Batteries and Fuel Cells, for a Merchant Ship
Jul 2024
Publication
To meet the International Maritime Organization’s (IMO) goal of decarbonising the shipping sector by 2050 zero-emission ship propulsion systems should be developed to replace conventional fossil fuel-based ones. In this study we propose a zero-emission hybrid hydrogen-wind-powered propulsion system to be retrofitted to a benchmark merchant ship with a conventional propulsion system. The ship and its propulsion systems are modelled using an in-house platform. We analyse power and energy requirements for the ship over a realistic route and one-year schedule factoring in actual sea and weather conditions. Initially we examine the battery-powered propulsion system which proves impractical even with a reduction in the ship’s speed and the addition of a charging station. This retrofitted battery-powered propulsion system will occupy a significant portion of the existing ship’s deadweight due to its substantial weight consequently reducing the ship’s cargo capacity. To address this we evaluate integrating a hydrogen-powered fuel cell system with power equal to the non-propulsive constant load in the ship. We demonstrate that under these conditions and with four Flettner rotors and the charging station positioned mid-port on the ship’s route the size of the zero-emission propulsion system can be approximately 20% of the deadweight rendering such a system feasible.
Efficiency and Consistency Enhancement for Alkaline Electrolyzers Driven by Renewable Energy Sources
May 2023
Publication
Low-cost alkaline water electrolysis from renewable energy sources (RESs) is suitable for large-scale hydrogen production. However fluctuating RESs lead to poor performance of alkaline water electrolyzers (AWEs) at low loads. Here we explore two urgent performance issues: inefficiency and inconsistency. Through detailed operation process analysis of AWEs and the established equivalent electrical model we reveal the mechanisms of inefficiency and inconsistency of low-load AWEs are related to the physical structure and electrical characteristics. Furthermore we propose a multi-mode self-optimization electrolysis converting strategy to improve the efficiency and consistency of AWEs. In particular compared to a conventional dc power supply we demonstrate using a lab-scale and large-scale commercially available AWE that the maximum efficiency can be doubled while the operation range of the electrolyzer can be extended from 30–100% to 10–100% of rated load. Our method can be easily generalized and can facilitate hydrogen production from RESs.
An Analytical Model for the Electrolyser Performance Derived from Materials Parameters
Oct 2017
Publication
Hydrogen is seen as a key element for the transition from a fossil fuel based economy to a renewable sustainable economy. Hydrogen can be used either directly as an energy carrier or as a feedstock for the reduction of CO2 to synthetic hydrocarbons. Hydrogen can be produced by electrolysis decomposing water in oxygen and hydrogen. This paper presents an overview of the three major electrolysis technologies: acidic (PEM) alkaline (AEL) and solid oxide electrolysis (SOEC). An updated list of existing electrolysers and commercial providers is provided. Most interestingly the specific prices of commercial devices are also given when available. Despite tremendous development of the PEM technology in the past decades the largest and most efficient electrolysers are still alkaline. Thus this technology is expected to play a key role in the transition to the hydrogen society. A detailed description of the components in an alkaline electrolyser and an analytical model of the process are provided. The analytical model allows investigating the influence of the different operating parameters on the efficiency. Specifically the effect of temperature on the electrolyte conductivity—and thus on the efficiency—is analyzed. It is found that in the typical range of operating temperatures for alkaline electrolysers of 65˚C - 220˚C the efficiency varies by up to 3.5 percentage points increasing from 80% to 83.5% at 65˚C and 220˚C respectively.
Decarbonized Green Hydrogen Production by Sorption-enhanced Biomass Gasification: An Integrated Techno-econonic and Environmental Evaluation
Nov 2024
Publication
Deployment of innovative renewable-based energy applications are critical for reducing CO2 emissions and achieving global climate neutrality. This work evaluates the production of decarbonized green H2 based on sorption-enhanced biomass (sawdust) gasification. The calcium-based sorbent was evaluated in a looping cycle configuration as sorption material to enhance both the CO2 capture rate and the energy-efficient hydrogen production. The investigated concept is set to produce 100 MWth high purity hydrogen (>99.95% vol.) with very high decarbonization yield (>98–99%) using woody biomass as a fuel. Conventional biomass (sawdust) gasification systems with and without CO2 capture capability are also assessed for the calculation of energy and economic penalties induced by decarbonization. The results show that the decarbonized green hydrogen manufacture by sorption-enhanced biomass gasification shows attractive performances e.g. high overall energy efficiency (about 50%) reduced energy and economic penalties for almost total decarbonization (down to 8 net efficiency points) low specific carbon emissions at system level (lower than 7 kg/MWh) and negative CO2 emission for whole biomass value chain (about − 518.40 kg/MWh). However significant developments (e.g. improving reactor design and fuel/sorbent conversion yields reducing sorbent make-up etc.) are still needed to advance this innovative concept from present level to industrial sizes.
Advancing Hydrogen Gas Utilization in Industrial Boilers: Impacts on Critical Boiler Components, Mitigation Measures, and Future Perspectives
Sep 2024
Publication
This review sets out to investigate the detrimental impacts of hydrogen gas (H2 ) on critical boiler components and provide appropriate state-of-the-art mitigation measures and future research directions to advance its use in industrial boiler operations. Specifically the study focused on hydrogen embrittlement (HE) and high-temperature hydrogen attack (HTHA) and their effects on boiler components. The study provided a fundamental understanding of the evolution of these damage mechanisms in materials and their potential impact on critical boiler components in different operational contexts. Subsequently the review highlighted general and specific mitigation measures hydrogen-compatible materials (such as single-crystal PWA 1480E Inconel 625 and Hastelloy X) and hydrogen barrier coatings (such as TiAlN) for mitigating potential hydrogen-induced damages in critical boiler components. This study also identified strategic material selection approaches and advanced approaches based on computational modeling (such as phase-field modeling) and data-driven machine learning models that could be leveraged to mitigate potential equipment failures due to HE and HTHA under elevated H2 conditions. Finally future research directions were outlined to facilitate future implementation of mitigation measures material selection studies and advanced approaches to promote the extensive and sustainable use of H2 in industrial boiler operations.
Technology for Green Hydrogen Production: Desk Analysis
Sep 2024
Publication
The use of green hydrogen as a high-energy fuel of the future may be an opportunity to balance the unstable energy system which still relies on renewable energy sources. This work is a comprehensive review of recent advancements in green hydrogen production. This review outlines the current energy consumption trends. It presents the tasks and challenges of the hydrogen economy towards green hydrogen including production purification transportation storage and conversion into electricity. This work presents the main types of water electrolyzers: alkaline electrolyzers proton exchange membrane electrolyzers solid oxide electrolyzers and anion exchange membrane electrolyzers. Despite the higher production costs of green hydrogen compared to grey hydrogen this review suggests that as renewable energy technologies become cheaper and more efficient the cost of green hydrogen is expected to decrease. The review highlights the need for cost-effective and efficient electrode materials for large-scale applications. It concludes by comparing the operating parameters and cost considerations of the different electrolyzer technologies. It sets targets for 2050 to improve the efficiency durability and scalability of electrolyzers. The review underscores the importance of ongoing research and development to address the limitations of current electrolyzer technology and to make green hydrogen production more competitive with fossil fuels.
Overview of Hydrogen Production Technologies for Fuel Cell Utilization
Jun 2023
Publication
With rapidly depleting fossil fuels and growing environmental alarms due to their usage hydrogen as an energy vector provides a clean and sustainable solution. However the challenge lies in replacing mature fossil fuel technology with efficient and economical hydrogen production. This paper provides a technoeconomic and environmental overview of H2 production technologies. Reforming of fossil fuels is still considered as the backbone of large-scale H2 production. Whereas renewable hydrogen has technically advanced and improved its cost remains an area of concern. Finding alternative catalytic materials would reduce such costs for renewable hydrogen production. Taking a mid-term timeframe a viable scenario is replacing fossil fuels with solar hydrogen production integrated with water splitting methods or from biomass gasification. Gasification of biomass is the preferred option as it is carbon neutral and costeffective producing hydrogen at 1.77 – 2.77 $/kg of H2. Among other uses of hydrogen in industrial applications the most viable approach is to use it in hydrogen fuel cells for generating electricity. Commercialization of fuel cell technology is hindered by a lack of hydrogen infrastructure. Fuel cells and hydrogen production units should be integrated to achieve desired results. Case studies of different fuel cells and hydrogen production technologies are presented at the end of this paper depicting a viable and environmentally acceptable approach compared with fossil fuels.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review
Nov 2023
Publication
The depletion of fossil fuels in the current world has been a major concern due to their role as a primary source of energy for many countries. As non-renewable sources continue to deplete there is a need for more research and initiatives to reduce reliance on these sources and explore better alternatives such as renewable energy. Hydrogen is one of the most intriguing energy sources for producing power from fuel cells and heat engines without releasing carbon dioxide or other pollutants. The production of hydrogen via the electrolysis of water using renewable energy sources such as solar energy is one of the possible uses for solid oxide electrolysis cells (SOECs). SOECs can be classified as either oxygen-ion conducting or proton-conducting depending on the electrolyte materials used. This article aims to highlight broad and important aspects of the hybrid SOEC-based solar hydrogen-generating technology which utilizes a mixed-ion conductor capable of transporting both oxygen ions and protons simultaneously. In addition to providing useful information on the technological efficiency of hydrogen production in SOEC this review aims to make hydrogen production more efficient than any other water electrolysis system.
Reducing the Environmental Impact of International Aviationg through Sustainable Aviation Fuel with Integrated Carbon Capture and Storage
Feb 2024
Publication
Sustainable aviation fuels (SAFs) represent the short-term solution to reduce fossil carbon emissions from aviation. The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) was globally adopted to foster and make SAFs production economically competitive. Fischer-Tropsch synthetic paraffinic kerosene (FTSPK) produced from forest residue is a promising CORSIA-eligible fuel. FT conversion pathway permits the integration of carbon capture and storage (CCS) technology which provides additional carbon offsetting ca pacities. The FT-SPK with CCS process was modelled to conduct a comprehensive analysis of the conversion pathway. Life-cycle assessment (LCA) with a well-to-wake approach was performed to quantify the SAF’s carbon footprint considering both biogenic and fossil carbon dynamics. Results showed that 0.09 kg FT-SPK per kg of dry biomass could be produced together with other hydrocarbon products. Well-to-wake fossil emissions scored 21.6 gCO2e per MJ of FT-SPK utilised. When considering fossil and biogenic carbon dynamics a negative carbon flux (-20.0 gCO2eMJ− 1 ) from the atmosphere to permanent storage was generated. However FT-SPK is limited to a 50 %mass blend with conventional Jet A/A1 fuel. Using the certified blend reduced Jet A/A1 fossil emissions in a 37 % and the net carbon flux resulted positive (30.9 gCO2eMJ− 1 ). Sensitivity to variations in process as sumptions was investigated. The lifecycle fossil-emissions reported in this study resulted 49 % higher than the CORSIA default value for FT-SPK. In a UK framework only 0.7 % of aviation fuel demand could be covered using national resources but the emission reduction goal in aviation targeted for 2037 could be satisfied when considering CCS.
A Thermodynamic Model for Cryogenic Liquid Hydrogen Fuel Tanks
Apr 2024
Publication
Hydrogen is used as a fuel in various fields such as aviation space and automobiles due to its high specific energy. Hydrogen can be stored as a compressed gas at high pressure and as a liquid at cryogenic temperatures. In order to keep liquid hydrogen at a cryogenic temperature the tanks for storing liquid hydrogen are required to have insulation to prevent heat leakage. When liquid hydrogen is vaporized by heat inflow a large pressure is generated inside the tank. Therefore a technology capable of predicting the tank pressure is required for cryogenic liquid hydrogen tanks. In this study a thermodynamic model was developed to predict the maximum internal pressure and pressure behavior of cryogenic liquid hydrogen fuel tanks. The developed model considers the heat inflow of the tank due to heat transfer the phase change from liquid to gas hydrogen and the fuel consumption rate. To verify the accuracy of the proposed model it was compared with the analyses and experimental results in the referenced literature and the model presented good results. A cryogenic liquid hydrogen fuel tank was simulated using the proposed model and it was confirmed that the storage time along with conditions such as the fuel filling ratio of liquid hydrogen and the fuel consumption rate should be considered when designing the fuel tanks. Finally it was confirmed that the proposed thermodynamic model can be used to sufficiently predict the internal pressure and the pressure behavior of cryogenic liquid hydrogen fuel tanks.
Explosions of Hydrogen Storages and the Safety Considerations in Hydrogen-Powered Railway Applications—A Review
Nov 2024
Publication
As one of the most promising clean energy sources hydrogen power has gradually emerged as a viable alternative to traditional energy sources. However hydrogen safety remains a significant concern due to the potential for explosions and the associated risks. This review systematically examines hydrogen explosions with a focus on high-pressure and low-temperature storage transportation and usage processes mostly based on the published papers from 2020. The fundamental principles of hydrogen explosions classifications and analysis methods including experimental testing and numerical simulations are explored. Key factors influencing hydrogen explosions are also discussed. The safety issues of hydrogen power on railway applications are focused and finally recommendations are provided for the safe application of hydrogen power in railway transportation particularly for long-distance travel and heavy-duty freight trains with an emphasis on storage safety considerations.
Electrochemical Compression Technologies for High-pressure Hydrogen: Current Status, Challenges and Perspective
Aug 2020
Publication
Hydrogen is an ideal energy carrier in future applications due to clean byproducts and high efciency. However many challenges remain in the application of hydrogen including hydrogen production delivery storage and conversion. In terms of hydrogen storage two compression modes (mechanical and non-mechanical compressors) are generally used to increase volume density in which mechanical compressors with several classifcations including reciprocating piston compressors hydrogen diaphragm compressors and ionic liquid compressors produce signifcant noise and vibration and are expensive and inefcient. Alternatively non-mechanical compressors are faced with issues involving large-volume requirements slow reaction kinetics and the need for special thermal control systems all of which limit large-scale development. As a result modular safe inexpensive and efcient methods for hydrogen storage are urgently needed. And because electrochemical hydrogen compressors (EHCs) are modular highly efcient and possess hydrogen purifcation functions with no moving parts they are becoming increasingly prominent. Based on all of this and for the frst time this review will provide an overview of various hydrogen compression technologies and discuss corresponding structures principles advantages and limitations. This review will also comprehensively present the recent progress and existing issues of EHCs and future hydrogen compression techniques as well as corresponding containment membranes catalysts gas difusion layers and fow felds. Furthermore engineering perspectives are discussed to further enhance the performance of EHCs in terms of the thermal management water management and the testing protocol of EHC stacks. Overall the deeper understanding of potential relationships between performance and component design in EHCs as presented in this review can guide the future development of anticipated EHCs.
Economic Prospects of Taxis Powered by Hydrogen Fuel Cells in Palestine
Feb 2024
Publication
Recently major problems related to fuel consumption and greenhouse gas (GHG) emissions have arisen in the transportation sector. Therefore developing transportation modes powered by alternative fuels has become one of the main targets for car manufacturers and governments around the world. This study aimed to investigate the economic prospects of using hydrogen fuel cell technology in taxi fleets in Westbank. For this purpose a model that could predict the number of taxis was developed and the expected economic implications of using hydrogen fuel cell technology in taxi fleets were determined based on the expected future fuel consumption and future fuel cost. After analysis of the results it was concluded that a slight annual increase in the number of taxis in Palestine is expected in the future due to the government restrictions on issuing new taxi permits in order to get this sector organized. Furthermore using hydrogen fuel cells in taxi fleets is expected to become more and more feasible over time due to the expected future increase in oil price and the expected significant reduction in hydrogen cost as a result of the new technologies that are expected to be used in the production and handling of hydrogen.
Life-cycle Carbon-intensity Mapping for Hydrogen-driven Energy and Economy
Aug 2024
Publication
Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.
Performance Assessment of a 25 kW Solid Oxide Cell Module for Hydrogen Production and Power Generation
Jan 2024
Publication
Hydrogen produced via water electrolysis from renewable electricity is considered a key energy carrier to defossilize hard-to-electrify sectors. Solid oxide cells (SOC) based reactors can supply hydrogen not only in electrolysis but also in fuel cell mode when operating with (synthetic) natural gas or biogas at low conversion (polygeneration mode). However the scale-up of SOC reactors to the multi-MW scale is still a research topic. Strategies for transient operation depending on electricity intermittency still need to be developed. In this work a unique testing environment for SOC reactors allows reversible operation demonstrating the successful switching between electrolysis (− 75 kW) and polygeneration (25 kW) modes. Transient and steady state experiments show promising performance with a net hydrogen production of 53 kg day− 1 in SOEL operation with ca. − 75 kW power input. The experimental results validate the scaling approach since the reactor shows homogenous temperature profiles.
How Would Structural Change in Electricity and Hydrogen End Use Impact Low-Carbon Transition of an Energy System? A Case Study of China
Feb 2024
Publication
Driven by global targets to reduce greenhouse gas emissions energy systems are expected to undergo fundamental changes. In light of carbon neutrality policies China is expected to significantly increase the proportion of hydrogen and electricity in its energy system in the future. Nevertheless the future trajectory remains shrouded in uncertainty. To explore the potential ramifications of varying growth scenarios pertaining to hydrogen and electricity on the energy landscape this study employs a meticulously designed bottom-up model. Through comprehensive scenario calculations the research aims to unravel the implications of such expansions and provide a nuanced analysis of their effects on the energy system. Results show that with an increase in electrification rates cumulative carbon dioxide emissions over a certain planning horizon could be reduced at the price of increased unit reduction costs. By increasing the share of end-use electricity and hydrogen from 71% to 80% in 2060 the unit carbon reduction cost will rise by 17%. Increasing shares of hydrogen could shorten the carbon emission peak time by approximately five years but it also brings an increase in peak shaving demand.
Green Hydrogen and Wind Synergy: Assessing Economic Benefits and Optimal Operational Strategies
Aug 2024
Publication
Volatile electricity prices have raised concerns about the economic feasibility of wind projects in Finland. This study assesses the economic viability and optimal operational strategies for integrating wind-powered green hydrogen production systems. Utilizing modeling and optimization this research evaluates various wind farms in Western Finland over electricity market scenarios from 2019 to 2022 with forecasts extending to 2030. Key economic metrics considered include internal rate of return future value net present value (NPV) and the levelized cost of hydrogen (LCOH). Results indicate that integration of hydrogen production with wind farms shows economic benefits over standalone wind projects potentially reducing LCOH to €2.0/kgH2 by 2030 in regular and low electricity price scenarios and to as low as €0.6/kgH2 in high-price scenarios. The wind farm with the highest capacity factor achieves 47% reductions in LCOH and 22% increases in NPV underscoring the importance of strategic site selection and operational flexibility.
The Role of Power-to-hydrogen in Carbon Neutral Energy and Industrial Systems: Case Finland
Aug 2023
Publication
To combat climate change decarbonization measures are undertaken across the whole energy sector. Industry and transportation sectors are seen as difficult sectors to decarbonize with green hydrogen being proposed as a solution to achieve decarbonization in these sectors. While many methods of introducing hydrogen to these sectors are present in literature few systemlevel works study the specific impacts of large-scale introduction has on power and heat sectors in an energy system. This contribution examines the effects of introducing hydrogen into a Finnish energy system in 2040 by conducting scenario simulations in EnergyPLAN – software. Primary energy consumption and CO2 emissions of the base scenario and hydrogen scenarios are compared. Additionally the differences between a constant and flexible hydrogen production profile are studied. Introducing hydrogen increases electricity consumption by 31.9 % but reduces CO2 emissions by 71.5 % and fossil energy consumption by 72.6%. The flexible hydrogen profile lowers renewable curtailment and improves energy efficiency but requires economically unfeasible hydrogen storage. Biomass consumption remains high and is not impacted significantly by the introduction of hydrogen. Additional measures in other sectors are needed to ensure carbon neutrality.
No more items...