France
Hydrogen Behavior and Mitigation Measures: State of Knowledge and Database from Nuclear Community
Sep 2023
Publication
Hydrogen has become a key enabler for decarbonization as countries pledge to reach net zero carbon emissions by 2050. With hydrogen infrastructure expanding rapidly beyond its established applications there is a requirement for robust safety practices solutions and regulations. Since the 1980s considerable efforts have been undertaken by the nuclear community to address hydrogen safety issues because in severe accidents of water-cooled nuclear reactors a large amount of hydrogen can be produced from the oxidation of metallic components with steam. As evidenced in the Fukushima accident hydrogen combustion can cause severe damage to reactor building structures promoting the release of radioactive fission products to the environment. A number of large-scale experiments were conducted in the framework of national and international projects to understand the hydrogen dispersion and combustion behaviour under postulated accidental conditions. Empirical engineering models and numerical codes were developed and validated for safety analysis. Hydrogen recombiners known as Passive Autocatalytic Recombiner (PAR) were developed and have been widely installed in nuclear containments to mitigate hydrogen risk. Complementary actions and strategies were established as part of severe accident management guidelines to prevent or limit the consequences of hydrogen explosions. In addition hydrogen monitoring systems were developed and implemented in nuclear power plants. The experience and knowledge gained from the nuclear community on hydrogen safety is valuable and applicable for other industries involving hydrogen production transport storage and use.
AMHYCO Project - Advances in H2/CO Combustion, Recombination and Containment Modelling
Sep 2023
Publication
During a severe accident in a nuclear power plant one of the potential threats to the containment is the occurrence of energetic combustion events. In modern plants Severe Accident Management Guidelines (SAMG) as well as dedicated mitigation hardware are in place to minimize/mitigate this combustion risk and thus avoid the release of radioactive material into the environment. Advancements in SAMGs are in the focus of AMHYCO an EU-funded Horizon 2020 project officially launched on October 1st 2020. The project consortium consists of 12 organizations (from six European countries and one from Canada) and is coordinated by the Universidad Politécnica de Madrid (UPM). The progress made in the first two years of the AMHYCO project is here presented. A comprehensive bibliographic review has been conducted providing a common foundation to build the knowledge gained during the project. After an extensive set of accident transients simulated both for phases occurring inside and outside the reactor pressure vessel a set of challenging sequences from the combustion risk perspective for different power plant types were identified. At the same time three generic containment models for the three considered reactor designs have been created to provide the full containment analysis simulations with lumped parameter models 3-dimensional containment codes and CFD codes. In order to further consolidate the model base combustion experiments and performance tests on passive auto-catalytic recombiners under explosion prone H2/CO atmospheres were performed at CNRS (France) and FZJ (Germany). Finally it is worth saying that the experimental data and engineering models generated from the AMHYCO project are useful for other industries outside the nuclear one.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Simulations of Hydrogen Dispersion from Fuel Cell Vehicles' Leakages Inside Full-scale Tunnel
Sep 2023
Publication
In this work real scale experiments involving hydrogen dispersion inside a road tunnel have been modelled using the Computational Fluid Dynamics (CFD) methodology. The aim is to assess the performance of the ADREA-HF CFD tool against full-scale tunnel dispersion data resulting from high-pressure hydrogen leakage through Thermal Pressure Relief Device (TPRD) of a vehicle. The assessment was performed with the help of experiments conducted by the French Alternative Energies and Atomic Energy Commission (CEA) in a real inclined tunnel in France. In the experiments helium as hydrogen surrogate has been released from 200 bar storage pressure. Several tests were carried out examining different TPRD sizes and release directions (upwards and downwards). For the CFD evaluation two tests were considered: one with downwards and one with upwards release both through a TPRD with a diameter of 2 mm. The comparison between the CFD results and the experiments shows the good predictive capabilities of the ADREA-HF code that can be used as a safety tool in hydrogen dispersion studies. The comparison reveals some of the strengths and weaknesses of both the CFD and the experiments. It is made clear that CFD can contribute to the design of the experiments and to the interpretation of the experimental results.
Experimental Study of the Mitigation of Hydrogen-Air Explosions by Inhibiting Powder
Sep 2023
Publication
The development of hydrogen production technologies and new uses represents an opportunity to accelerate the ecological transition and create a new industrial sector. However the risks associated with the use of hydrogen must be considered. Mitigation of a hydrogen explosion in an enclosure is partly based on prevention strategies such as detection and ventilation and protection strategies such as explosion venting. Even if applications involving hydrogen probably are most interesting for vented explosions in weak structures the extreme reactivity of hydrogen-air mixtures often excludes the use of regular venting devices such as in highly constrained urban environments. Thus having alternative mitigation solutions can make the effects of the explosion acceptable by reducing the flame speed and the overpressure loading or suppressing the secondary explosion. The objective of this paper is to present experimental studies of the mitigation of hydrogen-air deflagration in a 4 m3 vented enclosure by injection of inhibiting powder (NaHCO₃). After describing the experimental set-up the main experimental results are presented for several trial configurations showing the influence of inhibiting powder in the flammable cloud on flame propagation. An interpretation of the mitigating effect of inhibiting powder on the explosion effects is proposed based on the work of Proust et al.
Experimental Study of the Mitigation of Hydrogen-Air Explosions by Aqueous Foam
Sep 2023
Publication
The development of hydrogen production technologies as well as new uses represents an opportunity both to accelerate the ecological transition and to create an industrial sector. However the risks associated with the use of hydrogen must not be overlooked. The mitigation of a hydrogen explosion in an enclosure is partly based on prevention strategies such as detection and ventilation but also on protection strategies such as explosion venting. However in several situations such as in highly constrained urban environments the discharge of the explosion through blast walls could generate significant overpressure effects outside the containment which are unacceptable. Thus having alternative mitigation solutions can make the effects of the explosion acceptable by reducing the flame speed and the overpressure loading or suppressing the secondary explosion. The objective of this paper is to present the experimental study of the mitigation of hydrogen-air deflagration in a 4 m3 vented enclosure by injection of aqueous foam. After a description of the experimental set-up the main experimental results are presented showing the influence of aqueous foam on flame propagation (Fig. 1). Different foam expansion ratios were investigated. An interpretation of the mitigating effect of foam on the explosion effects is proposed based on the work of Kichatov [5] and Zamashchikov [2].
LES of Turbulent Under-expanded Hydrogen Jet Flames
Sep 2023
Publication
In the frame of hydrogen-powered aircraft Airbus wants to understand all the H2 physics and explore every scenario in order to develop and manufacture safe products operated in a safe environment. Within the framework of a Large Eddy Simulation (LES) methodology for modeling turbulence a comparative numerical study of free under-expanded jet H2/AIR flame is conducted. The investigated geometry consists of straight nozzles with a millimetric diameter fed with pure H2 at upstream pressures ranging from 2 to 10 bar. Numerical results are compared with available experimental measurements such as; temperature signals using thermocouples. LES confirms its prediction capability in terms of shock jet structure and flame length. A particular attention is paid for capturing experimental unstable flame when upstream pressure decreases. Furthermore flame stabilization and flame anchoring are analyzed. Mechanisms of flame stabilization are highlighted for case 1 and stabilization criteria are tested. Finally an ignition map to reach flame stabilization is proposed for each case regarding the literature.
Performance Comparison of Hydrogen Dispersion Models in Enclosure Adapted to Forced Ventilation
Sep 2023
Publication
In confined spaces hydrogen released with low momentum tends to accumulate in a layer below the ceiling; the concentration in this layer rises and can rapidly enter the flammability range. In this context ventilation is a key safety equipment to prevent the formation of such flammable volumes. To ensure its well-sizing to each specific industrial context it is necessary to dispose of reliable engineering models. Currently the existing engineering models dealing with the buoyancy-driven H2 dispersion in a ventilated enclosure mainly focus on the natural-ventilation phenomenon. However forced ventilation is in some situations more adapted to the industrial context as the wind direction and intensity remains constant and under control. Therefore two existing wind-assisted ventilation models elaborated by Hunt and Linden [1] and Lowesmith et al. [2] were tested on forced ventilation applications. The main assumption consists in assuming a blowing ventilation system rather than a suction system as the composition and velocity of the entering air are known. The fresh air enters the down opening and airhydrogen mixture escapes through the upper one. The adapted models are then validated with experimental data releasing helium rather than hydrogen. Experiments are conducted on a 1-m3 ventilated box controlling the release and ventilation rates. The agreement between both analytical and experimental results is discussed from the different comparisons performed.
Numerical Study of Highly Turbulent Under-expanded Hydrogen Jet Flames Impinging Walls
Sep 2023
Publication
Heat flux on walls from under-expanded H2/AIR jet flames have been numerically investigated. The thermal behaviour of a plate close to different under-expanded jet flames has been compared with rear-face plate temperature measurements. In this study two straight nozzles with millimetric diameter were selected with H2 reservoir pressure in a range from 2 to 10 bar. The CFD study of these two quite different horizontal jet flames employs the Large Eddy Simulation (LES) formalism to capture the turbulent flame-wall interaction. The results demonstrated a good agreement with experimental wall heat fluxes computed from plate temperature measurements. The present study assesses the prediction capability of LES for flame-wall heat transfer.
IEA TCP Task 43 - Subtask Safety Distances: State of the Art
Sep 2023
Publication
The large deployment of hydrogen technologies for new applications such as heat power mobility and other emerging industrial utilizations is essential to meet targets for CO2 reduction. This will lead to an increase in the number of hydrogen installations nearby local populations that will handle hydrogen technologies. Local regulations differ and provide different safety and/or separation distances in different geographies. The purpose of this work is to give an insight on different methodologies and recommendations developed for hydrogen (mainly) risk management and consequences assessment of accidental scenarios. The first objective is to review available methodologies and to identify the divergent points on the methodology. For this purpose a survey has been launched to obtain the needed inputs from the subtask participants. The current work presents the outcomes of this survey highlighting the gaps and suggesting the prioritization of the actions to take to bridge these gaps.
Thermocouple Thermal Inertia During Refuelling of Hydrogen Tanks: CFD Validation
Sep 2023
Publication
Fueling and defueling of hydrogen composite tanks is an important issue for the safe handling of hydrogen. To prevent temperature rise during refuelling (maximum allowed T=+85°C) the rate of fueling must be carefully controlled. Using Computational Fluid Dynamics (CFD) we simulate the temperature and velocity distribution inside the tank during these processes including cases where thermal stratification occurs. Simulations of two tank configurations with tilted injectors are presented along with experimental data validation. A model is proposed to account for the thermal inertia of the thermocouples making it possible to compare more reliably CFD results with experimental measurements.
A New Method to Quantify the Leakage Scenarios (Frequencies and Flowrates) on Hydrogen High Pressure Components
Sep 2023
Publication
This work is part of the MULTHYFUEL E.U. research program [1] aiming at enabling the implementation of hydrogen dispersers in refuelling stations. One important challenge is the severity of accidents due to a leakage of hydrogen from a dispenser in the forecourt. The work presented in this paper deals with the quantification of the leakage scenarios in terms of frequencies and severities. The risk analysis exercise although performed by experts showed very large discrepancies between the frequencies of leakages of the same categories and even between the consequences. A large part of the disagreement comes from the failure databases chosen as shown in the paper. The mismatch between the components on which the databases have been settled and the actual hydrogen components may be responsible for this situation. However as it stands limited confidence can be laid on the outcome of the risk analysis.<br/>A new method is being developed to calculate the frequencies of the leakage and the flowrate based on an accurate description of each component and of each hazardous situation. For instance the possibility for a fitting to become untight due to pressure cycling is modelled based on the contact mechanics. Human errors can also be introduced by describing the tasks. In addition of the description of the method the application to a disperser is proposed with some comparison to experiments. One of the outcomes is that leakage cross sections can be much larger than expected.
Hydrogen Dispersion in a Full-scale Road Tunnel: Experimental Results and CFD Analysis
Sep 2023
Publication
Hydrogen Fuel Cell Electric Vehicles (HFC EVs) represent an alternative to replace current internal combustion engine vehicles. The use of these vehicles with storage of compressed gaseous hydrogen (CGH2) in confined spaces such as tunnels underground car parks etc. creates new challenges to ensure the protection of people and property and to keep the risk at an acceptable level. The HYTUNNEL-CS project sponsored by the FCH-JU was launched to develop validated hazard and risk assessment tools for the behavior of hydrogen leaks in tunnels. Among the experiments carried out in support of the validation tools the CEA has conducted tests on gas dispersion in a full-scale tunnel geometry. In the tests carried out hydrogen is replaced by helium under a pressure of 70 MPa in a 78 liter tank. The car is simulated by a flat plate called chassis and the discharges are made either downwards under the chassis or upwards to take into account a rollover of the car during the accident. Different thermally activated pressure relief device (TPRD) diameters are examined as well as different orientations of the discharge. Finally the mixing transient of helium with air is measured for distances between -50 and +50m from the release. Performing CFD simulations of such an under-expanded jet in an environment as large as a road tunnel demands a compressible flow solver and so a large computational cost. To optimize this cost a notional nozzle approach is generally used to replace the under-expanded jet by a subsonic jet that has the same concentration dilution behavior. The physics at the injection point is then not resolved and a model of these boundary conditions has to be implemented. This article first reviews the main experimental results. Then a model of boundary conditions is proposed to have a subsonic hydrogen jet that matches the dilution characteristics of an under-expanded jet. Furthermore this model is implemented in the TRUST LES computer code and in the Neptune-CFD RANS computer code in order to simulate some helium dispersion experiments. Finally results from the CFD simulations are compared to the experimental results and the effect of the exact shape of the tunnel is also assessed by comparing simulations with idealized flat walls and real scanned walls.
Designing an Inherently Safe H2 Infrastructure: Combining Analytical, Experimental, and Numerical Investigations to Optimize H2 Refuelling Stations Safety by Passive Mitigation
Sep 2023
Publication
Natural ventilation is a well-known passive mitigation method to limit hydrogen build-up in confined spaces in case of accidental release [1-3]. In most cases a basic design of H2 infrastructure is adopted and vents installed for natural ventilation are adjusted according to safety targets and constraints of the considered structure. With the growing H2 mobility market the demand for H2 refueling infrastructure in our urban environment is on the rise. In order to meet both safety requirements and societal acceptance the design of such infrastructure is becoming more important. In this study a novel design concept is proposed for the hydrogen refueling station (HRS) by modifying physical structure while keeping safety consideration as the top priority of the concept. In this collaborative project between Air Liquide and the University of Delaware an extensive evaluation was performed on new structures of the processing container and dispenser of HRS by integrating safety protocols via passive means. Through a SWOT analysis combined with the most relevant approaches including analytical engineering models numerical simulations [4] and dedicated experimental trials an optimized design was obtained and its safety enhancement was fully evaluated. A small-scale processing container and an almost full-scale dispenser were built and tested to validate the design concepts by simulating accidental H2 release scenarios and assessing the associated consequences in terms of accumulation and potential flammable volumes formation. A conical dispenser and a V-shaped roof-top processing container which were easy to build and implement were designed and tested for this proof-of-concept study. This unique methodology from conception fundamental analysis investigation and validation through experimental design execution and evaluation is fully described in this study.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Simulation of DDT in Obstructed Channels: Wavy Channels vs. Fence-type Obstacles
Sep 2023
Publication
The capabilities of an OpenFOAM solver to reproduce the transition of stoichiometric H2-air mixtures to detonation in obstructed 2-D channels were tested. The process is challenging numerically as it involves the ignition of a flame kernel its subsequent propagation and acceleration interaction with obstacles formation of shock waves ahead and detonation onset (DO). Two different obstacle configurations were considered in 10-mm high × 1-m long channels: (i) wavy walls (WW) that mimic the behavior of fencetype obstacles but prevent abrupt area changes. In this case flame acceleration (FA) is strongly affected by shock-flame interactions and DO often results from the compression of the gas present between the accelerating flame front and a converging section of the channel. (ii) Fence-type (FT) obstacles. In this case FA is driven by the increase in flame surface area as a result of the interaction of the flame front with the unburned gas flow field ahead particularly downstream of obstacles; shock-flame interactions play a role at the later stages of FA and DO takes place upon reflection of precursor shocks from obstacles. The effect of initial pressure p0 = 25 50 and 100 kPa at constant blockage ratio (BR = 0.6) was investigated and compared for both configurations. Results show that for the same initial pressure (p0 = 50 kPa) the obstacle configurations could lead to different final propagation regimes: a quasi-detonation for WW and a choked-flame for FT due to the increased losses for the latter. At p0 = 25 kPa however while both configurations result in choked flames WW seem to exhibit larger velocity deficits than FT due to longer flame-precursor shock distances during quasi-steady propagation and to the increased presence of unburnt mixture downstream of the tip of the flame that homogeneously explodes providing additional support to the propagation of the flame.
Zone Negligible Extent: Example of Specific Detailed Risk Assessment for Low Pressure Equipment in a Hydrogen Refuelling Station
Sep 2023
Publication
The MultHyFuel project aims to develop evidence-based guidelines for the safe implementation of Hydrogen Refueling Stations (HRS) in a multi-fuel context. As a part of the generation of good practice guidelines for HRS Hazardous Area Classification (HAC) methodologies were analyzed and applied to case studies representing example configurations of HRS. It has been anticipated that Negligible Extent (NE) classifications might be applicable for sections of the HRS for instance a hydrogen generator. A NE zone requires that an ignition of a flammable cloud would result in negligible consequences. In addition depending on the pressure of the system IEC 60079-10-1:2020 establishes specific requirements in order to classify the hazardous area as being of NE. One such requirement is that a zone of NE shall not be applied for releases from flammable gas systems at pressures above 2000 kPag (20 barg) unless a specific detailed risk assessment is documented. However there is no definition within the standard as to the requirements of the specific detailed risk assessment. In this work an example for a specific detailed risk assessment for the NE classification is presented:<br/>• Firstly the requirements of cloud volume dilution and background concentration for a zone of NE classification from IEC 60079-10-1:2020 are analyzed for hydrogen releases from equipment placed in a mechanically ventilated enclosure.<br/>• Secondly the consequences arising from the ignition of the localized cloud are estimated and compared to acceptable harm criteria in order to assess if negligible consequences are obtained from the scenario.<br/>• In addition a specific qualitative risk assessment for the ignition of the cloud in the enclosure was considered incorporating the estimated consequences and analyzing the available safeguards in the example system.<br/>Recommendations for the specific detailed risk assessment are proposed for this scenario with the intention to support improved definition of the requirement in future revisions of IEC 60079-10-1.
Identification of Safety Critical Scenarios of Hydrogen Refueling Stations in a Multifuel Context
Sep 2023
Publication
The MultHyFuel Project funded by the Clean Hydrogen Partnership aims to achieve the effective and safe deployment of hydrogen as a carbon-neutral fuel by developing a common strategy for implementing Hydrogen Refueling Stations (HRS) in a multifuel context. The project hopes to contribute to the harmonisation of existing regulations codes and standards (RCS) by generating practical theoretical and experimental data related to HRS.<br/>This paper presents how a set of safety critical scenarios have been identified from the initial preliminary as well as detailed risk analysis of three different hydrogen refueling station configurations. To achieve this a detailed examination of each potential hazardous phenomenon (DPh) or major accident event at or near the hydrogen dispenser was carried out. Particular attention is paid to the scenarios which could affect third parties external to the refueling station.<br/>The paper presents a methodology subdivided into the following steps:<br/>♦ determination of the consequence level and likelihood of each hazardous phenomenon<br/>♦ the classification of major hazard scenarios for the 3 HRS configurations specifically those arising on the dispensing forecourt;<br/>♦ proposal of example preventative control and/or mitigation barriers that could potentially reduce the probability of occurrence and/ or consequences of safety critical scenarios and hence reducing risks to a tolerable level or to as low as reasonably practicable.
Large Eddy Simulations of a Hydrogen-Air Explosion in an Obstructed Chamber Using Adaptive Mesh Refinement
Sep 2023
Publication
Following the growing use of hydrogen in the industry gas explosions have become a critical safety issue. Computational Fluid Dynamic (CFD) and in particular the Large Eddy Simulation (LES) approach have already shown their great potential to reproduce such scenarios with high fidelity. However the computational cost of this approach is an obvious limiting factor since fine grid resolutions are often required in the whole computational domain to ensure a correct numerical resolution of the deflagration front all along its propagation. In this context Adaptive Mesh Refinement (AMR) is of great interest to reduce the computational cost as it allows to dynamically refine the mesh throughout the explosion scenario only in regions where Quantities of Interest (QoI) are detected. This study aims to demonstrate the strong potential of AMR for the LES of explosions. The target scenario is a hydrogen-air explosion in the GraVent explosion channel [1]. Using the massively parallel Navier- Stokes compressible solver AVBP a reference simulation is first obtained on a uniform and static unstructured mesh. The comparison with the experiments shows a good agreement in terms of absolute flame front speed overpressure and flow visualisation. Then an AMR simulation is performed targeting the same resolution as the reference simulation only in regions where QoI are detected i.e. inside the reaction zones and vortical structures. Results show that the accuracy of the reference simulation is recovered with AMR for only 12% of its computational cost.
A Thermodynamically Consistent Methodology to Develop Predictive Simplified Kinetics for Detonation Simulations
Sep 2023
Publication
The number of species and elementary reactions needed for describing the oxidation of fuels increases with the size of the molecule and in turn the complexity of detailed mechanisms. Although the kinetics for conventional fuels (H2 CH4 C3H8...) are somewhat well-established chemical integration in detonation applications remains a major challenge. Significant efforts have been made to develop reduction techniques that aim to keep the predictive capabilities of detailed mechanisms intact while minimizing the number of species and reactions required. However as their starting point of development is based on homogeneous reactors or ZND profiles reduced mechanisms comprising a few species and reactions are not predictive. The methodology presented here relies on defining virtual chemical species such that the thermodynamic equilibrium of the ZND structure is properly recovered thereby circumventing the need to account for minor intermediate species. A classical asymptotic expression relating the ignition delay time with the reaction rate constant is then used to fit the Arrhenius coefficients targeting computations carried out with detailed kinetics. The methodology was extended to develop a three-step mechanism in which the Arrhenius coefficients were optimized to accurately reproduce the one-dimensional laminar ZND structure and the D−κ curves for slightly-curved quasi-steady detonation waves. Two-dimensional simulations performed with the three-step mechanism successfully reproduce the spectrum of length scales present in soot foils computed with detailed kinetics (i.e. cell regularity and size). Results attest for the robustness of the proposed methodology/approximation and its flexibility to be adapted to different configurations.
Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Sep 2023
Publication
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen Norway. The nitrogen fraction the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.
Safe Design for Large Scale H2 Production Facilities
Sep 2023
Publication
To contribute to a more diverse and efficient energy infrastructure large quantities of hydrogen are requested for industries (e.g. mining refining fertilizers…). These applications need large scale facilities such as dozens of electrolyzer stacks from atmospheric pressure to 30 bar with a total capacity ranging from 100 up to 400 MW and associated hydrogen storage from a few to 50 tons.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Local use can be fed by electrolyzer in 20 feet container and stored in bundles with small volumes. Nevertheless industrial applications can request much bigger capacity of production which are generally located in buildings. The different technologies available for the production of hydrogen at large scale are alkaline or PEM electrolyzer with for example 100 MW capacity in a building of 20000 m3 and hydrogen stored in tube trailers or other fixed hydrogen storage solution with large volumes.
These applications led to the use of hydrogen inside large but confined spaces with the risk of fire and explosion in case of loss of containment followed by ignition. This can lead to severe consequences on asset workers and public due to the large inventories of hydrogen handled.
This article aims to provide an overview of the strategy to safely design large scale hydrogen production facilities in buildings through benchmarks based on projects and literature reviews best practices & standards regulations. It is completed by a risk assessment taking into consideration hydrogen behavior and influence of different parameters in dispersion and explosion in large buildings.
This article provides recommendations for hydrogen project stakeholders to perform informed-based decisions for designing large scale production buildings. It includes safety measures as reducing hydrogen inventories inside building allocating clearance around electrolyzer stacks implementing early detection and isolation devices and building geometry to avoid hydrogen accumulation.
Buoyant Jet Model to Predict a Vertical Thermal Stratification During Refueling of Gaseous Hydrogen Tanks in Horizontal Position with Axial Injection
Sep 2023
Publication
Thermodynamic modeling of hydrogen tank refueling i.e. 0 dimension (0D) model considers the gas in the tank as a single homogeneous volume. Based on thermodynamic considerations i.e. mass and energy balance equations the gas temperature and pressure predicted at each time step are volume-averaged. These models cannot detect the onset of the thermal stratification nor the maximum local temperature of the gas inside the tank.<br/>For safety reasons the temperature must be maintained below 85 °C in the composite tank. When thermal stratification occurs the volume-averaged gas temperature predicted by 0D models can be below 85 °C while local temperature may significantly exceed 85 °C. Then thermally stratified scenarios must be predicted to still employ 0D models safely.<br/>Up to now only computational fluid dynamics (CFD) approaches can predict the onset of the thermal stratification and estimate the amplitude of thermal gradients. However CFD approaches require much larger computational resources and CPU time than 0D models. This makes it difficult to use CFD for parametric studies or a live-stream temperature prediction for embedded applications. Previous CFD studies revealed the phenomenon of jet deflection during horizontal refueling of hydrogen tanks. The cold hydrogen injected into the warm gas bulk forms a round jet sinking down towards the lower part of the tank due to buoyancy forces. The jet breaks the horizontal symmetry and dumps the cold gas towards the lower part of the tank.<br/>The jet behavior is a key factor for the onset of the thermal stratification for horizontally filled tanks. Free round jets released in a homogeneous environment with a different density than the jet density were extensively investigated in the literature. A buoyant round jet modeling can be applied to predict the jet deflection in the tank. It requires initial conditions that can be provided by 0D refueling models. Therefore 0D models coupled with a buoyant round jet modeling can be used to predict the onset of the thermal stratification without CFD simulation. This approach clarifies the validity domain of 0D models and thus improves the safety of engineering applications
Gas Leak Detection Using Acoustics and Artificial Intelligence
Sep 2023
Publication
Gas leak detection on a production site is a major challenge for the safety and health of workers for environmental considerations and from an economic point of view. In addition flammable gas leaks are a safety risk because if ignited they can cause serious fires or explosions. For these reasons Acoem Metravib in collaboration with TotalEnergies One Tech R&D Safety has developed for the past four years a system called AGLED for the early detection localization and classification of such leaks exploiting acoustics and artificial intelligence driven by physics. Numerous tests have been conducted on a theater representative of gas production facilities created by TotalEnergies in Lacq (France) to build a robust learning database of leaks varying in flowrates exhaust diameters and also types (hole nozzle flange...). Moreover to limit the number of false alarms a relearning strategy has been implemented to handle unexpected disturbances (wildlife human activities meteorological events...). The presented paper describes the global architecture of the system from noise acquisition to the gas leak probability and coordinates. It gives a more in-depth look at the relearning algorithm and its performance in various environments. Finally thanks to a complementary collaboration with Air Liquide an example of test campaign in a real industrial environment is presented with an emphasis on the improvement obtained through relearning.
Deflagration-to-detonation Transition Due to a Pressurised Release of a Hydrogen Jet. First Results of the Ongoing TAU_NRCN-CEA Project
Sep 2023
Publication
A sudden release of compressed gases and the formation of a jet flow can occur in nature and various engineering applications. In particular high-pressure hydrogen jets can spontaneously ignite when released into an environment that contains oxygen. For some scenarios these high-pressure hydrogen jets can be released into a mixture containing hydrogen and oxygen. This scenario can possibly lead to a wide range of combustion regimes such as jet flames slow or fast deflagrations or even hazardous detonations. Each combustion regime is characterized by typical pressures and temperatures however fast transition between regimes is also possible.<br/>A common project between Tel Aviv University (TAU) Nuclear Research Center Negev (NRCN) and Commissariat à l’Energie Atomique et aux énergies alternatives (CEA) has been recently launched in order to understand these phenomena from experimental modelling and numerical points of view. The main goal is to investigate the dynamics and combustion regimes that arise once a pressurized hydrogen jet is released into a reactive environment that contains inhomogeneous concentrations of hydrogen steam and air.<br/>In this paper we present the first numerical results describing high-pressure hydrogen release obtained using a massively parallel compressible structured-grid flow solver. The experimental arrangements devoted to this phenomenon will also be described.
SSEXHY Experimental Results on Pressure Dynamics from Head-on Reflections of Hydrogen Flames
Sep 2023
Publication
In the past few years CEA has been fully involved at both experimental and modeling levels in projects related to hydrogen safety in nuclear and chemical industries and has carried out a test program using the experimental bench SSEXHY (Structure Submitted to an EXplosion of HYdrogen) in order to build a database of the deformations of simple structures following an internal hydrogen explosion. Different propagation regimes of explosions were studied varying from detonations to slow deflagrations.<br/>During the experimental campaign it was found that high-speed deflagrations corresponding to relatively poor hydrogen-air mixtures resulted in higher specimen deformation compared to those related to detonations of nearly stoichiometric mixtures. This paper explains this counter-intuitive result from qualitative and quantitative points of view. It is shown that the overpressure and impulse from head-on reflections of hydrogen flames corresponding to poor mixtures of specific concentrations could have very high values at the tube end.
Enhancing Safety of Liquid and Vaporised Hydrogen Transfer Technologies in Public Areas for Mobile Applications
Sep 2023
Publication
Federico Ustolin,
Donatella Cirrone,
Vladimir V. Molkov,
Dmitry Makarov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Giordano Emrys Scarponi,
Alessandro Tugnoli,
Ernesto Salzano,
Valerio Cozzani,
Daniela Lindner,
Birgit Gobereit,
Bernhard Linseisen,
Stuart J. Hawksworth,
Thomas Jordan,
Mike Kuznetsov,
Simon Jallais and
Olga Aneziris
International standards related to cryogenic hydrogen transferring technologies for mobile applications (filling of trucks ships stationary tanks) are missing and there is lack of experience. The European project ELVHYS (Enhancing safety of liquid and vaporized hydrogen transfer technologies in public areas for mobile applications) aims to provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies which are the results of a detailed risk analysis. This is carried out by applying an inter-disciplinary approach to study both the cryogenic hydrogen transferring procedures and the phenomena that may arise from the loss of containment of a piece of equipment containing hydrogen. ELVHYS will provide critical inputs for the development of international standards by creating inherently safer and optimized procedures and guidelines for cryogenic hydrogen transferring technologies thus increasing their safety level and efficiency. The aim of this paper is twofold: present the state of the art of liquid hydrogen transfer technologies by focusing on previous research projects such as PRESLHY and introduce the objectives and methods planned in the new EU project ELVHYS.
Safety Challenges Related to the Use of Hydrogen-Natural Gas Blends in Gas Turbines
Sep 2023
Publication
In a context of the decarbonization of the power sector the gas turbine manufacturers are expected tohandle and burn hydrogen or hydrogen/natural gas mixtures. This evolution is conceptually simple in order to displace CO2 emissions by H2O in the combustion exhaust but raises potential engineering andsafety related questions. Concerning the safety aspect the flammability domain is wider and the laminar flame speed is higher for hydrogen than for natural gas. As a result handling fuels with increased hydrogen concentration should a priori lead to an increased the risk of flammable cloud formation with air and also increase the potential explosion violence.<br/>A central topic for the gas turbine manufacturer is the quantification of the hydrogen fuel content from which the explosion risk increases significantly when compared with the use of natural gas. This work will be focused on a risk study of the fuel supply piping of a gas turbine in a scenario where mixing between fuel and air would occur. The pipes are a few dozens of meters long and show singularities: elbows connections with other lines … They are operated at high temperature and atmospheric or high pressure.<br/>The paper will first highlight through CFD modelling the impact of increasing hydrogen content in the fuel on the explosion risk based on a geometry representative of a realistic system. Second the quantification of the explosion effects will be addressed. Some elements of the bibliography relative to flame propagation in pipes will be recalled and put in sight of the characteristics of the industrial case. Finally a CFD model proposed recently for accounting for methane or hydrogen flames propagating in long open steel tubes was used to assess a hydrogen fuel content from which the flame can strongly accelerate and generate significative pressure effects for a flammable mixture initially at atmospheric conditions.
Risk Management in a Containerized Metal Hydride Storage System
Sep 2023
Publication
HyCARE project supported by the Clean Hydrogen Partnership of the European Union deals with a prototype of hydrogen storage tank using a solid-state hydrogen carrier. Up to 40 kilograms of hydrogen are stored in twelve tanks at less than 50 barg and less than 100 °C. The innovative design is based on a standard twenty-foot container including twelve TiFe-based metal hydride (MH) hydrogen storage tanks coupled with a thermal energy storage in phase change materials (PCM). This article aims at showing the main risks related to hydrogen storage in a MH system and the safety barriers considered based on HyCARE’s specific risk analysis.<br/>Regarding the TiFe MH material used to store hydrogen experimental tests showed that the exposure of the MH to air or water did not cause spontaneous ignition. Furthermore an explosion within the solid MH cannot propagate due to internal pore size. Additionally in case of leakage the speed of hydrogen desorption from the MH is self-limited which is an important safety characteristic since it reduces the potential consequences from the hydrogen release scenario.<br/>Regarding the integrated system the critical scenarios identified during the risk analysis were: explosion due to release of hydrogen inside or outside the container internal explosion inside MH tanks due to accidental mix of hydrogen and air and asphyxiation due to inert gas accumulation in the container. This identification phase of the risk analysis allowed to pinpoint the most relevant safety barriers already in place and recommend additional ones if needed to further reduce the risk that were later implemented.<br/>The main safety barriers identified were: material and component selection (including the MH selected) safety interlocks safety valves ventilation gas detection and safety distances.<br/>The risk management process based on risk identification and assessment contributed to coherently integrate inherently safe design features and safety barriers.
Engineering Models for Refueling Protocol Development: Validation and Recommendations
Sep 2023
Publication
Fouad Ammouri,
Nicola Benvenuti,
Elena Vyazmina,
Vincent Ren,
Guillaume Lodier,
Quentin Nouvelot,
Thomas Guewouo,
Dorine Crouslé,
Rony Tawk,
Nicholas Hart,
Steve Mathison,
Taichi Kuroki,
Spencer Quong,
Antonio Ruiz,
Alexander Grab,
Alexander Kvasnicka,
Benoit Poulet,
Christopher Kutz and
Martin Zerta
The PRHYDE project (PRotocol for heavy duty HYDrogEn refueling) funded by the Clean Hydrogen partnership aims at developing recommendations for heavy-duty refueling protocols used for future standardization activities for trucks and other heavy duty transport systems applying hydrogen technologies. Development of a protocol requires a validated approach. Due to the limited time and budget the experimental data cannot cover the whole possible ranges of protocol parameters such as initial vehicle pressure and temperature ambient and precooling temperatures pressure ramp refueling time hardware specifications etc. Hence a validated numerical tool is essential for a safe and efficient protocol development. For this purpose engineering tools are used. They give good results in a very reasonable computation time of several seconds or minutes. These tools provide the heat parameters estimation in the gas (volume average temperature) and 1D temperature distribution in the tank wall. The following models were used SOFIL (Air Liquide tool) HyFill (by ENGIE) and H2Fills (open access code by NREL). The comparison of modelling results and experimental data demonstrated a good capability of codes to predict the evolution of average gas temperature in function of time. Some recommendations on model validation for the future protocol development are given.
An Improved Passive Scalar Model for Hazardous H2-Air Ignition Prediction
Sep 2023
Publication
As hydrogen becomes an increasingly popular alternative fuel for transportation the need for tools to predict ignition events has grown. Recently a cost-effective passive scalar formulation has been developed to address this need [1]. This approach employs a self-reacting scalar to model the hydrogenair chain-branched explosion (due to reactions of the type Reactant + Radical → Radical + Radical). The scalar branching rate is derived analytically from the kinetic Jacobian matrix [2]. The method accurately reproduces ignition delays obtained by detailed chemistry for temperatures above crossover where branching is the dominant process. However for temperatures below the crossover temperature where other phenomena like thermal runaway are more significant the scalar approach fails to predict ignition events correctly. Therefore modifications to the scalar framework have been made to extend its validity across the entire temperature range. Additionally a simple technique for approximating the molecular diffusion of the scalar has been developed using the eigenvector of the Jacobian which accounts for differences in the radical pool’s composition and non-unity Lewis number effects. The complete modified framework is presented and its capability is evaluated in canonical scenarios and a more challenging double mixing layer.
Calculating the Fundamental Parameters to Assess the Explosion Risk Due to Crossover in Electrolysers
Sep 2023
Publication
With the predicted high demand of hydrogen projected to support the neutral carbon society transition in the coming years the production of hydrogen is set to increase alongside the demand. As electrolysis is set to be amongst the main solutions for green hydrogen production ensuring the safety of electrolysers during operation will become a central concern. This is mainly due to the crossover risk (hydrogen into oxygen or the other way around) in the separators as throughout the years several cases of incidents have been reported. This study aims to evaluate the methodologies for calculating H2/O2 detonation cell size and laminar flame velocity using detailed kinetic mechanisms at the operating conditions of electrolysers (up to 35 bar and 360 K). Therefore the modeling of H2/O2 and H2/Air shock tube delay times and laminar flame speeds at initial different pressures and temperature based on the GRI mech 3.0 [1] Mevel et al.[2] Li et al.[3] Lutz et al. [4] and Burke et al. [5] kinetic mechanisms were performed and compared with the available experimental data in the literature. In each case a best candidate mechanism was then chosen to build a database for the detonation cell size then for the laminar flame speeds up to the operating conditions of electrolysers (293-360K and 1-35 bar).
Experimental Characterization of the Operational Behavior of a Catalytic Recombiner for Hydrogen Mitigation
Sep 2023
Publication
One of the significant safety concerns in large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) is the formation of flammable hydrogen/air mixtures after leakages during storage or transportation. Especially in maritime transportation hydrogen accumulations could occur within large and congested geometries. The installation of passive auto-catalytic recombiners (PARs) is a suitable mitigation measure for local areas where venting is insufficient or even impossible. Numerical models describing the operational behavior of PARs are required to allow for optimizing the location and assessing the efficiency of the mitigation measure. In the present study the operational behavior of a PAR with a compact design has been experimentally investigated. In order to obtain data for model validation an experimental program has been performed in the REKO-4 facility a 5.5 m³ vessel. The test procedure includes two phases steady-state and dynamic. The results provide insights into the hydrogen recombination rates and catalyst temperatures under different boundary conditions.
An Overview of Low-carbon Hydrogen Production via Water Splitting Driven by Piezoelectric and Pyroelectric Catalysis
Jun 2024
Publication
The focus on sustainable energy sources is intensifying as they present a viable alternative to conventional fossil fuels. The emergence of clean and renewable hydrogen fuel marks a significant technological shift toward decarbonizing the environment. Harnessing mechanical and thermal energy through piezoelectric and pyroelectric catalysis has emerged as an effective strategy for producing hydrogen and contributing to reducing dependence on carbon-based fuels. In this regard this review presents recent advances in piezoelectric and pyroelectric catalysis induced by mechanical and thermal excitations respectively towards hydrogen generation via the water splitting process. A thorough description of the fundamental principles underlying the piezoelectric and pyroelectric effects is provided complemented by an analysis of the catalytic processes induced by these effects. Subsequently these effects are examined to propose the prerequisites needed for such catalysts to achieve water splitting reaction and hydrogen generation. Special attention is devoted to identifying the various strategies adopted to enhance hydrogen production in order to provide new paths for increased efficiency.
A New Dimensionless Number for Type IV Composite Pressure Vessel Designer to Increase Efficiency and Reduce Cost
Sep 2023
Publication
A new dimensionless number (DN) is proposed in order to evaluate the performance of a high-pressure vessel composite structure. It shows that very few composite part is used at its maximum loading potential during bursting. Today for 70 MPa on-board type IV composite tanks DN values close to 20%. The suggested DN will be a useful indicator for an industrial application. By maximizing the DN at the design phase it is possible to minimize the mass of the composite structure of a CPV to reduce the manufacturing time and cost. To increase the DN as close as possible to 100% it is necessary to succeed in increasing the overall loading of the composite structure to have better oriented fibre. For this it seems necessary to find new processes which make it possible to better orient the fibre.
Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
Jul 2024
Publication
As part of the ongoing transition from fossil fuels to renewable energies advances are particularly expected in terms of safe and cost-effective solutions. Publicising instances of such advances and emphasising global safety considerations constitute the rationale for this communication. Knowing that high-strength steels can prove economically relevant in the foreseeable future for transporting hydrogen in pipelines by limiting the pipe wall thickness required to withstand high pressure one advance relates to a bench designed to assess the safe transport or renewableenergy-related buffer storage of hydrogen gas. That bench has been implemented at the technology readiness level TRL 6 to test initially intact damaged or pre-notched 500 mm-long pipe sections with nominal diameters ranging from 300 to 900 mm in order to appropriately validate or question the use of reputedly satisfactory predictive models in terms of hydrogen embrittlement and potential corollary failure. The other advance discussed herein relates to the reactivation of a previously fruitful applied research into safe mass solid-state hydrogen storage by magnesium hydride through a new public–private partnership. This latest development comes at a time when markets have started driving the hydrogen economy bearing in mind that phase-change materials make it possible to level out heat transfers during the absorption/melting and solidification/desorption cycles and to attain an overall energy efficiency of up to 80% for MgH2 -based compacts doped with expanded natural graphite.
Green Hydrogen Cooperation between Egypt and Europe: The Perspective of Locals in Suez and Port Said
Jun 2024
Publication
Hydrogen produced by renewable energy sources (green hydrogen) is at the centrepiece of European decarbonization strategies necessitating large imports from third countries. Egypt potentially stands out as major production hub. While technical and economic viability are broadly discussed in literature analyses of local acceptance are absent. This study closes this gap by surveying 505 locals in the Suez Canal Economic Zone (Port Said and Suez) regarding their attitudes towards renewable energy development and green hydrogen production. We find overall support for both national deployment and export to Europe. Respondents see a key benefit in rising income thereby strongly underlying the economic argument. Improved trade relationships or improved political relationships are seen as potential benefits of export but as less relevant for engaging in cooperation putting a spotlight on local benefits. Our study suggests that the local population is more positive than negative towards the development and scaling up of green hydrogen projects in Egypt.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
May 2023
Publication
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure temperature and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular as heavy-duty gas turbines have moderate compression ratios and ample stall margins they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result these machines have gained remarkable fuel flexibility. Dry Low Emissions combustors which were initially confined to burning standard natural gas have been gradually adapted to an increasing number of alternative gaseous fuels. The paper first delivers essential technical considerations that underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which currently extends from lean gases (coal bed coke oven blast furnace gases . . . ) to rich refinery streams (LPG olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet” also includes biogenic products (biogas biodiesel and ethanol) and especially blended and pure hydrogen the fuel of the future. The paper also outlines how historically land-based GTs have gradually gained new fuel territories thanks to continuous engineering work lab testing experience extrapolation and validation on the field.
Optimal Integration of Hybrid Renewable Energy Systems for Decarbonized Urban Electrification and Hydrogen Mobility
Aug 2024
Publication
This study addresses cost-optimal sizing and energy management of a grid-integrated solar photovoltaic wind turbine hybrid renewable energy system integrated with electrolyzer and hydrogen storage tank to simultaneously meet electricity and hydrogen demands considering the case study of Dijon France. Mixed Integer Linear Programming optimization problem is formulated to evaluate two objective case scenarios: single objective and multi-objective minimizing total annual costs and grid carbon emission footprint. The study incorporates various technical economic and environmental indicators focusing on the impact of sensitivity lying on various grid electricity purchase rates within the French electricity market prices. The results highlight that rising grid prices drive increased integration of renewable sources while lower prices favor ultimate grid dependency. Constant hydrogen demand necessitates the installation of two electrolyzers. Notably grid electricity prices above 60 e/MWh result increase in the size of the hydrogen tank and electrolyzer operation to prevent renewable energy losses. Grid prices above 140 e/MWh depict 70% of electrical and 80% of electrolyzer demand provided by the renewable generation resulting in a carbon emission below 0.0416 Mt of CO2 and 0.643 kgCO2 /kgH2 . Conversely grid prices below 20 e/MWh lead ultimately to 100% grid dependency with a higher carbon emission of approximately 0.14 Mt of CO2 and 4.13 kgCO2 /kgH2 reducing the total annual cost to 41.63 Million e. Increase in grid prices from 20e/MWh to 180 e/MWh resulted in increase of hydrogen specific costs from 1.23 to 3.58 e/kgH2 . Finally the Pareto front diagram is employed to illustrate the trade-off between total annual cost and carbon emission due to grid imports aiding in informed decision-making.
Electricity Supply Configurations for Green Hydrogen Hubs: A European Case Study on Decarbonizing Urban Transport
Aug 2024
Publication
In this study a techno-economic analysis tool for conducting detailed feasibility studies on the deployment of green hydrogen hubs for fuel cell bus fleets is developed. The study evaluates and compares five green hydrogen hub configurations’ operational and economic performance under a typical metropolitan bus fleet refuelling schedule. Each configuration differs based on its electricity sourcing characteristics such as the mix of energy sources capacity sizing financial structure and grid interaction. A detailed comparative analysis of distinct green hydrogen hub configurations for decarbonising a fleet of fuel-cell buses is conducted. Among the key findings is that a hybrid renewable electricity source and hydrogen storage are essential for cost-optimal operation across all configurations. Furthermore bi-directional grid-interactive configurations are the most costefficient and can benefit the electricity grid by flattening the duck curve. Lastly the paper highlights the potential for cost reduction when the fleet refuelling schedule is co-optimized with the green hydrogen hub electricity supply configuration.
A Prospective Approach to the Optimal Deployment of a Hydrogen Supply Chain for Sustainable Mobility in Island Territories: Application to Corsica
Oct 2024
Publication
This study develops a framework for designing hydrogen supply chains (HSC) in island territories using Mixed Integer Linear Programming (MILP) with a multi-period approach. The framework minimizes system costs greenhouse gas emissions and a risk-based index. Corsica is used as a case study with a Geographic Information System (GIS) identifying hydrogen demand regions and potential sites for production storage and distribution. The results provide an optimal HSC configuration for 2050 specifying the size location and technology while accounting for techno-economic factors. This work integrates the unique geographical characteristics of islands using a GIS-based approach incorporates technology readiness levels and utilizes renewable electricity from neighboring regions. The model proposes decentralized configurations that avoid hydrogen transport between grids achieving a levelized cost of hydrogen (LCOH) of €8.54/kg. This approach offers insight into future options and incentive mechanisms to support the development of hydrogen economies in isolated territories.
Advances in Hospital Energy Systems: Genetic Algorithm Optimization of a Hybrid Solar and Hydrogen Fuel Cell Combined Heat and Power
Sep 2024
Publication
This paper presents an innovative Fuel Cell Combined Heat and Power (FC–CHP) system designed to enhance energy efficiency in hospital settings. The system primarily utilizes solar energy captured through photovoltaic (PV) panels for electricity generation. Excess electricity is directed to an electrolyzer for water electrolysis producing hydrogen which is stored in high-pressure tanks. This hydrogen serves a dual purpose: it fuels a boiler for heating and hot water needs and powers a fuel cell for additional electricity when solar production is low. The system also features an intelligent energy management system that dynamically allocates electrical energy between immediate consumption hydrogen production and storage while also managing hydrogen release for energy production. This study focuses on optimization using genetic algorithms to optimize key components including the peak power of photovoltaic panels the nominal power of the electrolyzer fuel cell and storage tank sizes. The objective function minimizes the sum of investment and electricity costs from the grid considering a penalty coefficient. This approach ensures optimal use of renewable energy sources contributing to energy efficiency and sustainability in healthcare facilities.
Fuzzy Logic-Based Energy Management Strategy for Hybrid Fuel Cell Electric Ship Power and Propulsion System
Oct 2024
Publication
The growing use of proton-exchange membrane fuel cells (PEMFCs) in hybrid propulsion systems is aimed at replacing traditional internal combustion engines and reducing greenhouse gas emissions. Effective power distribution between the fuel cell and the energy storage system (ESS) is crucial and has led to a growing emphasis on developing energy management systems (EMSs) to efficiently implement this integration. To address this goal this study examines the performance of a fuzzy logic rule-based strategy for a hybrid fuel cell propulsion system in a small hydrogenpowered passenger vessel. The primary objective is to optimize fuel efficiency with particular attention on reducing hydrogen consumption. The analysis is carried out under typical operating conditions encountered during a river trip. Comparisons between the proposed strategy with other approaches—control based optimization based and deterministic rule based—are conducted to verify the effectiveness of the proposed strategy. Simulation results indicated that the EMS based on fuzzy logic mechanisms was the most successful in reducing fuel consumption. The superior performance of this method stems from its ability to adaptively manage power distribution between the fuel cell and energy storage systems.
Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania
Sep 2024
Publication
Green hydrogen is becoming increasingly popular with academics institutions and governments concentrating on its development efficiency improvement and cost reduction. The objective of the Ministry of Petroleum Mines and Energy is to achieve a 35% proportion of renewable energy in the overall energy composition by the year 2030 followed by a 50% commitment by 2050. This goal will be achieved through the implementation of feed-in tariffs and the integration of independent power generators. The present study focused on the economic feasibility of green hydrogen and its production process utilizing renewable energy resources on the northern coast of Mauritania. The current investigation also explored the wind potential along the northern coast of Mauritania spanning over 600 km between Nouakchott and Nouadhibou. Wind data from masts Lidar stations and satellites at 10 and 80 m heights from 2022 to 2023 were used to assess wind characteristics and evaluate five turbine types for local conditions. A comprehensive techno-economic analysis was carried out at five specific sites encompassing the measures of levelized cost of electricity (LCOE) and levelized cost of green hydrogen (LCOGH) as well as sensitivity analysis and economic performance indicators. The results showed an annual average wind speed of 7.6 m/s in Nouakchott to 9.8 m/s in Nouadhibou at 80 m. The GOLDWIND 3.0 MW model showed the highest capacity factor of 50.81% due to its low cut-in speed of 2.5 m/s and its rated wind speed of 10.5 to 11 m/s. The NORDEX 4 MW model forecasted an annual production of 21.97 GWh in Nouadhibou and 19.23 GWh in Boulanoir with the LCOE ranging from USD 5.69 to 6.51 cents/kWh below the local electricity tariff and an LCOGH of USD 1.85 to 2.11 US/kg H2 . Multiple economic indicators confirmed the feasibility of wind energy and green hydrogen projects in assessed sites. These results boosted the confidence of the techno-economic model highlighting the resilience of future investments in these sustainable energy infrastructures. Mauritania’s north coast has potential for wind energy aiding green hydrogen production for energy goals.
A Techno-economic Assessment of the Viability of a Photovoltaic-wind-battery Storage-hydrogen Energy System for Electrifying Primary Healthcare Centre in Sub-Saharan Africa
Jun 2024
Publication
Healthcare facilities in isolated rural areas of sub-Saharan Africa face challenges in providing essential health services due to unreliable energy access. This study examines the use of hybrid renewable energy systems consisting of solar PV wind turbines batteries and hydrogen storage for the electrification of rural healthcare facilities in Nigeria and South Africa. The study deployed the efficacy of Hybrid Optimization of Multiple Energy Resources software for techno-economic analysis and the Evaluation based on the Distance from Average Solution method for multicriteria decision-making for sizing optimizing and selecting the optimal energy system. Results show that the optimal configurations achieve cost-effective levelized energy costs ranging from $0.336 to $0.410/kWh for both countries. For the Nigeria case study the optimal energy system includes 5 kW PV 10 kW fuel cell 10 kW inverter 10 kW electrolyzer and 16 kg hydrogen tank. South Africa's optimal configuration has 5 kW PV 10 kW battery 10 kW inverter and 7.5 kW rectifier. Solar PV provides more than 90% of energy with dual axis tracking yielding the highest output: 8889kWh/yr for Nigeria and 10470kWh/yr for South Africa. The multi-criteria decisionmaking analysis reveals that Nigeria's preferred option is the hybrid system without tracking. In contrast the horizontal axis weekly adjustment tracking configuration is optimal for South Africa considering technical economic and environmental criteria. The findings highlight the importance of context-specific optimization for hybrid renewable energy systems in rural healthcare facilities to accelerate Sustainable Development Goals 3 and 7.
Investigating the Future of Freight Transport Low Carbon Technologies Market Acceptance across Different Regions
Oct 2024
Publication
Fighting climate change has become a major task worldwide. One of the key energy sectors to emit greenhouse gases is transportation. Therefore long term strategies all over the world have been set up to reduce on-road combustion emissions. In this context the road freight sector faces significant challenges in decarbonization driven by its limited availability of low-emission fuels and commercialized zero-emission vehicles compared with its high energy demand. In this work we develop the Mobility and Energy Transportation Analysis (META) Model a python-based optimization model to quantify the impact of transportation projected policies on freight transport by projecting conventional and alternative fuel technologies market acceptance as well as greenhouse gas (GHG) emissions. Along with introducing e-fuels as an alternative refueling option for conventional vehicles META investigates the market opportunities of Mobile Carbon Capture (MCC) until 2050. To accurately assess this technology a techno-economic analysis is essential to compare MCC abatement cost to alternative decarbonization technologies such as electric trucks. The novelty of this work comes from the detailed cost categories taken into consideration in the analysis including intangible costs associated with heavy-duty technologies such as recharging/refueling time cargo capacity limitations and consumer acceptance towards emerging technologies across different regions. Based on the study results the competitive total cost of ownership (TCO) and marginal abatement cost (MAC) values of MCC make it an economically promising alternative option to decarbonize the freight transport sector. Both in the KSA and EU MCC options could reach greater than 50% market shares of all ICE vehicle sales equivalent to a combined 35% of all new sales shares by 2035.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
No more items...