Experiments and Simulations of Large Scale Hydrogen-Nitrogen-Air Gas Explosions for Nuclear and Hydrogen Safety Applications
Abstract
Hydrogen safety is a general concern because of the high reactivity compared to hydrocarbon-based fuels. The strength of knowledge in risk assessments related to the physical phenomena and the ability of models to predict the consequence of accidental releases is a key aspect for the safe implementation of new technologies. Nuclear safety considers the possibility of accidental leakages of hydrogen gas and subsequent explosion events in risk analysis. In many configurations, the considered gaseous streams involve a large fraction of nitrogen gas mixed with hydrogen. This work presents the results of a large scale explosion experimental campaign for hydrogen-nitrogen-air mixtures. The experiments were performed in a 50 m3 vessel at Gexcon’s test site in Bergen, Norway. The nitrogen fraction, the equivalence ratio and the congestion level were investigated. The experiments are simulated in the FLACS-CFD software to inform about the current level of conservatism of the predictions for engineering application purposes. The study shows the reduced overpressure with nitrogen added to hydrogen mixtures and supports the use of FLACS-CFD-based risk analysis for hydrogen-nitrogen scenarios.