China, People’s Republic
Overview of Hydrogen Production Technologies for Fuel Cell Utilization
Jun 2023
Publication
With rapidly depleting fossil fuels and growing environmental alarms due to their usage hydrogen as an energy vector provides a clean and sustainable solution. However the challenge lies in replacing mature fossil fuel technology with efficient and economical hydrogen production. This paper provides a technoeconomic and environmental overview of H2 production technologies. Reforming of fossil fuels is still considered as the backbone of large-scale H2 production. Whereas renewable hydrogen has technically advanced and improved its cost remains an area of concern. Finding alternative catalytic materials would reduce such costs for renewable hydrogen production. Taking a mid-term timeframe a viable scenario is replacing fossil fuels with solar hydrogen production integrated with water splitting methods or from biomass gasification. Gasification of biomass is the preferred option as it is carbon neutral and costeffective producing hydrogen at 1.77 – 2.77 $/kg of H2. Among other uses of hydrogen in industrial applications the most viable approach is to use it in hydrogen fuel cells for generating electricity. Commercialization of fuel cell technology is hindered by a lack of hydrogen infrastructure. Fuel cells and hydrogen production units should be integrated to achieve desired results. Case studies of different fuel cells and hydrogen production technologies are presented at the end of this paper depicting a viable and environmentally acceptable approach compared with fossil fuels.
Electrochemical Compression Technologies for High-pressure Hydrogen: Current Status, Challenges and Perspective
Aug 2020
Publication
Hydrogen is an ideal energy carrier in future applications due to clean byproducts and high efciency. However many challenges remain in the application of hydrogen including hydrogen production delivery storage and conversion. In terms of hydrogen storage two compression modes (mechanical and non-mechanical compressors) are generally used to increase volume density in which mechanical compressors with several classifcations including reciprocating piston compressors hydrogen diaphragm compressors and ionic liquid compressors produce signifcant noise and vibration and are expensive and inefcient. Alternatively non-mechanical compressors are faced with issues involving large-volume requirements slow reaction kinetics and the need for special thermal control systems all of which limit large-scale development. As a result modular safe inexpensive and efcient methods for hydrogen storage are urgently needed. And because electrochemical hydrogen compressors (EHCs) are modular highly efcient and possess hydrogen purifcation functions with no moving parts they are becoming increasingly prominent. Based on all of this and for the frst time this review will provide an overview of various hydrogen compression technologies and discuss corresponding structures principles advantages and limitations. This review will also comprehensively present the recent progress and existing issues of EHCs and future hydrogen compression techniques as well as corresponding containment membranes catalysts gas difusion layers and fow felds. Furthermore engineering perspectives are discussed to further enhance the performance of EHCs in terms of the thermal management water management and the testing protocol of EHC stacks. Overall the deeper understanding of potential relationships between performance and component design in EHCs as presented in this review can guide the future development of anticipated EHCs.
Life-cycle Carbon-intensity Mapping for Hydrogen-driven Energy and Economy
Aug 2024
Publication
Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.
How Would Structural Change in Electricity and Hydrogen End Use Impact Low-Carbon Transition of an Energy System? A Case Study of China
Feb 2024
Publication
Driven by global targets to reduce greenhouse gas emissions energy systems are expected to undergo fundamental changes. In light of carbon neutrality policies China is expected to significantly increase the proportion of hydrogen and electricity in its energy system in the future. Nevertheless the future trajectory remains shrouded in uncertainty. To explore the potential ramifications of varying growth scenarios pertaining to hydrogen and electricity on the energy landscape this study employs a meticulously designed bottom-up model. Through comprehensive scenario calculations the research aims to unravel the implications of such expansions and provide a nuanced analysis of their effects on the energy system. Results show that with an increase in electrification rates cumulative carbon dioxide emissions over a certain planning horizon could be reduced at the price of increased unit reduction costs. By increasing the share of end-use electricity and hydrogen from 71% to 80% in 2060 the unit carbon reduction cost will rise by 17%. Increasing shares of hydrogen could shorten the carbon emission peak time by approximately five years but it also brings an increase in peak shaving demand.
Feasibility of Scaling Up the Cost-Competitive and Clean Electrolytic Hydrogen Supply in China
May 2024
Publication
Scaling up clean hydrogen supply in the near future is critical to achieving China’s hydrogen development target. This study established an electrolytic hydrogen development mechanism considering the generation mix and operation optimization of power systems with access to hydrogen. Based on the incremental cost principle we quantified the provincial and national clean hydrogen production cost performance levels in 2030. The results indicated that this mechanism could effectively reduce the production cost of clean hydrogen in most provinces with a national average value of less than 2 USD·kg−1 at the 40-megaton hydrogen supply scale. Provincial cooperation via power transmission lines could further reduce the production cost to 1.72 USD·kg−1. However performance is affected by the potential distribution of hydrogen demand. From the supply side competitiveness of the mechanism is limited to clean hydrogen production while from the demand side it could help electrolytic hydrogen fulfil a more significant role. This study could provide a solution for the ambitious development of renewables and the hydrogen economy in China.
Mathematical Optimization Modeling for Scenario Analysis of Integrated Steelworks Transitioning Towards Hydrogen-based Reduction
Jul 2024
Publication
To reduce carbon dioxide emissions from the steel industry efforts are made to introduce a steelmaking route based on hydrogen reduction of iron ore instead of the commonly used cokebased reduction in a blast furnace. Changing fundamental pieces of steelworks affects the functions of most every system unit involved and thus warrants the question of how such a transition could optimally take place over time and no rigorous attempts have until now been made to tackle this problem mathematically. This article presents a steel plant optimization model written as a mixed-integer non-linear programming problem where aging blast furnaces and basic oxygen furnaces could potentially be replaced with shaft furnaces and electric arc furnaces minimizing costs or emissions over a long-term time horizon to identify possible transition pathways. Example cases show how various parameters affect optimal investment pathways stressing the necessity of appropriate planning tools for analyzing diverse cases.
Process Path for Reducing Carbon Emissions from Steel Industry—Combined Electrification and Hydrogen Reduction
Jan 2024
Publication
This review focuses on the energy structure of iron and steel production and a feasible development path for carbon reduction. The process path and feasible development direction of carbon emission reduction in the iron and steel industry have been analyzed from the perspective of the carbon–electricity–hydrogen ternary relationship. Frontier technologies such as “hydrogen replacing carbon” are being developed worldwide. Combining the high efficiency of microwave electric-thermal conversion with the high efficiency and pollution-free advantages of hydrogen-reducing agents may drive future developments. In this review a process path for “microwave + hydrogen” synergistic metallurgy is proposed. The reduction of magnetite powder by H2 (CO) in a microwave field versus in a conventional field is compared. The driving effect of the microwave field is found to be significant and the synergistic reduction effect of microwaves with H2 is far greater than that of CO.
Optimization of Hydrogen Production System Performance Using Photovoltaic/Thermal-Coupled PEM
Oct 2024
Publication
A proton exchange membrane electrolyzer can effectively utilize the electricity generated by intermittent solar power. Different methods of generating electricity may have different efficiencies and hydrogen production rates. Two coupled systems namely PV/T- and CPV/T-coupling PEMEC respectively are presented and compared in this study. A maximum power point tracking algorithm for the photovoltaic system is employed and simulations are conducted based on the solar irradiation intensity and ambient temperature of a specific location on a particular day. The simulation results indicate that the hydrogen production is relatively high between 11:00 and 16:00 with a peak between 12:00 and 13:00. The maximum hydrogen production rate is 99.11 g/s and 29.02 g/s for the CPV/T-PEM and PV/T-PEM systems. The maximum energy efficiency of hydrogen production in CPV/T-PEM and PV/T-PEM systems is 66.7% and 70.6%. Under conditions of high solar irradiation intensity and ambient temperature the system demonstrates higher total efficiency and greater hydrogen production. The CPV/T-PEM system achieves a maximum hydrogen production rate of 2240.41 kg/d with a standard coal saving rate of 15.5 tons/day and a CO2 reduction rate of 38.0 tons/day. Compared to the PV/T-PEM system the CPV/T-PEM system exhibits a higher hydrogen production rate. These findings provide valuable insights into the engineering application of photovoltaic/thermal-coupled hydrogen production technology and contribute to the advancement of this field.
Energy-exergy Evaluation of Liquefied Hydrogen Production System Based on Steam Methane Reforming and LNG Revaporization
Jul 2023
Publication
The research motivation of this paper is to utilize the large amount of energy wasted during the LNG (liquefied natural gas) gasification process and proposes a synergistic liquefied hydrogen (LH2) production and storage process scheme for LNG receiving station and methane reforming hydrogen production process - SMR-LNG combined liquefied hydrogen production system which uses the cold energy from LNG to pre-cool the hydrogen and subsequently uses an expander to complete the liquefaction of hydrogen. The proposed process is modeled and simulated by Aspen HYSYS software and its efficiency is evaluated and sensitivity analysis is carried out. The simulation results show that the system can produce liquefied hydrogen with a flow rate of 5.89t/h with 99.99% purity when the LNG supply rate is 50t/h. The power consumption of liquefied hydrogen is 46.6kWh/kg LH2; meanwhile the energy consumption of the HL subsystem is 15.9kWh/kg LH2 lower than traditional value of 17~19kWh/kg LH2. The efficiency of the hydrogen production subsystem was 16.9%; the efficiency of the hydrogen liquefaction (HL) subsystem was 29.61% which was significantly higher than the conventional industrial value of 21%; the overall energy efficiency (EE1) of the system was 56.52% with the exergy efficiency (EE2) of 22.2% reflecting a relatively good thermodynamic perfection. The energy consumption of liquefied hydrogen per unit product is 98.71 GJ/kg LH2.
Optimal Operation Strategy for Wind–Photovoltaic Power-Based Hydrogen Production Systems Considering Electrolyzer Start-Up Characteristics
Aug 2024
Publication
Combining electrolytic hydrogen production with wind–photovoltaic power can effectively smooth the fluctuation of power and enhance the schedulable wind–photovoltaic power which provides an effective solution to solve the problem of wind–photovoltaic power accommodation. In this paper the optimization operation strategy is studied for the wind–photovoltaic power-based hydrogen production system. Firstly to make up for the deficiency of the existing research on the multi-state and nonlinear characteristics of electrolyzers the three-state and power-current nonlinear characteristics of the electrolyzer cell are modeled. The model reflects the difference between the cold and hot starting time of the electrolyzer and the linear decoupling model is easy to apply in the optimization model. On this basis considering the operation constraints of the electrolyzer hydrogen storage tank battery and other equipment the optimization operation model of the wind–photovoltaic power-based hydrogen production system is developed based on the typical scenario approach. It also considers the cold and hot starting time of the electrolyzer with the daily operation cost as the goal. The results show that the operational benefits of the system can be improved through the proposed strategy. The hydrogen storage tank capacity will have an impact on the operation income of the wind–solar hydrogen coupling system and the daily operation income will increase by 0.32% for every 10% (300 kg) increase in the hydrogen storage tank capacity.
Design of Long-Life Wireless Near-Field Hydrogen Gas Sensor
Feb 2024
Publication
A compact wireless near-field hydrogen gas sensor is proposed which detects leaking hydrogen near its source to achieve fast responses and high reliability. A semiconductor-type sensing element is implemented in the sensor which can provide a significant response in 100 ms when stimulated by pure hydrogen. The overall response time is shortened by orders of magnitude compared to conventional sensors according to simulation results which will be within 200 ms compared with over 25 s for spatial concentration sensors under the worst conditions. Over 1 year maintenance intervals are enabled by wireless design based on the Bluetooth low energy protocol. The average energy consumption during a single alarm process is 153 µJ/s. The whole sensor is integrated on a 20 × 26 mm circuit board for compact use.
Cost and Competitiveness of Green Hydrogen and the Effects of the European Union Regulatory Framework
May 2024
Publication
By passing the delegated acts supplementing the revised Renewable Energy Directive the European Commission has recently set a regulatory benchmark for the classifcation of green hydrogen in the European Union. Controversial reactions to the restricted power purchase for electrolyser operation refect the need for more clarity about the efects of the delegated acts on the cost and the renewable characteristics of green hydrogen. To resolve this controversy we compare diferent power purchase scenarios considering major uncertainty factors such as electricity prices and the availability of renewables in various European locations. We show that the permission for unrestricted electricity mix usage does not necessarily lead to an emission intensity increase partially debilitating concerns by the European Commission and could notably decrease green hydrogen production cost. Furthermore our results indicate that the transitional regulations adopted to support a green hydrogen production ramp-up can result in similar cost reductions and ensure high renewable electricity usage.
Recent Development of Fuel Cell Core Components and Key Materials: A Review
Feb 2023
Publication
Fuel cells as key carriers for hydrogen energy development and utilization provide a vital opportunity to achieve zero-emission energy use and have thus attracted considerable attention from fundamental research to industrial application levels. Considering the current status of fuel cell technology and the industry this paper presents a systematic elaboration of progress and development trends in fuel cell core components and key materials such as stacks bipolar plates membrane electrodes proton exchange membranes catalysts gas diffusion layers air compressors and hydrogen circulation systems. In addition some proposals for the development of fuel cell vehicles in China are presented based on the analysis of current supporting policies standards and regulations along with manufacturing costs in China. The fuel cell industry of China is still in the budding stage of development and thus suffers some challenges such as lagging fundamental systems imperfect standards and regulations high product costs and uncertain technical safety and stability levels. Therefore to accelerate the development of the hydrogen energy and fuel cell vehicle industry it is an urgent need to establish a complete supporting policy system accelerate technical breakthroughs transformations and applications of key materials and core components and reduce the cost of hydrogen use.
Flexibility Improvement Evaluation of Hydrogen Storage Based on Electricity-Hydrogen Coupled Energy Model
Nov 2021
Publication
To achieve carbon neutrality by 2060 decarbonization in the energy sector is crucial. Hydrogen is expected to be vital for achieving the aim of carbon neutrality for two reasons: use of power-to-hydrogen (P2H) can avoid carbon emissions from hydrogen production which is traditionally performed using fossil fuels; Hydrogen from P2H can be stored for long durations in large scales and then delivered as industrial raw material or fed back to the power system depending on the demand. In this study we focus on the analysis and evaluation of hydrogen value in terms of improvement in the flexibility of the energy system particularly that derived from hydrogen storage. An electricity–hydrogen coupled energy model is proposed to realize the hourly-level operation simulation and capacity planning optimization aiming at the lowest cost of energy. Based on this model and considering Northwest China as the region of study the potential of improvement in the flexibility of hydrogen storage is determined through optimization calculations in a series of study cases with various hydrogen demand levels. The results of the quantitative calculations prove that effective hydrogen storage can improve the system flexibility by promoting the energy demand balance over a long term contributing toward reducing the investment cost of both generators and battery storage and thus the total energy cost. This advantage can be further improved when the hydrogen demand rises. However a cost reduction by 20% is required for hydrogen-related technologies to initiate hydrogen storage as long-term energy storage for power systems. This study provides a suggestion and reference for the advancement and planning of hydrogen storage development in regions with rich sources of renewable energy.
The Progress of Autoignition of High-Pressure Hydrogen Gas Leakage: A Comprehensive Review
Aug 2024
Publication
As a paradigm of clean energy hydrogen is gradually attracting global attention. However its unique characteristics of leakage and autoignition pose significant challenges to the development of high-pressure hydrogen storage technologies. In recent years numerous scholars have made significant progress in the field of high-pressure hydrogen leakage autoignition. This paper based on diffusion ignition theory thoroughly explores the mechanism of high-pressure hydrogen leakage autoignition. It reviews the effects of various factors such as gas properties burst disc rupture conditions tube geometric structure obstacles etc. on shock wave growth patterns and autoignition characteristics. Additionally the development of internal flames and propagation characteristics of external flames after ignition kernels generation are summarized. Finally to promote future development in the field of high-pressure hydrogen energy storage and transportation this paper identifies deficiencies in the current research and proposes key directions for future research.
Research Progress on Corrosion and Hydrogen Embrittlement in Hydrogen-Natural Gas Pipeline Transportation
Jun 2023
Publication
Hydrogen clean efficient and zero-carbon is seen as a most promising energy source. The use of existing gas pipelines for hydrogenenatural gas transportation is considered to be an effective way to achieve long-distance large-scale efficient and economical hydrogen transportation. However the pipelines for hydrogenenatural gas transportation contain lots of impurities (e.g. CH4 high-pressure H2 H2S and CO2) and free water which will inevitably lead to corrosion and hydrogen embrittlement. This paper presents a systematic review of research and an outlook for corrosion and hydrogen embrittlement in hydrogenenatural gas pipeline transportation. The results show that gasphase hydrogen charging is suitable for hydrogenenatural gas transportation but this technique lacks technical standards. By contrast the liquid-phase hydrogen charging technique is more mature but has large deviation from the engineering reality. In the hydrogenenatural gas transportation pipelines corrosion and hydrogen embrittlement are synergetic and competitive but the failure mechanism and change law when corrosion and hydrogen embrittlement coexist remain unclear which need to be further clarified by experiments. The failure mechanism is believed to be mainly sensitive to three key factors i.e. the H2S/CO2 partial pressure ratio the hydrogen blending ratio and material strength. The increase of the three factors will make the pipeline materials more corrosive and more sensitive to hydrogen embrittlement. The research findings can be used as a reference for research and development of long-distance hydrogenenatural gas transportation technology and will drive the high-quality development of the hydrogenenatural gas blending industry.
A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems
Feb 2024
Publication
Hydrogen energy is regarded as an ideal solution for addressing climate change issues and an indispensable part of future integrated energy systems. The most environmentally friendly hydrogen production method remains water electrolysis where the electrolyzer constructs the physical interface between electrical energy and hydrogen energy. However few articles have reviewed the electrolyzer from the perspective of power supply topology and control. This review is the first to discuss the positioning of the electrolyzer power supply in the future integrated energy system. The electrolyzer is reviewed from the perspective of the electrolysis method the market and the electrical interface modelling reflecting the requirement of the electrolyzer for power supply. Various electrolyzer power supply topologies are studied and reviewed. Although the most widely used topology in the current hydrogen production industry is still single-stage AC/DC the interleaved parallel LLC topology constructed by wideband gap power semiconductors and controlled by the zero-voltage switching algorithm has broad application prospects because of its advantages of high power density high efficiency fault tolerance and low current ripple. Taking into account the development trend of the EL power supply a hierarchical control framework is proposed as it can manage the operation performance of the power supply itself the electrolyzer the hydrogen energy domain and the entire integrated energy system.
Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production
Feb 2024
Publication
To improve the recovery of waste heat and avoid the problem of abandoning wind and solar energy a multi-energy complementary distributed energy system (MECDES) is proposed integrating waste heat and surplus electricity for hydrogen storage. The system comprises a combined cooling heating and power (CCHP) system with a gas engine (GE) solar and wind power generation and miniaturized natural gas hydrogen production equipment (MNGHPE). In this novel system the GE’s waste heat is recycled as water vapor for hydrogen production in the waste heat boiler while surplus electricity from renewable sources powers the MNGHPE. A mathematical model was developed to simulate hydrogen production in three building types: offices hotels and hospitals. Simulation results demonstrate the system’s ability to store waste heat and surplus electricity as hydrogen thereby providing economic benefit energy savings and carbon reduction. Compared with traditional energy supply methods the integrated system achieves maximum energy savings and carbon emission reduction in office buildings with an annual primary energy reduction rate of 49.42–85.10% and an annual carbon emission reduction rate of 34.88–47.00%. The hydrogen production’s profit rate is approximately 70%. If the produced hydrogen is supplied to building through a hydrogen fuel cell the primary energy reduction rate is further decreased by 2.86–3.04% and the carbon emission reduction rate is further decreased by 12.67–14.26%. This research solves the problem of waste heat and surplus energy in MECDESs by the method of hydrogen storage and system integration. The economic benefits energy savings and carbon reduction effects of different building types and different energy allocation scenarios were compared as well as the profitability of hydrogen production and the factors affecting it. This has a positive technical guidance role for the practical application of MECDESs.
A Multi-agent Optimal Operation Methodology of Electric, Thermal, and Hydrogen Integrated Energy System based on ADMM Algorithm
Aug 2024
Publication
This article presents a study on the distributed optimization operation method for micro-energy grid clusters within an electric thermal and hydrogen integrated energy system. The research focuses on precisely modeling the Power-toHydrogen (P2H) conversion process in electrolytic cells by considering their startup characteristics. An optimization operation model is established with each micro-energy grid as the principal entity to cater to their individual interests and demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is adopted for distributed solution. Case studies demonstrate that the connection topology between micro-energy grids significantly impacts the total operating cost and the effectiveness of the ADMM algorithm is validated through a comparison with centralized optimization approaches.
The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis
Jan 2024
Publication
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis utilizing pure water has proven to be a robust technology for clean hydrogen production. Recently seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However seawater electrolysis faces several challenges including the slow kinetics of the oxygen evolution reaction (OER) the competing chlorine evolution reaction (CER) processes electrode degradation caused by chloride ions and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl− under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
No more items...