China, People’s Republic
Research on the Dynamic Energy Conversion and Transmission Model of Renewable Energy DC Off-grid Hydrogen System
Sep 2024
Publication
The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation an energy hub model for the hydrogen production system is established yielding the electrical thermal and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time the energy flow at each time node within the hydrogen production system is computed revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.
In-situ Direct Seawater Electrolysis Using Floating Platform in Ocean with Uncontrollable Wave Motion
Jun 2024
Publication
Direct hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking. Here fluctuating conditions of the ocean were considered for the first time and seawater electrolysis in wave motion environment was achieved. We present the successful scaling of a floating seawater electrolysis system that employed wind power in Xinghua Bay and the integration of a 1.2 Nm3 h−1 -scale pilot system. Stable electrolysis operation was achieved for over 240 h with an electrolytic energy consumption of 5 kWh Nm−3 H2 and a high purity (>99.9%) of hydrogen under fluctuating ocean conditions (0~0.9 m wave height 0~15 m s−1 wind speed) which is comparable to that during onshore water electrolysis. The concentration of impurity ions in the electrolyte was low and stable over a long period of time under complex and changing scenarios. We identified the technological challenges and performances of the key system components and examined the future outlook for this emerging technology.
A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network
Nov 2019
Publication
Intra-day control and scheduling of energy systems require high-speed computation and strong robustness. Conventional mathematical driven approaches usually require high computation resources and have difficulty handling system uncertainties. This paper proposes two data-driven scheduling approaches for hydrogen penetrated energy system (HPES) operational scheduling. The two data-driven approaches learn the historical optimization results calculated out using the mixed integer linear programing (MILP) and conditional value at risk (CVaR) respectively. The intra-day rolling optimization mechanism is introduced to evaluate the proposed data-driven scheduling approaches MILP data-driven approach and CVaR data-driven approach along with the forecasted renewable generation and load demands. Results show that the two data-driven approaches have lower intra-day operational costs compared with the MILP based method by 1.17% and 0.93%. In addition the combined cooling and heating plant (CCHP) has a lower frequency of changing the operational states and power output when using the MILP data-driven approach compared with the mathematical driven approaches.
Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production
May 2022
Publication
The increasingly severe energy crisis has strengthened the determination todevelop environmentally friendly energy. And hydrogen has emerged as a candi-date for clean energy. Among many hydrogen generation methods biohydrogenstands out due to its environmental sustainability simple operating environ-ment and cost advantages. This review focuses on the rational design of catalystsfor fermentative hydrogen production. The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively. Various strategiesto increase the efficiency of fermentative hydrogen production are summa-rized and some recent representative works from microbial dark fermentationand photo-fermentation are described. Meanwhile perspectives and discussionson the rational design of catalysts for fermentative hydrogen production areprovided.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining
Dec 2023
Publication
As a versatile energy carrier hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting storing and utilizing hydrogen is rising rapidly. However the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to find new promising technological paths to drive the development of hydrogen energy. As part of technological innovation emerging technologies have vital features such as prominent impact novelty relatively fast growth etc. Identifying emerging hydrogen-energy-related technologies is important for discovering innovation opportunities during the energy transition. Existing research lacks analysis of the characteristics of emerging technologies. Thus this paper proposes a method combining the latent Dirichlet allocation topic model and hydrogen-energy expert group decision-making. This is used to identify emerging hydrogen-related technology regarding two features of emerging technologies novelty and prominent impact. After data processing topic modeling and analysis the patent dataset was divided into twenty topics. Six emerging topics possess novelty and prominent impact among twenty topics. The results show that the current hotspots aim to promote the application of hydrogen energy by improving the performance of production catalysts overcoming the wide power fluctuations and large-scale instability of renewable energy power generation and developing advanced hydrogen safety technologies. This method efficiently identifies emerging technologies from patents and studies their development trends. It fills a gap in the research on emerging technologies in hydrogen-related energy. Research achievements could support the selection of technology pathways during the low-carbon energy transition.
Experimental Study on Dynamic Response Performance of Hydrogen Sensor in Confined Space under Ceiling
Oct 2024
Publication
With the advancement of Fuel Cell Vehicles (FCVs) detecting hydrogen leaks is critically important in facilities such as hydrogen refilling stations. Despite its significance the dynamic response performance of hydrogen sensors in confined spaces particularly under ceilings has not been comprehensively assessed. This study utilizes a catalytic combustion hydrogen sensor to monitor hydrogen leaks in a confined area. It examines the effects of leak size and placement height on the distribution of hydrogen concentrations beneath the ceiling. Results indicate that hydrogen concentration rapidly decreases within a 0.5–1.0 m range below the ceiling and declines more gradually from 1.0 to 2.0 m. The study further explores the attenuation pattern of hydrogen concentration radially from the hydrogen jet under the ceiling. By normalizing the radius and concentration it was determined that the distribution conforms to a Gaussian model akin to that observed in open space jet flows. Utilizing this Gaussian assumption the model is refined by incorporating an impact reflux term thereby enhancing the accuracy of the predictive formula.
Energy-saving Hydrogen Production by Seawater Electrolysis Coupling Tip-enhanced Electric Field Promoted Electrocatalytic Sulfion Oxidation
Jul 2024
Publication
Hydrogen production by seawater electrolysis is significantly hindered by high energy costs and undesirable detrimental chlorine chemistry in seawater. In this work energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation reaction. We present a bifunctional needle-like Co3S4 catalyst grown on nickel foam with a unique tip structure that enhances the kinetic rate by improving the current density in the tip region. The assembled hybrid seawater electrolyzer combines thermodynamically favorable sulfion oxidation and cathodic seawater reduction can enable sustainable hydrogen production at a current density of 100 mA cm−2 for up to 504 h. The hybrid seawater electrolyzer has the potential for scale-up industrial implementation of hydrogen production by seawater electrolysis which is promising to achieve high economic efficiency and environmental remediation.
China and Italy’s Energy Development Trajectories: Current Landscapes and Future Cooperation Potential
Feb 2024
Publication
In order to achieve the ambitious goal of “carbon neutrality” countries around the world are striving to develop clean energy. Against this background this paper takes China and Italy as representatives of developing and developed countries to summarize the energy structure composition and development overview of the two countries. The paper analyzes the serious challenges facing the future energy development of both countries and investigates the possibilities of energy cooperation between the two countries taking into account their respective advantages in energy development. By comparing the policies issued by the two governments to encourage clean energy development this paper analyzes the severe challenges faced by the two countries’ energy development in the future and combines their respective energy development advantages to look forward to the possibility of energy cooperation between the two countries in the future. This lays the foundation for China and Italy to build an “Energy Road” after the “Silk Road”.
Solar-driven, Highly Sustained Splitting of Seawater into Hydrogen and Oxygen Fuels
Mar 2019
Publication
Electrolysis of water to generate hydrogen fuel is an attractiverenewable energy storage technology. However grid-scale fresh-water electrolysis would put a heavy strain on vital water re-sources. Developing cheap electrocatalysts and electrodes that cansustain seawater splitting without chloride corrosion could ad-dress the water scarcity issue. Here we present a multilayer anodeconsisting of a nickel–iron hydroxide (NiFe) electrocatalyst layeruniformly coated on a nickel sulfide (NiSx) layer formed on porousNi foam (NiFe/NiSx-Ni) affording superior catalytic activity andcorrosion resistance in solar-driven alkaline seawater electrolysisoperating at industrially required current densities (0.4 to 1 A/cm2)over 1000 h. A continuous highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents towardwater oxidation and an in situ-generated polyatomic sulfate andcarbonate-rich passivating layers formed in the anode are respon-sible for chloride repelling and superior corrosion resistance of thesalty-water-splitting anode.
Research on the Optimal Scheduling Strategy of the Integrated Energy System of Electricity to Hydrogen under the Stepped Carbon Trading Mechanism
Sep 2024
Publication
Under the guidance of energy-saving and emission reduction goals a lowcarbon economic operation method for integrated energy systems (IES) has been proposed. This strategy aims to enhance energy utilization efficiency bolster equipment operational flexibility and significantly cut down on carbon emissions from the IES. Firstly a thorough exploration of the two-stage operational framework of Power-to-Gas (P2G) technology is conducted. Electrolyzers methane reactors and hydrogen fuel cells (HFCs) are introduced as replacements for traditional P2G equipment with the objective of harnessing the multiple benefits of hydrogen energy. Secondly a cogeneration and HFC operational strategy with adjustable heat-to-electricity ratio is introduced to further enhance the IES’s low-carbon and economic performance. Finally a step-by-step carbon trading mechanism is introduced to effectively steer the IES towards carbon emission control.
The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments
May 2024
Publication
The use of hydrogen-blended natural gas presents an efficacious pathway toward the rapid large-scale implementation of hydrogen energy with pipeline transportation being the principal method of conveyance. However pipeline materials are susceptible to hydrogen embrittlement in high-pressure hydrogen environments. Natural gas contains various impurity gases that can either exacerbate or mitigate sensitivity to hydrogen embrittlement. In this study we analyzed the mechanisms through which multiple impurity gases could affect the hydrogen embrittlement behavior of pipeline steel. We examined the effects of O2 and CO2 on the hydrogen embrittlement behavior of L360 pipeline steel through a series of fatigue crack growth tests conducted in various environments. We analyzed the fracture surfaces and assessed the fracture mechanisms involved. We discovered that CO2 promoted the hydrogen embrittlement of the material whereas O2 inhibited it. O2 mitigated the enhancing effect of CO2 when both gases were mixed with hydrogen. As the fatigue crack growth rate increased the influence of impurity gases on the hydrogen embrittlement of the material diminished.
No more items...