Numerical Simulation and Field Experimental Study of Combustion Characteristics of Hydrogen-Enriched Natural Gas
Abstract
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers, the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly, the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly, a field experimental study was carried out based on the WNS2- 1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency, heat loss, and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio, with the hydrogen blending ratio increasing from 0% to 25%, the laminar flame propagation speed of the fuel increases, the extinction strain rate rises, and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0, and the combustion intensity of the flame is the highest at this time. In the field tests, as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio, the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.