Transmission, Distribution & Storage
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigated in view of the hydrogen chemical potential and compared with the previously reported results of V-Fe alloy membranes. The additions of Cr and Fe to V improved the mobility of hydrogen atoms. In contrast those of Al and Pd decreased hydrogen diffusivity. The first principle calculations revealed that the hydrogen atoms cannot occupy the first-nearest neighbour T sites (T1 sites) of Al and Pd in the V crystal lattice. These blocking effects will be a dominant contributor to decreasing hydrogen diffusivity by the additions of Al and Pd. For V-based alloy membranes Fe and Cr are more suitable alloy elements compared with Al and Pd in view of hydrogen diffusivity.
Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization
Apr 2022
Publication
Hydrogen and renewable electricity-based microgrid is considered to be a promising way to reduce carbon emissions promote the consumption of renewable energies and improve the sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation model ignores the uncertainties and fluctuations of renewable energies and loads a two-stage energy management model is proposed for the sustainable wind-PV-hydrogen-storage microgrid based on receding horizon optimization to eliminate the adverse effects of their uncertainties and fluctuations. In the first stage the day-ahead optimization is performed based on the predicted outpower of WT and PV the predicted demands of power and hydrogen loads. In the second stage the intra-day optimization is performed based on the actual data to trace the day-ahead operation schemes. Since the intra-day optimization can update the operation scheme based on the latest data of renewable energies and loads the proposed two-stage management model is effective in eliminating the uncertain factors and maintaining the stability of the whole system. Simulations show that the proposed two-stage energy management model is robust and effective in coordinating the operation of the wind-PV-hydrogen-storage microgrid and eliminating the uncertainties and fluctuations of WT PV and loads. In addition the battery storage can reduce the operation cost alleviate the fluctuations of the exchanged power with the power grid and improve the performance of the energy management model.
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt.% as a strong austenite stabilizer. The tensile tests disclosed that hydrogen charging caused a minor reduction in the elongation to failure (approximately 3.5% on average) and ultimate tensile strength (UTS; approximately 2.1% on average) of the samples using a low strain rate of 1.2 × 10−4 s−1. It was also found that an increase in the strain rate from 1.2 × 10−4 s−1 o 4.8 ×10−4 s−1 led to a reduction of approximately 3.6% on average for the elongation to failure and 1.7% on average for UTS in the pre-charged samples. No trace of martensite was detected in the X-ray diffraction (XRD) analysis of the fractured samples thanks to the high Ni content which caused a minor reduction in UTS × uniform elongation (UE) (GPa%) after the H charging. Considerable surface tearing was observed for the pre-charged sample after the tensile deformation. Additionally some cracks were observed to be independent of the melt pool boundaries indicating that such boundaries cannot necessarily act as a suitable area for the crack propagation.
The Techno-economics Potential of Hydrogen Interconnectors for Electrical Energy Transmission and Storage
Dec 2021
Publication
This research introduces a ‘Hydrogen Interconnector System’ (HIS) as a novel method 7 for transporting electrical energy over long distances. The system takes electricity from 8 stranded renewable energy assets converts it to hydrogen in an electrolyser plant transports 9 hydrogen to the demand centre via pipeline where it is reconverted to electricity in either a 10 gas turbine or fuel cell plant. This paper evaluates the competitiveness of the technology with 11 High Voltage Direct Current (HVDC) systems calculating the following techno-economic 12 indicators; Levelised Cost Of Electricity (LCOE) and Levelised Cost Of Storage (LCOS). The 13 results suggest that the LCOE of the HIS is competitive with HVDC for construction in 2050 14 with distance beyond 350km in case of all scenarios for a 1GW system. The LCOS is lower 15 than an HVDC system using large scale hydrogen storage in 6 out of 12 scenarios analysed 16 including for construction from 2025. The HIS was also applied to three case studies with 17 the results showing that the system outperforms HVDC from LCOS perspectives in all cases 18 and has 15-20% lower investment costs in 2 studies analysed.
Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers
Mar 2024
Publication
Underground hydrogen storage in geological structures is considered appropriate for storing large amounts of hydrogen. Using the geological Konary structure in the deep saline aquifers an analysis of the influence of depth on hydrogen storage was carried out. Hydrogen injection and withdrawal modeling was performed using TOUGH2 software assuming different structure depths. Changes in the relevant parameters for the operation of an underground hydrogen storage facility including the amount of H2 injected in the initial filling period cushion gas working gas and average amount of extracted water are presented. The results showed that increasing the depth to approximately 1500 m positively affects hydrogen storage (flow rate of injected hydrogen total capacity and working gas). Below this depth the trend was reversed. The cushion gas-to-working gas ratio did not significantly change with increasing depth. Its magnitude depends on the length of the initial hydrogen filling period. An increase in the depth of hydrogen storage is associated with a greater amount of extracted water. Increasing the duration of the initial hydrogen filling period will reduce the water production but increase the cushion gas volume.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Catalytic Effect of MoS2 on Hydrogen Storage Thermodynamics and Kinetics of an As-milled YMg11Ni Alloy
Jul 2017
Publication
In this study YMg11Ni and YMg11Ni + 5 wt% MoS2 (named YMg11Ni–MoS2) alloys were prepared by mechanical milling to examine the effect of adding MoS2 on the hydrogen storage performance of a Y–Mg–Ni-based alloy. The as-cast and milled alloys were tested to identify their structures by X-ray diffraction and transmission electron microscopy. The isothermal hydrogen storage thermodynamics and dynamics were identified through an automatic Sieverts apparatus and the non-isothermal dehydrogenation performance was investigated by thermogravimetry and differential scanning calorimetry. The dehydrogenation activation energy was calculated by both Arrhenius and Kissinger methods. Results revealed that adding MoS2produces a very slight effect on hydrogen storage thermodynamics but causes an obvious reduction in the hydrogen sorption and desorption capacities because of the deadweight of MoS2. The addition of MoS2significantly enhances the dehydrogenation performance of the alloy such as lowering dehydrogenation temperature and enhancing dehydrogenation rate. Specifically the initial desorption temperature of the alloy hydride lowers from 549.8 K to 525.8 K. The time required to desorb hydrogen at 3 wt% H2 is 1106 456 363 and 180 s corresponding to hydrogen desorption temperatures at 593 613 633 and 653 K for the YMg11Ni alloy and 507 208 125 and 86 s at identical conditions for the YMg11Ni–5MoS2 alloy. The dehydrogenation activation energy (Ea) values with and without added MoS2are 85.32 and 98.01 kJ mol−1. Thus a decrease in Ea value by 12.69 kJ mol−1 occurs and is responsible for the amelioration of the hydrogen desorption dynamics by adding a MoS2 catalyst.
Hydrogen or Batteries for Grid Storage? A Net Energy Analysis
Apr 2015
Publication
Energy storage is a promising approach to address the challenge of intermittent generation from renewables on the electric grid. In this work we evaluate energy storage with a regenerative hydrogen fuel cell (RHFC) using net energy analysis. We examine the most widely installed RHFC configuration containing an alkaline water electrolyzer and a PEM fuel cell. To compare RHFC's to other storage technologies we use two energy return ratios: the electrical energy stored on invested (ESOIe) ratio (the ratio of electrical energy returned by the device over its lifetime to the electrical-equivalent energy required to build the device) and the overall energy efficiency (the ratio of electrical energy returned by the device over its lifetime to total lifetime electrical-equivalent energy input into the system). In our reference scenario the RHFC system has an ESOIeratio of 59 more favorable than the best battery technology available today (Li-ion ESOIe= 35). (In the reference scenario RHFC the alkaline electrolyzer is 70% efficient and has a stack lifetime of 100 000 h; the PEM fuel cell is 47% efficient and has a stack lifetime of 10 000 h; and the round-trip efficiency is 30%.) The ESOIe ratio of storage in hydrogen exceeds that of batteries because of the low energy cost of the materials required to store compressed hydrogen and the high energy cost of the materials required to store electric charge in a battery. However the low round-trip efficiency of a RHFC energy storage system results in very high energy costs during operation and a much lower overall energy efficiency than lithium ion batteries (0.30 for RHFC vs. 0.83 for lithium ion batteries). RHFC's represent an attractive investment of manufacturing energy to provide storage. On the other hand their round-trip efficiency must improve dramatically before they can offer the same overall energy efficiency as batteries which have round-trip efficiencies of 75–90%. One application of energy storage that illustrates the trade-off between these different aspects of energy performance is capturing overgeneration (spilled power) for later use during times of peak output from renewables. We quantify the relative energetic benefit of adding different types of energy storage to a renewable generating facility using [EROI]grid. Even with 30% round-trip efficiency RHFC storage achieves the same [EROI]grid as batteries when storing overgeneration from wind turbines because its high ESOIeratio and the high EROI of wind generation offset the low round-trip efficiency.
An Overview of the Recent Advances of Additive‐Improved Mg(BH4)2 for Solid‐State Hydrogen Storage Material
Jan 2022
Publication
Recently hydrogen (H2) has emerged as a superior energy carrier that has the potential to replace fossil fuel. However storing H2 under safe and operable conditions is still a challenging process due to the current commercial method i.e. H2 storage in a pressurised and liquified state which requires extremely high pressure and extremely low temperature. To solve this problem re‐ search on solid‐state H2 storage materials is being actively conducted. Among the solid‐state H2 storage materials borohydride is a potential candidate for H2 storage owing to its high gravimetric capacity (majority borohydride materials release >10 wt% of H2). Mg(BH4)2 which is included in the borohydride family shows promise as a good H2 storage material owing to its high gravimetric capacity (14.9 wt%). However its practical application is hindered by high thermal decomposition temperature (above 300 °C) slow sorption kinetics and poor reversibility. Currently the general research on the use of additives to enhance the H2 storage performance of Mg(BH4)2 is still under investigation. This article reviews the latest research on additive‐enhanced Mg(BH4)2 and its impact on the H2 storage performance. The future prospect and challenges in the development of additive‐ enhanced Mg(BH4)2 are also discussed in this review paper. To the best of our knowledge this is the first systematic review paper that focuses on the additive‐enhanced Mg(BH4)2 for solid‐state H2 storage.
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due to unique regional attributes the Aberdeen region could lead the UK in the conversion to largescale clean hydrogen. A 200MW hydrogen generation plant is planned to suit 2% blend into the NTS followed by a build out to supply the Aberdeen gas networks and to enable low cost hydrogen transport applications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The Effect of Electrolytic Hydrogenation on Mechanical Properties of T92 Steel Weldments under Different PWHT Conditions
Aug 2020
Publication
In the present work the effects of electrolytic hydrogen charging of T92 steel weldments on their room-temperature tensile properties were investigated. Two circumferential weldments between the T92 grade tubes were produced by gas tungsten arc welding using the matching Thermanit MTS 616 filler material. The produced weldments were individually subjected to considerably differing post-welding heat treatment (PWHT) procedures. The first-produced weldment was conventionally tempered (i.e. short-term annealed below the Ac1 critical transformation temperature of the T92 steel) whereas the second one was subjected to its full renormalization (i.e. appropriate reaustenitization well above the T92 steel Ac3 critical transformation temperature and subsequent air cooling) followed by its conventional subcritical tempering. From both weldments cylindrical tensile specimens of cross-weld configuration were machined. The room-temperature tensile tests were performed for the individual welds’ PWHT states in both hydrogen-free and electrolytically hydrogen-charged conditions. The results indicated higher hydrogen embrittlement susceptibility for the renormalized-and-tempered weldments compared to the conventionally tempered ones. The obtained findings were correlated with performed microstructural and fractographic observations.
Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments
Aug 2020
Publication
To avoid failures due to hydrogen embrittlement it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1 P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H2) at elevated pressure and in ambient pressure tests with hydrogen sulfide (H2S). H2 gas with a pressure of up to 100 bar resulted in an overall low but still detectable hydrogen absorption which did not cause any substantial hydrogen embrittlement in specimens under a constant load of 90% of the specified minimum yield strength (SMYS). The amount of hydrogen absorbed under conditions with H2S was approximately one order of magnitude larger than under conditions with H2 gas. The high hydrogen content led to failures of the 42CrMo4 and P110 specimens.
Metallurgical Model of Diffusible Hydrogen and Non-Metallic Slag Inclusions in Underwater Wet Welding of High-Strength Steel
Nov 2020
Publication
High susceptibility to cold cracking induced by diffusible hydrogen and hydrogen embrittlement are major obstacles to greater utilization of underwater wet welding for high-strength steels. The aim of the research was to develop gas–slag systems for flux-cored wires that have high metallurgical activity in removal of hydrogen and hydroxyl groups. Thermodynamic modeling and experimental research confirmed that a decrease in the concentration of diffusible hydrogen can be achieved by reducing the partial pressure of hydrogen and water vapor in the vapor–gas bubble and by increasing the hydroxyl capacity of the slag system in metallurgical reactions leading to hydrogen fluoride formation and ionic dissolution of hydroxyl groups in the basic fluorine-containing slag of a TiO2–CaF2–Na3AlF6 system.
Research on the Concept of Hydrogen Supply Chains and Power Grids Powered by Renewable Energy Sources: A Scoping Review with the Use of Text Mining
Jan 2022
Publication
The key direction of political actions in the field of sustainable development of the energy sector and economy is the process of energy transformation (decarbonization) and increasing the share of renewable energy sources (RES) in the supply of primary energy. Regardless of the indisputable advantages RES are referred to as unstable energy sources. A possible solution might be the development of the concept of hydrogen supply chains especially the so-called green hydrogen obtained in the process of electrolysis from electricity produced from RES. The aim of the research undertaken in the article is to identify the scope of research carried out in the area of hydrogen supply chains and to link this research with the issues of the operation of electricity distribution networks powered by RES. As a result of the scoping review and the application of the text-mining method using the IRaMuTeQ tool which includes the analysis of the content of 12 review articles presenting the current research achievements in this field over the last three years (2016–2020) it was established that the issues related to hydrogen supply chains including green hydrogen are still not significantly associated with the problem of the operation of power grids. The results of the conducted research allow formulating recommendations for further research areas.
Optimal Operations for Hydrogen-based Energy Storage Systems in Wind Farms via Model Predictive Control
Feb 2021
Publication
Efficient energy production and consumption are fundamental points for reducing carbon emissions that influence climate change. Alternative resources such as renewable energy sources (RESs) used in electricity grids could reduce the environmental impact. Since RESs are inherently unreliable during the last decades the scientific community addressed research efforts to their integration with the main grid by means of properly designed energy storage systems (ESSs). In order to highlight the best performance from these hybrid systems proper design and operations are essential. The purpose of this paper is to present a so-called model predictive controller (MPC) for the optimal operations of grid-connected wind farms with hydrogen-based ESSs and local loads. Such MPC has been designed to take into account the operating and economical costs of the ESS the local load demand and the participation to the electricity market and further it enforces the fulfillment of the physical and the system's dynamics constraints. The dynamics of the hydrogen-based ESS have been modeled by means of the mixed-logic dynamic (MLD) framework in order to capture different behaviors according to the possible operating modes. The purpose is to provide a controller able to cope both with all the main physical and operating constraints of a hydrogen-based storage system including the switching among different modes such as ON OFF STAND-BY and at the same time reduce the management costs and increase the equipment lifesaving. The case study for this paper is a plant under development in the north Norway. Numerical analysis on the related plant data shows the effectiveness of the proposed strategy which manages the plant and commits the equipment so as to preserve the given constraints and save them from unnecessary commutation cycles.
Open-cathode PEMFC Heat Utilisation to Enhance Hydrogen Supply Rate of Metal Hydride Canisters
Mar 2019
Publication
In this paper the hydrogen supply to an open-cathode PEM fuel cell (FC) by using metal hydride (MH) storage and thermal coupling between these two components are investigated theoretically. One of the challenges in using MH hydrogen storage canisters is their limited hydrogen supply rate as the hydrogen release from MH is an endothermic reaction. Therefore in order to meet the required hydrogen supply rate high amounts of MH should be employed that usually suggests storage of hydrogen to be higher than necessary for the application adding to the size weight and cost of the system. On the other hand the exhaust heat (i.e. that is usually wasted if not utilised for this purpose) from open-cathode FCs is a low-grade heat. However this heat can be transferred to MH canisters through convection to heat them up and increase their hydrogen release rate. A mathematical model is used to simulate the heat transfer between PEMFC exhaust heat and MH storage. This enables the prediction of the required MH for different FC power levels with and without heat supply to the MH storage. A 2.5-kW open-cathode FC is used to measure the exhaust air temperature at different output powers. It was found that in the absence of heat supply from the FC to the MH canisters significantly higher number of MH canisters are required to achieve the required rate of hydrogen supply to the FC for sustained operation (specially at high power outputs). However using the exhaust hot air from the FC to supply heat to the MH storage can reduce the number of the MH canisters required by around 40% to 70% for power output levels ranging from 500 W to 2000 W.
Investigation of Mechanical Tests for Hydrogen Embrittlement in Automotive PHS Steels
Aug 2019
Publication
The problem of hydrogen embrittlement in ultra-high-strength steels is well known. In this study slow strain rate four-point bending and permeation tests were performed with the aim of characterizing innovative materials with an ultimate tensile strength higher than 1000 MPa. Hydrogen uptake in the case of automotive components can take place in many phases of the manufacturing process: during hot stamping due to the presence of moisture in the furnace atmosphere high-temperature dissociation giving rise to atomic hydrogen or also during electrochemical treatments such as cataphoresis. Moreover possible corrosive phenomena could be a source of hydrogen during an automobile’s life. This series of tests was performed here in order to characterize two press-hardened steels (PHS)—USIBOR 1500® and USIBOR 2000®—to establish a correlation between ultimate mechanical properties and critical hydrogen concentration.
Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions
Mar 2021
Publication
Improving efficiency of hydrogen cooling in cryogenic conditions is important for the wider applications of hydrogen energy systems. The approach investigated in this study is based on a Ranque-Hilsch vortex tube (RHVT) that generates temperature separation in a working fluid. The simplicity of RHVT is also a valuable characteristic for cryogenic systems. In the present work novel shapes of RHVT are computationally investigated with the goal to raise efficiency of the cooling process. Specifically a smooth transition is arranged between a vortex chamber where compressed gas is injected and the main tube with two exit ports at the tube ends. Flow simulations have been carried out using STAR-CCM+ software with the real-gas Redlich-Kwong model for hydrogen at temperatures near 70 K. It is determined that a vortex tube with a smooth transition of moderate size manifests about 7% improvement of the cooling efficiency when compared vortex tubes that use traditional vortex chambers with stepped transitions and a no-chamber setup with direct gas injection.
Pressurized Hydrogen from Charged Liquid Organic Hydrogen Carrier Systems by Electrochemical Hydrogen Compression
Feb 2021
Publication
We demonstrate that the combination of hydrogen release from a Liquid Organic Hydrogen Carrier (LOHC) system with electrochemical hydrogen compression (EHC) provides three decisive advantages over the state-of-the-art hydrogen provision from such storage system: a) The EHC device produces reduced hydrogen pressure on its suction side connected to the LOHC dehydrogenation unit thus shifting the thermodynamic equilibrium towards dehydrogenation and accelerating the hydrogen release; b) the EHC device compresses the hydrogen released from the carrier system thus producing high value compressed hydrogen; c) the EHC process is selective for proton transport and thus the process purifies hydrogen from impurities such as traces of methane. We demonstrate this combination for the production of compressed hydrogen (absolute pressure of 6 bar) from perhydro dibenzyltoluene at dehydrogenation temperatures down to 240 °C in a quality suitable for fuel cell operation e.g. in a fuel cell vehicle. The presented technology may be highly attractive for providing compressed hydrogen at future hydrogen filling stations that receive and store hydrogen in a LOHC-bound manner.
Hydrogen Permeation Studies of Composite Supported Alumina-carbon Molecular Sieves Membranes: Separation of Diluted Hydrogen from Mixtures with Methane
Jun 2020
Publication
One alternative for the storage and transport of hydrogen is blending a low amount of hydrogen (up to 15 or 20%) into existing natural gas grids. When demanded hydrogen can be then separated close to the end users using membranes. In this work composite alumina carbon molecular sieves membranes (Al-CMSM) supported on tubular porous alumina have been prepared and characterized. Single gas permeation studies showed that the H2/CH4 separation properties at 30 °C are well above the Robeson limit of polymeric membranes. H2 permeation studies of the H2–CH4 mixture gases containing 5–20% of H2 show that the H2 purity depends on the H2 content in the feed and the operating temperature. In the best scenario investigated in this work for samples containing 10% of H2 with an inlet pressure of 7.5 bar and permeated pressure of 0.01 bar at 30 °C the H2 purity obtained was 99.4%.
Large-scale Storage of Hydrogen
Mar 2019
Publication
The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale the approach is not applicable in all regions due to varying geological conditions. Therefore other storage methods are necessary. In this article options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermodynamic and engineering aspects. The application of certain storage technologies such as liquid hydrogen methanol ammonia and dibenzyltoluene is found to be advantageous in terms of storage density cost of storage and safety. The variable costs for these high-density storage technologies are largely associated with a high electricity demand for the storage process or with a high heat demand for the hydrogen release process. If hydrogen is produced via electrolysis and stored during times of low electricity prices in an industrial setting these variable costs may be tolerable.
Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment
Apr 2021
Publication
Hydrogen gas pressure is an important test parameter when considering materials for high-pressure hydrogen applications. A large set of data on the effect of hydrogen gas pressure on mechanical properties in gaseous hydrogen experiments was reviewed. The data were analyzed by converting pressures into fugacities (f) and by fitting the data using an f|n| power law. For 95% of the data sets |n| was smaller than 0.37 which was discussed in the context of (i) rate-limiting steps in the hydrogen reaction chain and (ii) statistical aspects. This analysis might contribute to defining the appropriate test fugacities (pressures) to qualify materials for gaseous hydrogen applications.
Long-Term Hydrogen Storage—A Case Study Exploring Pathways and Investments
Jan 2022
Publication
Future low-carbon systems with very high shares of variable renewable generation require complex models to optimise investments and operations which must capture high degrees of sector coupling contain high levels of operational and temporal detail and when considering seasonal storage be able to optimise both investments and operations over long durations. Standard energy system models often do not adequately address all these issues which are of great importance when considering investments in emerging energy carriers such as Hydrogen. An advanced energy system model of the Irish power system is built in SpineOpt which considers a number of future scenarios and explores different pathways to the wide-scale adoption of Hydrogen as a low-carbon energy carrier. The model contains a high degree of both temporal and operational detail sector coupling via Hydrogen is captured and the optimisation of both investments in and operation of large-scale underground Hydrogen storage is demonstrated. The results highlight the importance of model detail and demonstrate how over-investment in renewables occur when the flexibility needs of the system are not adequately captured. The case study shows that in 2030 investments in Hydrogen technologies are limited to scenarios with high fuel and carbon costs high levels of Hydrogen demand (in this case driven by heating demand facilitated by large Hydrogen networks) or when a breakthrough in electrolyser capital costs and efficiencies occurs. However high levels of investments in Hydrogen technologies occur by 2040 across all considered scenarios. As with the 2030 results the highest level of investments occur when demand for Hydrogen is high albeit at a significantly higher level than 2030 with increases in investments of large-scale electrolysers of 538%. Hydrogen fuelled compressed air energy storage emerges as a strong investment candidate across all scenarios facilitating cost effective power-to-Hydrogen-to-power conversions.
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for the conservation of less accessible and expensive elements such as nickel and molybdenum. These advantages have led to the consideration of many applications such as brake disks for windmills and trucks filtration systems in refineries and fossil power plants transfer rolls for hot-rolled steel strips and ethylene crackers and air deflectors for burning high-sulfur coal. A wide application for iron aluminides in industry strictly depends on the fundamental understanding of the influence of (i) alloy composition; (ii) microstructure; and (iii) number (type) of defects on the thermo-mechanical properties. Additionally environmental degradation of the alloys consisting of hydrogen embrittlement anodic or cathodic dissolution localized corrosion and oxidation resistance in different environments should be well known. Recently some progress in the development of new micro- and nano-mechanical testing methods in addition to the fabrication techniques of micro- and nano-scaled samples has enabled scientists to resolve more clearly the effects of alloying elements environmental items and crystal structure on the deformation behavior of alloys. In this paper we will review the extensive work which has been done during the last decades to address each of the points mentioned above.
Linking Ab Initio Data on Hydrogen and Carbon in Steel to Statistical and Continuum Descriptions
Mar 2018
Publication
We present a selection of scale transfer approaches from the electronic to the continuum regime for topics relevant to hydrogen embrittlement. With a focus on grain boundary related hydrogen embrittlement we discuss the scale transfer for the dependence of the carbon solution behavior in steel on elastic effects and the hydrogen solution in austenitic bulk regions depending on Al content. We introduce an approximative scheme to estimate grain boundary energies for varying carbon and hydrogen population. We employ this approach for a discussion of the suppressing influence of Al on the substitution of carbon with hydrogen at grain boundaries which is an assumed mechanism for grain boundary hydrogen embrittlement. Finally we discuss the dependence of hydride formation on the grain boundary stiffness
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in multifunctional reactors (membrane reactors) poses additional demands on the membranes as interactions at different levels between the catalyst and the membrane surface can occur. Particularly when employing the membranes in fluidized bed reactors the selective layer should be resistant to or protected against erosion. In this review we will also describe a novel kind of membranes the pore-filled type membranes prepared by Pacheco Tanaka and coworkers that represent a possible solution to integrate thin selective membranes into membrane reactors while protecting the selective layer. This work is focused on recent advances on metallic supports materials used as an intermetallic diffusion layer when metallic supports are used and the most recent advances on Pd-based composite membranes. Particular attention is paid to improvements on sulfur resistance of Pd based membranes resistance to hydrogen embrittlement and stability at high temperature.
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
Aug 2019
Publication
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite achieving an extraordinary balance of mechanical properties and alloying cost. In the present work two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms.
Decrease in Hydrogen Embrittlement Susceptibility of 10B21 Screws by Bake Aging
Aug 2016
Publication
The effects of baking on the mechanical properties and fracture characteristics of low-carbon boron (10B21) steel screws were investigated. Fracture torque tests and hydrogen content analysis were performed on baked screws to evaluate hydrogen embrittlement (HE) susceptibility. The diffusible hydrogen content within 10B21 steel dominated the fracture behavior of the screws. The fracture torque of 10B21 screws baked for a long duration was affected by released hydrogen. Secondary ion mass spectroscopy (SIMS) result showed that hydrogen content decreased with increasing baking duration and thus the HE susceptibility of 10B21 screws improved. Diffusible hydrogen promoted crack propagation in high-stress region. The HE of 10B21 screws can be prevented by long-duration baking.
Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing
Mar 2018
Publication
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover the formation and growth of primary voids were observed in the BM leading to a superior fracture toughness. In addition the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content.
Graded Grain Structure to Improve Hydrogen-Embrittlement Resistance of TWIP Steel
Nov 2020
Publication
The high strength of twinning-induced plasticity (TWIP) steels makes them vulnerable to the hydrogen embrittlement (HE) phenomenon thereby limiting their potential applications. This study suggests inducing a graded grain structure (GGS) in a Fe-17Mn-0.8C TWIP steel through shot peening and subsequent heat treatment to solve the problem. The microstructures and fracture surfaces of GGS TWIP steel were compared with those of conventionally manufactured TWIP steel possessing a uniform grain structure (UGS). Compared with the conventional UGS TWIP steel GGS steel showed similar tensile properties with a yield strength of 310 MPa tensile strength of 1060 MPa and elongation-to-failure of 135%. It also exhibited moderately enhanced low-cycle fatigue (LCF) resistance in terms of fatigue life (8196 cycles to failure) compared with the UGS steel (7201 cycles). Furthermore GGS TWIP steel exhibited a marked improvement in HE resistance both in the monotonic (by a slow-strain-rate test) and cyclic deformation modes (by the LCF test) in a hydrogen environment. A relatively fine-grained (d = 15.6 μm) surficial area enhanced the HE resistance by inhibiting hydrogen penetration and decreasing twin density while the coarse-grained (d = 74.6 μm) interior promoted the LCF resistance by suppressing crack growth
Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys
Mar 2021
Publication
It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels nickel superalloys and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THEmax where the degradation of this mechanical property reaches a maximum. Above and below this temperature the degradation is less. Unfortunately the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THEmax are in the range of about 200–340 K which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is the value of THEmax itself as well as the slope of the gradient might affect the materials selection for a dedicated application. Given the current lack of scientific understanding a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications
Energy Transition: Measurement Needs for Carbon Capture, Usage and Storage
Jan 2021
Publication
This latest report describes the potential for CCUS as an important technology during the UK’s energy transition and focuses on the role that metrology (the science of measurement) could play in supporting its deployment. High priority measurement needs and challenges identified within this report include:
- Measuring and comparing the efficiency of different capture techniques and configurations to provide confidence in investments into technologies;
- Improving equations of state to support the development of accurate models used for controlling operational conditions;
- Improving CO2 flow measurement to support fiscal and financial metering as well as process control and;
- Improving the understanding and validation of dispersion models for emitted CO2 including plume migration to support safety assessment.
Hydrogen Embrittlement Behavior of 18Ni 300 Maraging Steel Produced by Selective Laser Melting
Jul 2019
Publication
A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests uncharged maraging samples showed fracture surfaces with dimples. Conversely in H-charged alloys quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen giving rise to higher hydrogen embrittlement susceptibility.
The Effects of Electrochemical Hydrogen Charging on Room-Temperature Tensile Properties of T92/TP316H Dissimilar Weldments in Quenched-and-Tempered and Thermally-Aged Conditions
Aug 2019
Publication
The influence of isothermal aging at 620 °C in combination with subsequent electrochemical hydrogen charging at room-temperature was studied on quenched-and-tempered T92/TP316H martensitic/austenitic weldments in terms of their room-temperature tensile properties and fracture behavior. Hydrogen charging of the weldments did not significantly affect their strength properties; however it resulted in considerable deterioration of their plastic properties along with significant impact on their fracture characteristics and failure localization. The hydrogen embrittlement plays a dominant role in degradation of the plastic properties of the weldments already in their initial material state i.e. before thermal aging. After thermal aging and subsequent hydrogen charging mutual superposition of thermal and hydrogen embrittlement phenomena had led to clearly observable effects on the welds deformation and fracture processes. The measure of hydrogen embrittlement was clearly lowered for thermally aged material state since the contribution of thermal embrittlement to overall degradation of the weldments has dominated. The majority of failures of the weldments after hydrogen charging occurred in the vicinity of T92 BM/Ni weld metal (WM) fusion zone; mostly along the Type-II boundary in Ni-based weld metal. Thus regardless of aging exposure the most critical failure regions of the investigated weldments after hydrogen charging and tensile straining at room temperature are the T92 BM/Ni WM fusion boundary and Type-II boundary acting like preferential microstructural sites for hydrogen embrittling effects accumulation
Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel
Jul 2016
Publication
Plastic deformation and strain-induced martensite (SIM α′) transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture tensile strength hardness and the amount of SIM increased with decreasing the strain rate. The strain-rate dependence of RT tensile properties was observed to be related to the amount of SIM. Specifically SIM formed during tensile tests was beneficial in increasing the elongation to fracture hardness and tensile strength. Hydrogen suppressed the SIM formation leading to hydrogen softening and localized brittle fracture.
Research on Carbide Characteristics and Their Influence on the Properties of Welding Joints for 2.25Cr1Mo0.25V Steel
Feb 2021
Publication
The carbide characteristics of 2.25Cr1Mo0.25V steel have an extremely important influence on the mechanical properties of welding joints. In addition hydrogen resistance behavior is crucial for steel applied in hydrogenation reactors. The carbide morphology was observed by scanning electron microscopy (SEM) and the carbide microstructure was characterized by transmission electron microscopy (TEM). Tensile and impact tests were carried out and the influence of carbides on properties was studied. A hydrogen diffusion test was carried out and the hydrogen brittleness resistance of welding metal and base metal was studied by tensile testing of hydrogenated samples to evaluate the influence of hydrogen on the mechanical properties. The research results show that the strength of the welding metal was slightly higher and the Charpy impact value was significantly lower compared to the base metal. The hydrogen embrittlement resistance of the welding metal was stronger than that of the base metal. The presence of more carbides and inclusions was the main cause of the decreased impact property and hydrogen brittleness resistance of the welding metal. These conclusions have certain reference value for designing and manufacturing hydrogenation reactors. View Full-Text
Hydrogen-Assisted Crack Growth in the Heat-Affected Zone of X80 Steels during in Situ Hydrogen Charging
Aug 2019
Publication
Herein the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrogen embrittlement than the base metal samples in the same current density. Brittle circumferential cracks located at the HAZ sample surfaces were perpendicular to the loading direction and the crack propagation path indicated that five or more cracks may join together to form a longer crack. The fracture morphologies were found to be a mixture of intergranular and transgranular fractures. Hydrogen blisters were observed on the HAZ sample surfaces after conducting tensile tests at a current density of 40 mA/cm2 leading to a fracture in the elastic deformation stage.
Energy Transition: Measurement Needs Within the Hydrogen Industry
Dec 2017
Publication
Hydrogen in the UK is beginning to shift from hypothetical debates to practical demonstration projects. An ever-growing evidence base has showcased how the costs of hydrogen and its barriers to entry are reducing such that it now has practical potential to contribute to the decarbonisation of the UK's energy sector.
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
This Document can be downloaded from their website
Despite this hydrogen has yet to have wide commercial uptake due in part to a number of barriers where measurement plays a critical role. To accelerate the shift towards the hydrogen economy these challenges have been identified and prioritised by NPL.
The report Energy transition: Measurement needs within the hydrogen industry outlines the challenges identified. The highest priority issues are:
- Material development for fuel cells and electrolysers to reduce costs and assess critical degradation mechanisms – extending lifetime and durability is key to the commercialisation of these technologies.
- Impact assessment of added odorant to hydrogen to aid leak detection. Measurement of its impact during pipeline transportation and on the end-use application (particularly fuel cell technology) will be important to provide assurance that it will not affect lifetime and durability.
- Determination of the blend ratio when hydrogen is mixed with natural gas in the gas grid. Accurate flow rate measurement and validated metering methods are needed to ensure accurate billing of the consumer.
- Measurement of the combustion properties of hydrogen including flame detection and propagation temperature and nitrogen oxides (NOx) emissions should it be used for heat applications to ensure existing and new appliances are suitable for hydrogen.
- Assessment of the suitability of existing gas infrastructure and materials for hydrogen transportation. Building an understanding of what adaptations might need to be made to avoid for example air permeation metal embrittlement and hydrogen leakage.
- Validated techniques for hydrogen storage which will require measurement of the efficiency and capacity of each mechanism through robust metering leakage detection and purity analysis to ensure they are optimised for the storage of hydrogen gas.
This Document can be downloaded from their website
The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction
Oct 2020
Publication
Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes making the search for earth-abundant and cheaper alternatives important. Herein we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested they achieve competitively low overpotentials of 115 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 0.5 M H2SO4 and 120 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals which showed significantly higher overpotentials and lower current densities when tested under identical conditions confirming the synergistic effect of the alloying. However the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.
A Fracture Analysis of Ti-10Mo-8V-1Fe-3.5Al Alloy Screws during Assembly
Oct 2016
Publication
Titanium screws have properties that make them ideal for applications that require both a high strength-to-weight ratio and corrosion resistance such as fastener applications for aviation and aerospace. The fracture behavior of Ti-10Mo-8V-1Fe-3.5Al (TB3) alloy screws during assembly was explored. Besides visual examination other experimental techniques used for the investigation are as follows: (1) fracture characteristics and damage morphology via scanning electron microscopy (SEM); (2) chemical constituents via energy dispersive spectroscopy (EDS) and hydrogen concentration testing; (3) metallographic observation; (4) stress durability embrittlement testing; and (5) torsion simulation testing. Results show that the fracture mode of the screws is brittle. There is no obvious relation to hydrogen-induced brittle. The main reason for the fracture of titanium alloy screws is internal defects around which oxygen content is high increasing brittleness. The internal defects of screws result from grain boundary cracking caused by hot forging.
Effect of Low-Temperature Sensitization on Hydrogen Embrittlement of 301 Stainless Steel
Feb 2017
Publication
The effect of metastable austenite on the hydrogen embrittlement (HE) of cold-rolled (30% reduction in thickness) 301 stainless steel (SS) was investigated. Cold-rolled (CR) specimens were hydrogen-charged in an autoclave at 300 or 450 °C under a pressure of 10 MPa for 160 h before tensile tests. Both ordinary and notched tensile tests were performed in air to measure the tensile properties of the non-charged and charged specimens. The results indicated that cold rolling caused the transformation of austenite into α′ and ε-martensite in the 301 SS. Aging at 450 °C enhanced the precipitation of M23C6 carbides G and σ phases in the cold-rolled specimen. In addition the formation of α′ martensite and M23C6 carbides along the grain boundaries increased the HE susceptibility and low-temperature sensitization of the 450 °C-aged 301 SS. In contrast the grain boundary α′-martensite and M23C6 carbides were not observed in the as-rolled and 300 °C-aged specimens
Influence of Synthesis Gas Components on Hydrogen Storage Properties of Sodium Aluminium Hexahydride
Feb 2021
Publication
A systematic study of different ratios of CO CO2 N2 gas components on the hydrogen storage properties of the Na3AlH6 complex hydride with 4 mol% TiCl3 8 mol% aluminum and 8 mol% activated carbon is presented in this paper. The different concentrations of CO and CO2in H2 and CO CO2 N2 in H2 mixture were investigated. Both CO and CO2gas react with the complex hydride forming Al oxy-compounds NaOH and Na2CO3 that consequently cause serious decline in hydrogen storage capacity. These reactions lead to irreversible damage of complex hydride under the current experimental condition. Thus after 10 cycles with 0.1 vol % CO + 99.9 vol %H2 and 1 vol % CO + 99 vol %H2 the dehydrogenation storage capacity of the composite material decreased by 17.2% and 57.3% respectively. In the case of investigation of 10 cycles with 1 vol % CO2 + 99 vol % H2 gas mixture the capacity degradation was 53.5%. After 2 cycles with 10 vol % CO +90 vol % H2 full degradation was observed whereas after 6 cycles with 10 vol % CO2+ 90 vol % H2 degradation of 86.8% was measured. While testing with the gas mixture of 1.5 vol % CO + 10 vol % CO2+ 27 vol % H2 + 61.5 vol % N2 the degradation of 94% after 6 cycles was shown. According to these results it must be concluded that complex aluminum hydrides cannot be used for the absorption of hydrogen from syngas mixtures without thorough purification.
Hydrogen Trapping Behavior in Vanadium Microalloyed TRIP-Assisted Annealed Martensitic Steel
Jun 2019
Publication
Transformation induced plasticity (TRIP)-assisted annealed martensitic (TAM) steel combines higher tensile strength and elogangtion and has been increasingly used but appears to bemore prone to hydrogen embrittlement (HE). In this paper the hydrogen trapping behavior and HE of TRIP-assisted annealed martensitic steels with different vanadium additions had been investigated by means of hydrogen charging and slow strain rate tensile tests (SSRT) microstructral observartion and thermal desorption mass spectroscope (TDS). Hydrogen charging test results indicates that apparent hydrogen diffusive index Da is 1.94 × 10−7/cm2·s−1 for 0.21 wt.% vanadium steel while the value is 8.05 × 10−7/cm2·s−1 for V-free steel. SSRT results show that the hydrogen induced ductility loss ID is 76.2% for 0.21 wt.%V steel compared with 86.5% for V-free steel. The trapping mechanism of the steel containing different V contents is analyzed by means of TDS and Transmission electron microscope (TEM) observations. It is found out that the steel containing 0.21 wt.%V can create much more traps for hydrogen trapping compared with lower V steel which is due to vanadium carbide (VC) precipitates acting as traps capturing hydrogen atoms.The relationship between hydrogen diffusion and hydrogentrapping mechanism is discussed in details.
Numerical Solution for Thermodynamic Model of Charge-discharge Cycle in Compressed Hydrogen Tank
Mar 2019
Publication
The safety and convenience of hydrogen storage are significant for fuel cell vehicles. Based on mass conservation equation and energy conservation equation two thermodynamic models (single zone model and dual zone model) have been established to study the hydrogen gas temperature and tank wall temperature for compressed hydrogen storage tank. With two models analytical solution and Euler solution for single zone (gas zone) charge-discharge cycle have been compared Matlab/Simulink solution and Euler solution for dual zone (gas zone wall zone) charge-discharge cycle have been compared. Three charge-discharge cycle cases (Case 1 constant inflow temperature; Case 2 variable inflow temperature; Case 3 constant inflow temperature variable outflow temperature) and two compressed hydrogen tanks (Type III 25L Type IV 99L) charge-discharge cycle are studied by Euler method. Results show Euler method can well predict hydrogen temperature and tank wall temperature.
Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel
Apr 2020
Publication
The present research focuses on the investigation of an in situ hydrogen charging effect during Crack Tip Opening Displacement testing (CTOD) on the fracture toughness properties of X65 pipeline steel. This grade of steel belongs to the broader category of High Strength Low Alloy Steels (HSLA) and its microstructure consists of equiaxed ferritic and bainitic grains with a low volume fraction of degenerated pearlite islands. The studied X65 steel specimens were extracted from pipes with 19.15 mm wall thickness. The fracture toughness parameters were determined after imposing the fatigue pre-cracked specimens on air on a specific electrolytic cell under a slow strain rate bending loading (according to ASTM G147-98 BS7448 and ISO12135 standards). Concerning the results of this study in the first phase the hydrogen cations’ penetration depth the diffusion coefficient of molecular and atomic hydrogen and the surficial density of blisters were determined. Next the characteristic parameters related to fracture toughness (such as J KQ CTODel CTODpl) were calculated by the aid of the Force-Crack Mouth Open Displacement curves and the relevant analytical equations.
Effects of Purity and Pressure on the Hydrogen Embrittlement of Steels and Other Metallic Materials
Sep 2009
Publication
A study of open literature was performed to determine the effects of high hydrogen purity and gas pressure (in the range of 700-1000 bar) on the hydrogen embrittlement of several metallic materials. A particular focus was given to carbon low-alloy and stainless steels but information on embrittlement of aluminum and copper was included in the study. Additionally the most common test methods were studied and results from similar tests are presented in a manner so as to simplify comparisons of materials. Finally suggestions are provided for future testing necessary to ensure the safety of hydrogen storage at 700 bar.
Comparative Study of Embrittlement of Quenched and Tempered Steels in Hydrogen Environments
Mar 2022
Publication
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas electrochemically pre-charged and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables such as the applied current density the electrolyte composition and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.
Measurement of Fatigue Crack Growth Rates for Steels in Hydrogen Containment Components
Sep 2009
Publication
The objective of this work was to enable the safe design of hydrogen pressure vessels by measuring the fatigue crack growth rates of ASME code-qualified steels in high-pressure hydrogen gas. While a design framework has recently been established for high-pressure hydrogen vessels a material property database does not exist to support the design calculations. This study addresses such voids in the database by measuring the fatigue crack growth rates of three different heats of ASME SA-372 Grade J steel in 100 MPa hydrogen gas. Results showed that the fatigue crack growth rates were similar for all three steel heats although the highest-strength steel appeared to exhibit the highest growth rates. Hydrogen accelerated the fatigue crack growth rates of the steels by as much as two orders of magnitude relative to anticipated crack growth rates in inert environments. Despite such dramatic effects of hydrogen on the fatigue crack growth rates measurement of these properties enables reliable definition of the design life of steel hydrogen containment vessels.
Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC)
Dec 2021
Publication
The liquid organic hydrogen carriers (LOHC) are aromatic molecules which can be considered as an attractive option for the storage and transport of hydrogen. A considerable amount of hydrogen up to 7–8% wt. can be loaded and unloaded with a reversible chemical reaction. Substituted quinolines and pyridines are available from petroleum coal processing and wood preservation or they can be synthesized from aniline. Quinolines and pyridines can be considered as potential LOHC systems provided they have favorable thermodynamic properties which were the focus of this current study. The absolute vapor pressures of methyl-quinolines were measured using the transpiration method. The standard molar enthalpies of vaporization of alkyl-substituted quinolines and pyridines were derived from the vapor pressure temperature dependencies. Thermodynamic data on vaporization and formation enthalpies available in the literature were collected evaluated and combined with our own experimental results. The theoretical standard molar gas-phase enthalpies of formation of quinolines and pyridines calculated using the quantum-chemical G4 methods agreed well with the evaluated experimental data. Reliable standard molar enthalpies of formation in the liquid phase were derived by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporization. The liquid-phase hydrogenation/dehydrogenation reaction enthalpies of alkyl-substituted pyridines and quinolines were calculated and compared with the data for other potential liquid organic hydrogen carriers. The comparatively low enthalpies of reaction make these heteroaromatics a seminal LOHC system.
Hydrogen Deblending in the GB Network - Feasibility Study Report
Nov 2020
Publication
The UK government has committed to reducing greenhouse gas emissions to net zero by 2050. All future energy modelling identifies a key role for hydrogen (linked to CCUS) in providing decarbonised energy for heat transport industry and power generation. Blending hydrogen into the existing natural gas pipeline network has already been proposed as a means of transporting low carbon energy. However the expectation is that a gas blend with maximum hydrogen content of 20 mol% can be used without impacting consumers’ end use applications. Therefore a transitional solution is needed to achieve a 100% hydrogen future network.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
- Cryogenic separation
- Membrane separation
- Pressure Swing Adsorption (PSA)
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Laboratory Method for Simulating Hydrogen Assisted Degradation of Gas Pipeline Steels
Aug 2019
Publication
Integrity of natural gas transmission systems is of great importance for energy and environmental security. Deterioration occurs in gas transit pipelines due to operational conditions and action of corrosion and hydrogenating media and leads to changes in microstructure and mechanical properties of pipeline steels which influences on pipeline performance. Hydrogenation of metal during corrosion process together with working stresses facilitates a development of in-bulk damaging at nano- and microscales. Reducing brittle fracture resistance of pipeline steels under operation increases significantly a failure risk of gas pipelines associated with in-bulk material degradation. Therefore hydrogen assisted degradation of pipelines steels under operation calls for effective methods for in-laboratory accelerated degradation. The present study is devoted to the development of the procedure of laboratory simulation of in-service degradation of pipeline steels. The role of hydrogen in degradation of pipeline steels was analysed. The procedure of accelerated degradation of pipeline steels under the combined action of axial loading and hydrogen charging was developed and induced in the laboratory. The procedure was consisted in consistently subjecting of specimens to electrolytic hydrogen charging to an axial loading up and to an artificial aging. Pipeline steels in the different states (as-received post-operated aged and after in-laboratory degradation) were investigated. The tensile mechanical behaviour of steels and impact toughness were experimentally studied. It was definitely concluded that the applied procedure caused the changes in the metal mechanical properties at the same level compared to the properties degradation due to operation. The developed procedure enables on a laboratory scale simulating of pipeline steel degradation during long-term operation under simultaneous action of hydrogenation and working loading and it makes possible to predict the mechanical behaviour of pipeline steels during service.
The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-based Alloys Prepared by Suspended Droplet Alloying
Jun 2020
Publication
The influence of the addition of refractory metals (molybdenum and tantalum) on the hydrogenation properties of FeTi intermetallic phase-based alloys was investigated. The suspended droplet alloying technique was applied to fabricate FeTiTa-based and FeTiMo-based alloys. The phase composition and hydrogen storage properties of the samples were investigated. The samples modified with the refractory metals exhibited lower plateau pressures and lower hydrogen storage capacities than those of the FeTi reference sample due to solid solution formation. It was observed that the equilibrium pressures decreased with the amount of molybdenum which is in good agreement with the increase in the cell parameters of the TiFe phase. Suspended droplet alloying was found to be a practical method to fabricate alloys with refractory metal additions; however it is appropriate for screening samples with desired chemical and phase compositions rather than for manufacturing purposes.
Static and Dynamic Studies of Hydrogen Adsorption on Nanoporous Carbon Gels
Jun 2019
Publication
Although hydrogen is considered to be one of the most promising green fuels its efficient and safe storage and use still raise several technological challenges. Physisorption in porous materials may offer an attractive means of storage but the state-of-the-art capacity of these kinds of systems is still limited. To overcome the present drawbacks a deeper understanding of the adsorption and surface diffusion mechanism is required along with new types of adsorbents developed and/or optimised for this purpose. In the present study we compare the hydrogen adsorption behaviour of three carbon gels exhibiting different porosity and/or surface chemistry. In addition to standard adsorption characterisation techniques neutron spin-echo spectroscopy (NSE) has been also applied to explore the surface mobility of the adsorbed hydrogen. Our results reveal that both the porosity and surface chemistry of the adsorbent play a significant role in the adsorption of in these systems.
Hydrogen adsorption on transition metal carbides
Jan 2019
Publication
Transition metal carbides are a class of materials widely known for both their interesting physical properties and catalytic activity. In this work we have used plane-wave DFT methods to study the interaction with increasing amounts of molecular hydrogen on the low-index surfaces of four major carbides – TiC VC ZrC and NbC. Adsorption is found to be generally exothermic and occurs predominantly on the surface carbon atoms. We identify trends over the carbides and their surfaces for the energetics of the adsorption as a function of their electronic and geometrical characteristics. An ab initio thermodynamics formalism is used to study the properties of the slabs as the hydrogen coverage is increased.
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
Jun 2014
Publication
Simulation of hydrogen embrittlement (HE) requires a coupled approach; on one side the models describing hydrogen transport must account for local mechanical fields while on the other side the effect of hydrogen on the accelerated material damage must be implemented into the model describing crack initiation and growth. This study presents a review of coupled diffusion and cohesive zone modelling as a method for numerically assessing HE of a steel structure. While the model is able to reproduce single experimental results by appropriate fitting of the cohesive parameters there appears to be limitations in transferring these results to other hydrogen systems. Agreement may be improved by appropriately identifying the required input parameters for the particular system under study.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Implementation of hydrogen plasma activation of Mg powder in two steps hydrogenation
Oct 2017
Publication
Development of technologically and economically feasible solutions for hydrogen storage stimulates progress in hydrogen economy. High gravimetric and volumetric capacities of magnesium hydride makes it promising material capable to accelerate implementation of hydrogen-based technologies in our daily life. However widely discussed limitations of sorption kinetics and thermodynamic properties must be managed in MgH2. This work investigates two steps hydrogenation when process of hydrogen absorption is followed after hydrogen plasma activation. Such technique initiates creation of new channels for enhanced hydrogen sorption. Moreover synthesis of negligible amount of hydride acts as positive factor for further hydrogenation.
Wood Cellulose as a Hydrogen Storage Material
Apr 2020
Publication
Hydrogen has become a strong candidate to be a future energy storage medium but there are technological challenges both in its production and storage. For storage a search for lightweight abundant and non-toxic materials is on the way. An abundant natural material such as wood cellulose would make an ideal storage medium from a sustainability perspective. Here using a combination of static DFT calculations and ab initio molecular dynamics simulations at different temperatures it is shown that wood cellulose has the ability to uptake H2 via a physisorption mechanism based on dispersion interactions of the van der Waals type involving the O-atoms of the d-glucose rings. The absorption causes little to no disturbances on the cellulose structure and H2 is highly mobile in the material. At an external pressure of H2(g) of 0.09 atm and T = 25 °C cellulose has a theoretical gravimetric density of hydrogen storage of ≈1%.
In-situ Study of the Effect of Hydrogen on Fatigue Crack Initiation in Polycrystalline Nickel
Aug 2019
Publication
Correlating hydrogen embrittlement phenomenon with the metallic microstructural features holds the key for developing metals resistant to hydrogen-based failures. In case of fatigue failure of hydrogen charged metals in addition to the hydrogen-based failure mechanisms associated with monotonic loading such as HELP HEDE etc. microstructural features such as grain size type of grain boundary (special/random) fraction of special grain boundaries; their network and triple junctions can play a complex role. The probable sites for fatigue crack initiation in such metals can be identified as the sites of highest hydrogen concentration or accumulated plastic strain. To this end we have developed an experimental framework based on in-situ fatigue crack initiation and propagation studies under scanning electron microscope (SEM) to identify the weakest link in the metallic microstructure leading to failure. In-situ fatigue experiments are performed on carefully designed polycrystalline nickel (99.95% pure) specimens (miniaturised shallow-notched & electro-polished) using a 10 kN fatigue stage inside the SEM. Electron Back Scattering Diffraction (EBSD) map of the notched region surface helps identify the distribution of special/random grain boundaries triple junctions and grain orientation. The specimen surface in the shallow notched region for both the hydrogen charged and un-charged specimens are then carefully studied to correlate the microstructural feature associated with fatigue crack initiation sites. Such correlation of the fatigue crack initiation site and microstructural feature is further corroborated with the knowledge of hydrogen trapping and grain’s elastic anisotropicity to be either the site of high hydrogen concentration accumulated plastic slip or both.
20 Years of Carbon Capture and Storage - Accelerating Future Deployment
Nov 2016
Publication
Carbon capture and storage (CCS) technologies are expected to play a significant part in the global climate response. Following the ratification of the Paris Agreement the ability of CCS to reduce emissions from fossil fuel use in power generation and industrial processes – including from existing facilities – will be crucial to limiting future temperature increases to ""well below 2°C"" as laid out in the Agreement. CCS technology will also be needed to deliver ""negative emissions"" in the second half of the century if these ambitious goals are to be achieved.
CCS technologies are not new. This year is the 20th year of operation of the Sleipner CCS Project in Norway which has captured almost 17 million tonnes of CO2 from an offshore natural gas production facility and permanently stored them in a sandstone formation deep under the seabed. Individual applications of CCS have been used in industrial processes for decades and projects injecting CO2 for enhanced oil recovery (EOR) have been operating in the United States since the early 1970s.
This publication reviews progress with CCS technologies over the past 20 years and examines their role in achieving 2°C and well below 2°C targets. Based on the International Energy Agency’s 2°C scenario it also considers the implications for climate change if CCS was not a part of the response. And it examines opportunities to accelerate future deployment of CCS to meet the climate goals set in the Paris Agreement.
Link to Document on IEA Website
CCS technologies are not new. This year is the 20th year of operation of the Sleipner CCS Project in Norway which has captured almost 17 million tonnes of CO2 from an offshore natural gas production facility and permanently stored them in a sandstone formation deep under the seabed. Individual applications of CCS have been used in industrial processes for decades and projects injecting CO2 for enhanced oil recovery (EOR) have been operating in the United States since the early 1970s.
This publication reviews progress with CCS technologies over the past 20 years and examines their role in achieving 2°C and well below 2°C targets. Based on the International Energy Agency’s 2°C scenario it also considers the implications for climate change if CCS was not a part of the response. And it examines opportunities to accelerate future deployment of CCS to meet the climate goals set in the Paris Agreement.
Link to Document on IEA Website
Formation and Dissociation Behaviour Studies of Hydrogen Hydrate in the Presence of Tetrahydrofuran by using High Pressure DSC
Mar 2019
Publication
Significant challenges still remain in the development of suitable materials for storing hydrogen for practical applications. Clathrate hydrates as a special inclusion compounds could be tailored by changing the storage pressure and temperature to adapt ambient conditions. In this work the hydrates were adopted to encage hydrogen in tetrahydrofuran (THF) aqueous solution with concentration of 3.0 mol%. The formation and dissociation behaviours were investigated by a high pressure micro-differential scanning calorimeter at the operating pressure of 18 MPa 25 MPa and 34 MPa. Experimental results show that the memory water only affects the hydrate formation behaviour instead of the hydrate dissociation behaviour. The dissociation temperature of the THF-H2 hydrate increases with the increase of the operating pressure and its dissociation equilibrium data can be obtained. The dissociation temperatures of the THF-H2 hydrate are 9.26 ℃ 10.94 ℃ and 12.67 ℃ at the operating pressure of 18 MPa 25 MPa and 34 MPa respectively. It is fundamental for performing the kinetics and microscopic experiments.
Large-scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems
Mar 2021
Publication
Storing energy in the form of hydrogen is a promising green alternative. Thus there is a high interest to analyze the status quo of the different storage options. This paper focuses on the large-scale compressed hydrogen storage options with respect to three categories: storage vessels geological storage and other underground storage alternatives. In this study we investigated a wide variety of compressed hydrogen storage technologies discussing in fair detail their theory of operation potential and challenges. The analysis confirms that a techno-economic chain analysis is required to evaluate the viability of one storage option over another for a case by case. Some of the discussed technologies are immature; however this does not rule out these technologies; rather it portrays the research opportunities in the field and the foreseen potential of these technologies. Furthermore we see that hydrogen would have a significant role in balancing intermittent renewable electricity production.
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
Innovation Insights Brief - Five Steps to Energy Storage
Jan 2020
Publication
As the global electricity systems are shaped by decentralisation digitalisation and decarbonisation the World Energy Council’s Innovation Insights Briefs explore the new frontiers in energy transitions and the challenges of keeping pace with fast moving developments. We use leadership interviews to map the state of play and case studies across the whole energy landscape and build a broader and deeper picture of new developments within and beyond the new energy technology value chain and business ecosystem.<br/><br/>With major decarbonisation efforts and the scaling up of renewable power generation the widespread adoption of energy storage continues to be described as the key game changer for electricity systems. Affordable storage systems are a critical missing link between intermittent renewable power and a 24/7 reliability net-zero carbon scenario. Beyond solving this salient challenge energy storage is being increasingly considered to meet other needs such as relieving congestion or smoothing out the variations in power that occur independently of renewable-energy generation. However whilst there is plenty of visionary thinking recent progress has focused on short-duration and battery-based energy storage for efficiency gains and ancillary services; there is limited progress in developing daily weekly and even seasonal cost-effective solutions which are indispensable for a global reliance on intermittent renewable energy sources.
Heat Transfer Analysis for Fast Filling of On-board Hydrogen Tank
Mar 2019
Publication
The heat transfer analysis in the filling process of compressed on-board hydrogen storage tank has been the focus of hydrogen storage research. The initial conditions mass flow rate and heat transfer coefficient have certain influence on the hydrogen filling performance. In this paper the effects of mass flow rate and heat transfer coefficient on hydrogen filling performance are mainly studied. A thermodynamic model of the compressed hydrogen storage tank was established by Matlab/Simulink. This 0D model is utilized to predict the hydrogen temperature hydrogen pressure tank wall temperature and SOC (State of Charge) during filling process. Comparing the simulated results with the experimental data the practicability of the model can be verified. The simulated results have certain meaning for improving the hydrogenation parameters in real filling process. And the model has a great significance to the study of hydrogen filling and purification.
Micro-grid Design and Life-cycle Assessment of a Mountain Hut's Stand-alone Energy System with Hydrogen Used for Seasonal Storage
Dec 2020
Publication
Mountain huts as special stand-alone micro-grid systems are not connected to a power grid and represent a burden on the environment. The micro-grid has to be flexible to cover daily and seasonal fluctuations. Heat and electricity are usually generated with fossil fuels due to the simple on-off operation. By introducing renewable energy sources (RESs) the generation of energy could be more sustainable but the generation and consumption must be balanced. The paper describes the integration of a hydrogen-storage system (HSS) and a battery-storage system (BattS) in a mountain hut. The HSS involves a proton-exchange-membrane water electrolyser (PEMWE) a hydrogen storage tank (H2 tank) a PEM fuel cell (PEMFC) and a BattS consisting of lead-acid batteries. Eight micro-grid configurations were modelled using HOMER and evaluated from the technical environmental and economic points of view. A life-cycle assessment analysis was made from the cradle to the gate. The micro-grid configurations with the HSS achieve on average a more than 70% decrease in the environmental impacts in comparison to the state of play at the beginning but require a larger investment. Comparing the HSS with the BattS as a seasonal energy storage the hydrogen-based technology had advantages for all of the assessed criteria.
Corrosion Study of Pipeline Steel under Stress at Different Cathodic Potentials by EIS
Dec 2019
Publication
The effect of different cathodic potentials applied to the X70 pipeline steel immersed in acidified and aerated synthetic soil solution under stress using a slow strain rate test (SSRT) and electrochemical impedance spectroscopy (EIS) was studied. According to SSRT results and the fracture surface analysis by scanning electron microscopy (SEM) the steel susceptibility to stress corrosion cracking (SCC) increased as the cathodic polarization increased (Ecp). This behavior is attributed to the anodic dissolution at the tip of the crack and the increment of the cathodic reaction (hydrogen evolution) producing hydrogen embrittlement. Nevertheless when the Ecp was subjected to the maximum cathodic potential applied (−970 mV) the susceptibility decreased; this behavior is attributed to the fact that the anodic dissolution was suppressed and the process of the SCC was dominated only by hydrogen embrittlement (HE). The EIS results showed that the cathodic process was influenced by the mass transport (hydrogen diffusion) due to the steel undergoing so many changes in the metallic surface as a result of the applied strain that it generated active sites at the surface.
Influence of Hydrogen-Based Storage Systems on Self-Consumption and Self-Sufficiency of Residential Photovoltaic Systems
Aug 2015
Publication
This paper analyzes the behavior of residential solar-powered electrical energy storage systems. For this purpose a simulation model based on MATLAB/Simulink is developed. Investigating both short-time and seasonal hydrogen-based storage systems simulations on the basis of real weather data are processed on a timescale of 15 min for a consideration period of 3 years. A sensitivity analysis is conducted in order to identify the most important system parameters concerning the proportion of consumption and the degree of self-sufficiency. Therefore the influences of storage capacity and of storage efficiencies are discussed. A short-time storage system can increase the proportion of consumption by up to 35 percentage points compared to a self-consumption system without storage. However the seasonal storing system uses almost the entire energy produced by the photovoltaic (PV) system (nearly 100% self-consumption). Thereby the energy drawn from the grid can be reduced and a degree of self-sufficiency of about 90% is achieved. Based on these findings some scenarios to reach self-sufficiency are analyzed. The results show that full self-sufficiency will be possible with a seasonal hydrogen-based storage system if PV area and initial storage level are appropriate.
Hydrogen Diffusion Mechanism around a Crack Tip in Type 304L Austenite Stainless Steel Considering the Influence of the Volume Expansion of Strain-Induced Martensite Transformation
Sep 2019
Publication
Strain-induced martensite transformation (SIMT) commonly exists around a crack tip of metastable austenite stainless steels. The influence of the volume expansion of the SIMT on the hydrogen diffusion was investigated by hydrogen diffusion modelling around a crack tip in type 304L austenite stainless steel. The volume expansion changed the tensile stress state into pressure stress state at the crack tip resulting in a large stress gradient along the crack propagation direction. Compared to the analysis without considering the volume expansion effect this volume expansion further accelerated the hydrogen transport from the inner surface to a critical region ahead of the crack tip and further increased the maximum value of the hydrogen concentration at the critical position where the strain-induced martensite fraction approximates to 0.1 indicating that the volume expansion of the SIMT further increased the hydrogen embrittlement susceptibility.
Understanding the Interaction between a Steel Microstructure and Hydrogen
Apr 2018
Publication
The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels i.e. high-strength low-alloy (HSLA) transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase i.e. ferrite bainite pearlite or martensite and with carbon contents of approximately 0 0.2 and 0.4 wt % are further considered to simplify the microstructure. Finally the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction a comparison of the available H trapping sites the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis.
A Study on the Influential Factors of Stress Corrosion Cracking in C110 Casing Pipe
Jan 2022
Publication
In this paper we analyze the potential factors affecting the hydrogen sulfide type of stress corrosion cracking in C110 casing pipes. In order to further study these cracking factors the methods of material property testing scanning electron microscopy XRD TEM and 3D ultra-depth-of-field were applied in the experiments. Besides that an HTHP autoclave was independently designed by the laboratory to simulate the actual corrosion environment and the potential factors affecting the stress corrosion cracking of C110 casing pipes were determined. The test results showed that the chemical composition metallographic structure hardness and non-metallic inclusions of the two types of C110 casing pipes were all qualified. In fact there remains a risk of stress corrosion cracking when the two kinds of C110 casing pipes serve under long-term field-working conditions. It is considered in this paper that the precipitates on the material surface stress damage and pitting corrosion are all critical factors affecting the stress corrosion cracking of casing pipes.
Feasibility of Renewable Hydrogen Based Energy Supply for a District
Sep 2017
Publication
Renewable generation technologies (e.g. photovoltaic panels (PV)) are often installed in buildings and districts with an aim to decrease their carbon emissions and consumption of non-renewable energy. However due to a mismatch between supply and demand at an hourly but also on a seasonal timescale; a large amount of electricity is exported to the grid rather than used to offset local demand. A solution to this is local storage of electricity for subsequent self-consumption. This could additionally provide districts with new business opportunities financial stability flexibility and reliability.<br/>In this paper the feasibility of hydrogen based electricity storage for a district is evaluated. The district energy system (DES) includes PV and hybrid photovoltaic panels (PVT). The proposed storage system consists of production of hydrogen using the renewable electricity generated within the district hydrogen storage and subsequent use in a fuel cell. Combination of battery storage along with hydrogen conversion and storage is also evaluated. A multi-energy optimization approach is used to model the DES. Results of the model are optimal battery capacity electrolyzer capacity hydrogen storage capacity fuel cell capacity and energy flows through the system. The model is also used to compare different system design configurations. The results of this analysis show that both battery capacity and conversion of electricity to hydrogen enable the district to decrease its carbon emissions by approximately 22% when compared to the reference case with no energy storage.
Energy Storage as Part of a Secure Energy Supply
Mar 2017
Publication
Florian Ausfelder,
Christian Beilmann,
Martin Bertau,
Sigmar Bräuninger,
Angelika Heinzel,
Renate Hoer,
Wolfram Koch,
Falko Mahlendorf,
Anja Metzelthin,
Marcell Peuckert,
Ludolf Plass,
Konstantin Räuchle,
Martin Reuter,
Georg Schaub,
Sebastian Schiebahn,
Ekkehard Schwab,
Ferdi Schüth,
Detlef Stolten,
Gisa Teßmer,
Kurt Wagemann and
Karl-Friedrich Ziegahn
The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However it affects all areas of the energy system albeit with different results. Within the energy system various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers and the demand-oriented supply ensures that energy demands are met at all times. However renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly.<br/>Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy store it in a storage medium for a suitable period of time and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations.<br/>These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage various technologies are currently in various stages of research development and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat exploitation of phase transitions adsorption/desorption processes and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen.<br/>Hydrogen can be transformed by various processes into other energy carriers which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector it also creates new opportunities for increased flexibility novel synergies and additional optimization.<br/>Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications. The article describes various technologies for energy storage and their potential applications in the context of Germany’s Energiewende i.e. the transition towards a more sustainable energy system. Therefore the existing legal framework defines some of the discussions and findings within the article specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act which is under constant reformation. While the article is written from a German perspective the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology.
Recent Studies of Hydrogen Embrittlement in Structural Materials
Dec 2018
Publication
Mechanical properties of metals and their alloys are most often determined by interstitial atoms. Hydrogen as one common interstitial element is often found to degrade the fracture behavior and lead to premature or catastrophic failure in a wide range of materials known as hydrogen embrittlement. This topic has been studied for more than a century yet the basic mechanisms of such degradation remain in dispute for many metallic systems. This work attempts to link experimentally and theoretically between failure caused by the presence of hydrogen and second phases lattice distortion and deformation levels.
Parametric Studies on LaNi4.7Al0.3 Based Hydrogen Storage Reactor with Embedded Cooling Tubes
Mar 2019
Publication
This study reports the investigative conclusions of parametric studies conducted to understand the effect of operating parameters on absorption and desorption characteristics of LaNi4.7Al0.3 metal hydride system for thermal management applications. Reactor with improved design containing 55 embedded cooling tubes is fabricated and filled with 4 kg of metal hydride alloy. Using water as heat transfer fluid (HTF) effects of supply pressure HTF temperature and HTF flow rate on absorption and desorption characteristics of the reactor are analyzed. Increasing supply pressure leads to prominent improvement in absorption capacity while the increase in HTF temperature enhanced desorption performance. At 20 bar and 20 °C 46.2877 g of hydrogen (1.16 wt%) was absorbed resulting in total energy output of 707.3 kJ for 300 s. During desorption at 80 °C with water flow rate of 8 lpm heat input of 608.1 kJ for 300 s resulted in 28.5259 g of hydrogen desorption.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Ammonia for Power
Sep 2018
Publication
A potential enabler of a low carbon economy is the energy vector hydrogen. However issues associated with hydrogen storage and distribution are currently a barrier for its implementation. Hence other indirect storage media such as ammonia and methanol are currently being considered. Of these ammonia is a carbon free carrier which offers high energy density; higher than compressed air. Hence it is proposed that ammonia with its established transportation network and high flexibility could provide a practical next generation system for energy transportation storage and use for power generation. Therefore this review highlights previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale. The review covers technologies such as ammonia in cycles either for power or CO2 removal fuel cells reciprocating engines gas turbines and propulsion technologies with emphasis on the challenges of using the molecule and current understanding of the fundamental combustion patterns of ammonia blends.
Partitioning of Interstitial Segregants during Decohesion: A DFT Case Study of the Σ3 Symmetric Tilt Grain Boundary in Ferritic Steel
Sep 2019
Publication
The effect of hydrogen atoms at grain boundaries in metals is usually detrimental to the cohesion of the interface. This effect can be quantified in terms of the strengthening energy which is obtained following the thermodynamic model of Rice and Wang. A critical component of this model is the bonding or solution energy of the atoms to the free surfaces that are created during decohesion. At a grain boundary in a multicomponent system it is not immediately clear how the different species would partition and distribute on the cleaved free surfaces. In this work it is demonstrated that the choice of partitioning pattern has a significant effect on the predicted influence of H and C on grain boundary cohesion. To this end the Σ3(112)[11¯0] symmetric tilt grain boundary in bcc Fe with different contents of interstitial C and H was studied taking into account all possible distributions of the elements as well as surface diffusion effects. H as a single element has a negative influence on grain boundary cohesion independent of the details of the H distribution. C on the other hand can act both ways enhancing or reducing the cohesion of the interface. The effect of mixed H and C compositions depends on the partition pattern. However the general trend is that the number of detrimental cases increases with increasing H content. A decomposition of the strengthening energy into chemical and mechanical contributions shows that the elastic contribution dominates at high C contents while the chemical contribution sets the trend for high H contents.
Flexible Power and Hydrogen Production: Finding Synergy Between CCS and Variable Renewables
Dec 2019
Publication
The expansion of wind and solar power is creating a growing need for power system flexibility. Dispatchable power plants with CO2 capture and storage (CCS) offer flexibility with low CO2 emissions but these plants become uneconomical at the low running hours implied by renewables-based power systems. To address this challenge the novel gas switching reforming (GSR) plant was recently proposed. GSR can alternate between electricity and hydrogen production from natural gas offering flexibility to the power system without reducing the utilization rate of the capital stock embodied in CCS infrastructure. This study assesses the interplay between GSR and variable renewables using a power system model which optimizes investment and hourly dispatch of 13 different technologies. Results show that GSR brings substantial benefits relative to conventional CCS. At a CO2 price of V100/ton inclusion of GSR increases the optimal wind and solar share by 50% lowers total system costs by 8% and reduces system emissions from 45 to 4 kgCO2/MWh. In addition GSR produces clean hydrogen equivalent to about 90% of total electricity demand which can be used to decarbonize transport and industry. GSR could therefore become a key enabling technology for a decarbonization effort led by wind and solar power.
Hydrogen Embrittlement at Cleavage Planes and Grain Boundaries in Bcc Iron—Revisiting the First-Principles Cohesive Zone Model
Dec 2020
Publication
Hydrogen embrittlement which severely affects structural materials such as steel comprises several mechanisms at the atomic level. One of them is hydrogen enhanced decohesion (HEDE) the phenomenon of H accumulation between cleavage planes where it reduces the interplanar cohesion. Grain boundaries are expected to play a significant role for HEDE since they act as trapping sites for hydrogen. To elucidate this mechanism we present the results of first-principles studies of the H effect on the cohesive strength of α-Fe single crystal (001) and (111) cleavage planes as well as on the Σ5(310)[001] and Σ3(112)[11¯0] symmetrical tilt grain boundaries. The calculated results show that within the studied range of concentrations the single crystal cleavage planes are much more sensitive to a change in H concentration than the grain boundaries. Since there are two main types of procedures to perform ab initio tensile tests different in whether or not to allow the relaxation of atomic positions which can affect the quantitative and qualitative results these methods are revisited to determine their effect on the predicted cohesive strength of segregated interfaces
A Microstructure Informed and Mixed-mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement
Mar 2022
Publication
Hydrogen induced failure under uniaxial tension is simulated in a duplex stainless steel considering microstructural feature of the material. There are three key ingredients in the modelling approach: image processing and finite element representation of the experimentally observed microstructure stress driven hydrogen diffusion and diffusion coupled cohesive zone modelling of fracture considering mixed failure mode. The microstructure used as basis for the modelling work is obtained from specimens cut in the transverse and longitudinal directions. It is found that the microstructure significantly influences hydrogen diffusion and fracture. The austenite phase is polygonal and randomly distributed in the transverse direction where a larger effective hydrogen diffusion coefficient and a lower hydrogen fracture resistance is found compared to the specimen in the longitudinal direction where the austenite phase is slender and laminated. This indicates that the proper design and control of the austenite phase help improve hydrogen resistance of duplex stainless steel. The strength of the interface in the shear direction is found to dominate the fracture mode and initiation site which reveals the importance of considering mixed failure mode and calibrating the hydrogen induced strength reduction in shear.
Optimal Operation of a Microgrid with Hydrogen Storage Based on Deep Reinforcement Learning
Jan 2022
Publication
Microgrid with hydrogen storage is an effective way to integrate renewable energy and reduce carbon emissions. This paper proposes an optimal operation method for a microgrid with hydrogen storage. The electrolyzer efficiency characteristic model is established based on the linear interpolation method. The optimal operation model of microgrid is incorporated with the electrolyzer efficiency characteristic model. The sequential decision-making problem of the optimal operation of microgrid is solved by a deep deterministic policy gradient algorithm. Simulation results show that the proposed method can reduce about 5% of the operation cost of the microgrid compared with traditional algorithms and has a certain generalization capability.
Quantitative Risk Analysis Of Gaseous Hydrogen Storage Unit
Sep 2005
Publication
A quantitative risk analysis to a central pressurized storage tank for gaseous hydrogen has been performed to attend requirements of licensing procedures established by the State Environment Agency of São Paulo State Brazil. Gaseous hydrogen is used to feed the reactor to promote hydrogenation at the surfactant unit. HAZOP was the hazard identification technique selected. System components failures were defined by event and fault tree analysis. Quantitative risk analysis was complied to define the acceptability concepts on societal and individual risks required by the State Environmental Agency to approve the installation operation license. Acceptable levels to public society from the analysis were reached. Safety recommendations to the gaseous hydrogen central were proposed to assure minimization of risk to the near-by community operators environment and property.
Chemical Utilization of Hydrogen from Fluctuating Energy Sources- Catalytic Transfer Hydrogenation from Charged Liquid Organic Hydrogen Carrier Systems
Nov 2015
Publication
Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way for storing and distributing hydrogen from electrolysis using excess energies from solar or wind power plants. In this contribution an alternative high-value utilization of such hydrogen is proposed namely its use in steady-state chemical hydrogenation processes. We here demonstrate that the hydrogen-rich form of the LOHC system dibenzyltoluene/perhydro-dibenzyltoluene can be directly applied as sole source of hydrogen in the hydrogenation of toluene a model reaction for large-scale technical hydrogenations. Equilibrium experiments using perhydro-dibenzyltoluene and toluene in a ratio of 1:3 (thus in a stoichiometric ratio with respect to H2) yield conversions above 60% corresponding to an equilibrium constant significantly higher than 1 under the applied conditions (270 °C).
Hydrogen Energy
Feb 2007
Publication
The problem of anthropogenically driven climate change and its inextricable link to our global society’s present and future energy needs are arguably the greatest challenge facing our planet. Hydrogen is now widely regarded as one key element of a potential energy solution for the twenty-first century capable of assisting in issues of environmental emissions sustainability and energy security. Hydrogen has the potential to provide for energy in transportation distributed heat and power generation and energy storage systems with little or no impact on the environment both locally and globally. However any transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific technological and socio-economic barriers. This brief report aims to outline the basis of the growing worldwide interest in hydrogen energy and examines some of the important issues relating to the future development of hydrogen as an energy vector.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
Hydrogen Embrittlement: The Game Changing Factor in the Applicability of Nickel Alloys in Oilfield Technology
Jun 2017
Publication
Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE) as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ′ γ′′ and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ′ and γ′′ as well as the δ-phase rather than by the strength level only. In addition several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718 depending upon the characteristics of these phases when present in the microstructure.
Link to document download on Royal Society Website
Link to document download on Royal Society Website
The Effect of Graphite Size on Hydrogen Absorption and Tensile Properties of Ferritic Ductile Cast Iron
Jun 2019
Publication
Ductile cast iron (DCI) is one of prospective materials used for the hydrogen equipment because of low-cost good workability and formability. The wide range of mechanical properties of DCI is obtained by controlling microstructural factors such as graphite size volume fraction of graphite matrix structure and so on. Therefore it is important to find out an optimal microstructural condition that is less susceptible to hydrogen embrittlement. In this study the effects of graphite size on the hydrogen absorption capability and the hydrogen-induced ductility loss of ferritic DCI were investigated.<br/>Several kinds of ferritic DCIs with a different graphite diameter of about 10 µm - 30 µm were used for the tensile test and the hydrogen content measurement. Hydrogen charging was performed prior to the tensile test by exposing a specimen to high-pressure hydrogen gas. Then the tensile test was performed in air at room temperature. The hydrogen content of a specimen was measured by a thermal desorption analyzer.<br/>It was found that the amount of hydrogen stored in DCI was dependent on the graphite size. As the graphite diameter increased the hydrogen content sharply increased at a certain graphite diameter and then it became nearly constant irrespective of increase in graphite diameter. In other words there was the critical graphite diameter that significantly changed the hydrogen absorption capability. The ductility was decreased by hydrogen and the hydrogen-induced ductility loss was dependent on the hydrogen content. Therefore the hydrogen embrittlement of DCI became remarkable when the graphite size was larger than the critical value.
UV Assisted on Titanium Doped Electrode for Hydrogen Evolution from Artificial Wastewater
Jul 2018
Publication
Formaldehyde (H2CO) is the harmful chemical that used in variety of industries. However there are many difficulties to treat discharged H2CO in the wastewater. Hydrogen energy is arising as a one of the renewable energy that can replace fossil fuel. Many researches have been conducted on hydrogen production from electrolysis using expensive metal electrodes and catalysts such as platinum (Pt) and palladium (Pd). However they are expensive and have obstacles to directly use from the production. We used copper (Cu) as an electrode substrate because it has a good current density. To avoid corrosion issue of Cu substrate we used commercially available carbon (C) coated Cu substrate and synthesized titanium (Ti) on C/Cu substrate. We found that Ti was well synthesized and stayed on substrate after hydrogen evolution reaction (HER) in artificial wastewater. Moreover we quantified hydrogen production from the wastewater and compared it to pure water. Hydrogen production was enhanced in wastewater and H2CO was decomposed after reaction. We expected to use Ti-C/Cu electrode for hydrogen production of wastewater by electrolysis.
The Energy Approach to the Evaluation of Hydrogen Effect on the Damage Accumulation
Aug 2019
Publication
The energy approach for determining the durability of structural elements at high temperature creep and hydrogen activity was proposed. It has been shown that the approach significantly simplifies research compared with the known ones. Approbation of the approach was carried out on the example of determining the indicators of durability of the Bridgman sample under conditions of creep and different levels of hydrogenation of the metal. It was shown that with an increase of hydrogen concentration in the metal from 2 to 10 ppm the durability of the test sample decreased from 22 to 58%.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
Health & Safety Laboratory - Gas Detection for Hydrogen Enriched Gas Distribution Networks
Jul 2019
Publication
The UK has committed to significantly reduce greenhouse gas emissions by 2050 to help address climate change. Decarbonising heating is a key part of this and using hydrogen (H2) as a replacement to natural gas (NG) can help in achieving this. The objective of current research including HyDeploy is to demonstrate that NG containing levels of H2 beyond those currently allowed of 0.1 vol% (1000 ppm) [1] can be distributed and utilised safely and efficiently. Initial projects such as HyDeploy are studying the effects of introducing up to 20 vol% H2 in NG but later projects are considering using up to 100 vol% H2.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
A key element in the safe operation of a modern gas distribution system is gas detection. However the addition of hydrogen to NG will alter the characteristics of the gas and the impact on gas detection must be considered. It is important that sensors remain sufficiently sensitive to the presence of hydrogen natural gas carbon monoxide (CO) and oxygen (O2) deficiency and that they don’t lead to false positive or false negative readings. The aim of this document is to provide a summary of the requirements for gas detection of hydrogen enriched natural gas for the gas distribution industry and other potentially interested parties. As such it is based on gas detectors presently used by the industry with the only major differences being the effects of hydrogen on the sensitivity of flammable gas sensors and the cross sensitivity of carbon monoxide gas sensors to hydrogen.
There is further information of gas detector concepts and technologies in the appendices.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Materials Towards Carbon-free, Emission-free and Oil-free Mobility: Hydrogen Fuel-cell Vehicles—Now and in the Future
Jul 2010
Publication
In the past material innovation has changed society through new material-induced technologies adding a new value to society. In the present world engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy it is time to accelerate our efforts towards this change.
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
Non-stoichiometric Methanation as Strategy to Overcome the Limitations of Green Hydrogen Injection into the Natural Gas Grid
Jan 2022
Publication
The utilization of power to gas technologies to store renewable electricity surpluses in the form of hydrogen enables the integration of the gas and electricity sectors allowing the decarbonization of the natural gas network through green hydrogen injection. Nevertheless the injection of significant amounts of hydrogen may lead to high local concentrations that may degrade materials (e.g. hydrogen embrittlement of pipelines) and in general be not acceptable for the correct and safe operation of appliances. Most countries have specific regulations to limit hydrogen concentration in the gas network. The methanation of hydrogen represents a potential option to facilitate its injection into the grid. However stoichiometric methanation will lead to a significant presence of carbon dioxide limited in gas networks and requires an accurate design of several reactors in series to achieve relevant concentrations of methane. These requirements are smoothed when the methanation is undertaken under non-stoichiometric conditions (high H/C ratio). This study aims to assess to influence of nonstoichiometric methanation under different H/C ratios on the limitations presented by the pure hydrogen injection. The impact of this injection on the operation of the gas network at local level has been investigated and the fluid-dynamics and the quality of gas blends have been evaluated. Results show that non-stoichiometric methanation could be an alternative to increase the hydrogen injection in the gas network and facilitates the gas and electricity sector coupling.
Hydrogen Concentration Distribution in 2.25Cr-1Mo-0.25V Steel under the Electrochemical Hydrogen Charging and Its Influence on the Mechanical Properties
May 2020
Publication
The deterioration of the mechanical properties of metal induced by hydrogen absorption threatens the safety of the equipment serviced in hydrogen environments. In this study the hydrogen concentration distribution in 2.25Cr-1Mo-0.25V steel after hydrogen charging was analyzed following the hydrogen permeation and diffusion model. The diffusible hydrogen content in the 1-mm-thick specimen and its influence on the mechanical properties of the material were investigated by glycerol gas collecting test static hydrogen charging tensile test scanning electron microscopy (SEM) test and microhardness test. The results indicate that the content of diffusible hydrogen tends to be the saturation state when the hydrogen charging time reaches 48 h. The simulation results suggest that the hydrogen concentration distribution can be effectively simulated by ABAQUS and the method can be used to analyze the hydrogen concentration in the material with complex structures or containing multiple microstructures. The influence of hydrogen on the mechanical properties is that the elongation of this material is reduced and the diffusible hydrogen will cause a decrease in the fracture toughness of the material and thus hydrogen embrittlement (HE) will occur. Moreover the Young’s modulus E and microhardness are increased due to hydrogen absorption and the variation value is related to the hydrogen concentration introduced into the specimen.
Effect of Gasoline Pool Fire on Liquid Hydrogen Storage Tank in Hybrid Hydrogen-gasoline Fueling Station
Nov 2015
Publication
Multiple-energy-fuelling stations which can supply several types of energy such as gasoline CNG and hydrogen could guarantee the efficient use of space. To guide the safety management of hybrid hydrogen–gasoline fuelling stations which utilize liquid hydrogen as an energy carrier the scale of gasoline pool fires was estimated using the hazard assessment tool Toxic Release Analysis of Chemical Emissions (TRACE). Subsequently the temperature and the stress due to temperature distribution were estimated using ANSYS. Based on the results the safety of liquid hydrogen storage tanks was discussed. It was inferred that the emissivity of the outer material of the tank and the safety distance between liquid hydrogen storage tanks and gasoline dispensers should be less than 0.2 and more than 8.5 m respectively to protect the liquid hydrogen storage tank from the gasoline pool fire. To reduce the safety distance several measures are required e.g. additional thermal shields such as protective intumescent paint and water sprinkler systems and an increased slope to lead gasoline off to a safe domain away from the liquid hydrogen storage tank
Influence of Temperature on the Fatigue Strength of Compressed Hydrogen Tanks for Vehicles
Sep 2009
Publication
The influence of environmental temperatures on the fatigue strength of compressed-hydrogen tanks for vehicles was investigated. The fatigue strength of Type-3 tanks was found to decrease in a low temperature environment and increase in a high-temperature environment. The Type-3 tank has been subjected to autofrettage to improve fatigue strength. The investigation clarified that the effect of autofrettage changes according to the environmental temperature due to the difference between the coefficients of thermal expansion of carbon fiber reinforced plastic (CFRP) and aluminum alloy. This causes life strength to change with changes in temperature. These results indicate that the service life of the Type-3 tank is influenced by the environmental temperature. The Type-4 tank has a very long fatigue life and did not break after 45000 cycles in a room-temperature or low-temperature environment. In a high-temperature environment however the tank broke in fewer than 45000 cycles. The fatigue of CFRP was promoted in the high-temperature environment resulting in breakage of the tank.
Hydrogen Embrittlement: Future Directions—Discussion
Jun 2017
Publication
The final session of the meeting consisted of a discussion panel to propose future directions for research in the field of hydrogen embrittlement and the potential impact of this research on public policy.
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen Embrittlement: Future Directions’ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals Jan 16th–18th 2017. The text is approved by the contributors. H.L. transcribed the session and drafted the manuscript. Y.C. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Effect of Ternary Transition Metal Sulfide FeNi2S4 on Hydrogen Storage Performance of MgH2
Jan 2022
Publication
Hydrogen storage is a key link in hydrogen economy where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety. Thereinto magnesium-based materials (MgH2) are currently deemed as an attractive candidate due to the potentially high hydrogen storage density (7.6 wt%) however the stable thermodynamics and slow kinetics limit the practical application. In this study we design a ternary transition metal sulfide FeNi2S4 with a hollow balloon structure as a catalyst of MgH2 to address the above issues by constructing a MgH2/Mg2NiH4−MgS/Fe system. Notably the dehydrogenation/hydrogenation of MgH2 has been significantly improved due to the synergistic catalysis of active species of Mg2Ni/Mg2NiH4 MgS and Fe originated from the MgH2-FeNi2S4 composite. The hydrogen absorption capacity of the MgH2-FeNi2S4 composite reaches to 4.02 wt% at 373 K for 1 h a sharp contrast to the milled-MgH2 (0.67 wt%). In terms of dehydrogenation process the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH2 and the dehydrogenation activation energy decreases by 95.7 kJ mol–1 compared with the milled-MgH2 (161.2 kJ mol–1). This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH2 material.
Hydrogen Transport and Trapping: From Quantum Effects to Alloy Design
Jun 2017
Publication
This discussion session concerned experimental and theoretical investigations of the atomistic properties underlying the energetics and kinetics of hydrogen trapping and diffusion in metallic systems.
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
This article is a transcription of the recorded discussion of ‘Hydrogen transport and trapping: from quantum effects to alloy design.‘ at the Royal Society Scientific Discussion Meeting Challenges of Hydrogen and Metals 16–18 January 2017. The text is approved by the contributors. Y.-S.C. transcribed the session. H.L. assisted in the preparation of the manuscript.
Link to document download on Royal Society Website
Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide
Feb 2021
Publication
Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However the strength for practical use has been limited mostly to below 1400 MPa owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for strengthening. A preliminary experimental survey of the hydrogen absorption and hydrogen embrittlement of a tempered martensitic steel with ε-carbide precipitates suggested that the proper use of carbides in steels can promote a high resistance to hydrogen embrittlement. Based on the surveys martensitic steels that are highly resistant to hydrogen embrittlement and that have high strength and toughness are proposed. The heuristic design of the steels includes alloying elements necessary to stabilize the ε-carbide and procedures to introduce inoculants for the controlled nucleation of ε-carbide.
Carbon Capture and Storage in the USA: The Role of US Innovation Leadership in Climate-technology Commercialization
Nov 2019
Publication
To limit global warming and mitigate climate change the global economy needs to decarbonize and reduce emissions to net-zero by mid-century. The asymmetries of the global energy system necessitate the deployment of a suite of decarbonization technologies and an all-of-the-above approach to deliver the steep CO2 -emissions reductions necessary. Carbon capture and storage (CCS) technologies that capture CO2 from industrial and power-plant point sources as well as the ambient air and store them underground are largely seen as needed to address both the flow of emissions being released and the stock of CO2 already in the atmosphere. Despite the pressing need to commercialize the technologies their large-scale deployment has been slow. Initial deployment however could lead to near-term cost reduction and technology proliferation and lowering of the overall system cost of decarbonization. As of November 2019 more than half of global large-scale CCS facilities are in the USA thanks to a history of sustained government support for the technologies. Recently the USA has seen a raft of new developments on the policy and project side signalling a reinvigorated push to commercialize the technology. Analysing these recent developments using a policy-priorities framework for CCS commercialization developed by the Global CCS Institute the paper assesses the USA’s position to lead large-scale deployment of CCS technologies to commercialization. It concludes that the USA is in a prime position due to the political economic characteristics of its energy economy resource wealth and innovation-driven manufacturing sector.
No more items...