Skip to content
1900

Hydrogen Effects on Progressively Cold-Drawn Pearlitic Steels: Between Donatello and Michelangelo

Abstract

This paper reviews previous research by the author in the field of hydrogen effects on progressively cold-drawn pearlitic steels in terms of hydrogen degradation (HD), hydrogen embrittlement (HE) or, at the micro-level, hydrogen-assisted micro-damage (HAMD), thus affecting their microstructural integrity and compromising the (macro-)structural integrity of civil engineering structures such as prestressed concrete bridges. It is seen that hydrogen effects in pearlitic microstructure (either oriented or not) are produced at the finest micro-level by plastic tearing in the form, in general, of hydrogen damage topography (HDT) with different appearances depending of the cold drawing degree, evolving from the so-called tearing topography surface (TTS) in hot-rolled (not cold-drawn at all) or slightly cold-drawn pearlitic steels to a sort of enlarged and oriented TTS (EOTTS) in heavily drawn steels (the pronounced enlargement and marked orientation being along the wire axis or cold drawing direction). Whereas the pure TTS mode (null or low degree of cold drawing) resembles the Michelangello stone sculpture texture (MSST), the EOTTS mode does the same in relation to the Donatello wooden sculpture texture (DWST).

Funding source: Ministry for Science and Technology (MICYT; Grant MAT2002-01831), Ministry for Education and Science (MEC; Grant BIA2005-08965), Ministry for Science and Innovation (MICINN; Grant BIA2008-06810), Ministry for Economy and Competitiveness (MINECO; Grant BIA2011-27870) and Junta de Castilla y León (JCyL; Grants SA067A05, SA111A07 and SA039A08).
Countries: Spain
Loading

Article metrics loading...

/content/journal1939
2017-09-06
2024-11-25
/content/journal1939
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error