Transmission, Distribution & Storage
Carbon Capture and Storage in the USA: The Role of US Innovation Leadership in Climate-technology Commercialization
Nov 2019
Publication
To limit global warming and mitigate climate change the global economy needs to decarbonize and reduce emissions to net-zero by mid-century. The asymmetries of the global energy system necessitate the deployment of a suite of decarbonization technologies and an all-of-the-above approach to deliver the steep CO2 -emissions reductions necessary. Carbon capture and storage (CCS) technologies that capture CO2 from industrial and power-plant Read More
Study on Critical Technologies and Development Routes of Coal-based Hydrogen Energy
Jul 2019
Publication
Hydrogen is considered a secondary source of energy commonly referred to as an energy carrier. It has the highest energy content when compared to other common fuels by weight having great potential for further development. Hydrogen can be produced from various domestic resources but based on the fossil resource conditions in China coal-based hydrogen energy is considered to be the most valuable because it is not only an effective way to develop Read More
The Role of Hydrogen on the Behavior of Intergranular Cracks in Bicrystalline α-Fe Nanowires
Jan 2021
Publication
Hydrogen embrittlement (HE) has been extensively studied in bulk materials. However little is known about the role of H on the plastic deformation and fracture mechanisms of nanoscale materials such as nanowires. In this study molecular dynamics simulations are employed to study the influence of H segregation on the behavior of intergranular cracks in bicrystalline α-Fe nanowires. The results demonstrate that segregated H atoms have weak Read More
Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion
Apr 2021
Publication
Hydrogen was doped in austenitic stainless steel (ASS) 316L tensile samples produced by the laser-powder bed fusion (L-PBF) technique. For this aim an electrochemical method was conducted under a high current density of 100 mA/cm2 for three days to examine its sustainability under extreme hydrogen environments at ambient temperatures. The chemical composition of the starting powders contained a high amount of Ni approximately 12.9 wt. Read More
Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization
Apr 2022
Publication
Hydrogen and renewable electricity-based microgrid is considered to be a promising way to reduce carbon emissions promote the consumption of renewable energies and improve the sustainability of the energy system. In view of the fact that the existing day-ahead optimal operation model ignores the uncertainties and fluctuations of renewable energies and loads a two-stage energy management model is proposed for the sustainable wind-PV-h Read More
Heuristic Design of Advanced Martensitic Steels That Are Highly Resistant to Hydrogen Embrittlement by ε-Carbide
Feb 2021
Publication
Many advanced steels are based on tempered martensitic microstructures. Their mechanical strength is characterized by fine sub-grain structures with a high density of free dislocations and metallic carbides and/or nitrides. However the strength for practical use has been limited mostly to below 1400 MPa owing to delayed fractures that are caused by hydrogen. A literature survey suggests that ε-carbide in the tempered martensite is effective for str Read More
Hydrogen in Aluminium-Coated Steels Exposed to Synthetic Seawater
Jul 2020
Publication
Thermally sprayed aluminium (TSA) coatings provide protection to offshore steel structures without the use of external cathodic protection (CP) systems. These coatings provide sacrificial protection in the same way as a galvanic anode and thus hydrogen embrittlement (HE) becomes a major concern with the use of high strength steels. The effect of TSA on the HE of steel seems to remain largely unknown. Further the location of hydrogen in TSA-coated Read More
The Techno-economics Potential of Hydrogen Interconnectors for Electrical Energy Transmission and Storage
Dec 2021
Publication
This research introduces a ‘Hydrogen Interconnector System’ (HIS) as a novel method 7 for transporting electrical energy over long distances. The system takes electricity from 8 stranded renewable energy assets converts it to hydrogen in an electrolyser plant transports 9 hydrogen to the demand centre via pipeline where it is reconverted to electricity in either a 10 gas turbine or fuel cell plant. This paper evaluates the competitiveness of the technolo Read More
Quantitative Evaluations of Hydrogen Diffusivity in V-X (X = Cr, Al, Pd) Alloy Membranes Based on Hydrogen Chemical Potential
Jan 2021
Publication
Vanadium (V) has higher hydrogen permeability than Pd-based alloy membranes but exhibits poor resistance to hydrogen-induced embrittlement. The alloy elements are added to reduce hydrogen solubility and prevent hydrogen-induced embrittlement. To enhance hydrogen permeability the alloy elements which improve hydrogen diffusivity in V are more suitable. In the present study hydrogen diffusivity in V-Cr V-Al and V-Pd alloy membranes was investigat Read More
Effect of Hydrogen on the Deformation Behavior and Localization of Plastic Deformation of the Ultrafine-Grained Zr–1Nb Alloy
Oct 2020
Publication
In this paper comparison studies of the hydrogen effect on the structural and phase state deformation behavior and mechanical properties of the fine- (average grain size 4 µm) and ultrafine-grained (average element size 0.3 and 0.4 µm) Zr–1wt.%Nb (hereinafter Zr–1Nb) alloy under tension at temperatures in the range of 293–873 K were conducted. The formation of an ultrafine-grained structure is established to increase the strength characteristics Read More
Hydrogen Embrittlement of Medium Mn Steels
Feb 2021
Publication
Recent research efforts to develop advanced–/ultrahigh–strength medium-Mn steels have led to the development of a variety of alloying concepts thermo-mechanical processing routes and microstructural variants for these steel grades. However certain grades of advanced–/ultrahigh–strength steels (A/UHSS) are known to be highly susceptible to hydrogen embrittlement due to their high strength levels. Hydrogen embrittlement characteristics of mediu Read More
Addressing H-Material Interaction in Fast Diffusion Materials—A Feasibility Study on a Complex Phase Steel
Oct 2020
Publication
Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials only direct observation during in- Read More
Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments
Aug 2020
Publication
To avoid failures due to hydrogen embrittlement it is important to know the amount of hydrogen absorbed by certain steel grades under service conditions. When a critical hydrogen content is reached the material properties begin to deteriorate. The hydrogen uptake and embrittlement of three different carbon steels (API 5CT L80 Type 1 P110 and 42CrMo4) was investigated in autoclave tests with hydrogen gas (H2) at elevated pressure and in ambient pr Read More
Hydrogenation and Dehydrogenation of Liquid Organic Hydrogen Carriers: A New Opportunity for Carbon-Based Catalysts
Jan 2022
Publication
The development of a hydrogen-based economy is the perfect nexus between the need of discontinuing the use of fossil fuels (trying to mitigate climate change) the development of a system based on renewable energy (with the use of hydrogen allowing us to buffer the discontinuities produced in this generation) and the achievement of a local-based robust energy supply system. However extending the use of hydrogen as an energy vector mus Read More
Life Cycle Environmental Analysis of a Hydrogen-based Energy Storage System for Remote Applications
Mar 2022
Publication
Energy storage systems are required to address the fluctuating behaviour of variable renewable energy sources. The environmental sustainability of energy storage technologies should be carefully assessed together with their techno-economic feasibility. In this work an environmental analysis of a renewable hydrogen-based energy storage system has been performed making use of input parameters made available in the framework of the European R Read More
Hydrogen Storage: Thermodynamic Analysis of Alkyl-Quinolines and Alkyl-Pyridines as Potential Liquid Organic Hydrogen Carriers (LOHC)
Dec 2021
Publication
The liquid organic hydrogen carriers (LOHC) are aromatic molecules which can be considered as an attractive option for the storage and transport of hydrogen. A considerable amount of hydrogen up to 7–8% wt. can be loaded and unloaded with a reversible chemical reaction. Substituted quinolines and pyridines are available from petroleum coal processing and wood preservation or they can be synthesized from aniline. Quinolines and pyridines c Read More
Measurement of Fatigue Crack Growth Rates for Steels in Hydrogen Containment Components
Sep 2009
Publication
The objective of this work was to enable the safe design of hydrogen pressure vessels by measuring the fatigue crack growth rates of ASME code-qualified steels in high-pressure hydrogen gas. While a design framework has recently been established for high-pressure hydrogen vessels a material property database does not exist to support the design calculations. This study addresses such voids in the database by measuring the fatigue crack growth Read More
SGN Aberdeen Vision Project: Final Report
May 2020
Publication
The Aberdeen Vision Project could deliver CO2 savings of 1.5MtCO2/y compared with natural gas. A dedicated pipeline from St Fergus to Aberdeen would enable the phased transfer of the Aberdeen regional gas distribution system to 20% then 100% hydrogen.The study has demonstrated that 2% hydrogen can be injected into the National Transmission System (NTS) at St Fergus and its distribution through the system into the gas distribution network. Due Read More
The Effect of Electrolytic Hydrogenation on Mechanical Properties of T92 Steel Weldments under Different PWHT Conditions
Aug 2020
Publication
In the present work the effects of electrolytic hydrogen charging of T92 steel weldments on their room-temperature tensile properties were investigated. Two circumferential weldments between the T92 grade tubes were produced by gas tungsten arc welding using the matching Thermanit MTS 616 filler material. The produced weldments were individually subjected to considerably differing post-welding heat treatment (PWHT) procedures. The first-produced Read More
Health & Safety Laboratory - Gas Detection for Hydrogen Enriched Gas Distribution Networks
Jul 2019
Publication
The UK has committed to significantly reduce greenhouse gas emissions by 2050 to help address climate change. Decarbonising heating is a key part of this and using hydrogen (H2) as a replacement to natural gas (NG) can help in achieving this. The objective of current research including HyDeploy is to demonstrate that NG containing levels of H2 beyond those currently allowed of 0.1 vol% (1000 ppm) [1] can be distributed and utilised safely and Read More
No more items...