Safety
Simulation of DDT in Obstructed Channels: Wavy Channels vs. Fence-type Obstacles
Sep 2023
Publication
The capabilities of an OpenFOAM solver to reproduce the transition of stoichiometric H2-air mixtures to detonation in obstructed 2-D channels were tested. The process is challenging numerically as it involves the ignition of a flame kernel its subsequent propagation and acceleration interaction with obstacles formation of shock waves ahead and detonation onset (DO). Two different obstacle configurations were considered in 10-mm high × 1-m long channels: (i) wavy walls (WW) that mimic the behavior of fencetype obstacles but prevent abrupt area changes. In this case flame acceleration (FA) is strongly affected by shock-flame interactions and DO often results from the compression of the gas present between the accelerating flame front and a converging section of the channel. (ii) Fence-type (FT) obstacles. In this case FA is driven by the increase in flame surface area as a result of the interaction of the flame front with the unburned gas flow field ahead particularly downstream of obstacles; shock-flame interactions play a role at the later stages of FA and DO takes place upon reflection of precursor shocks from obstacles. The effect of initial pressure p0 = 25 50 and 100 kPa at constant blockage ratio (BR = 0.6) was investigated and compared for both configurations. Results show that for the same initial pressure (p0 = 50 kPa) the obstacle configurations could lead to different final propagation regimes: a quasi-detonation for WW and a choked-flame for FT due to the increased losses for the latter. At p0 = 25 kPa however while both configurations result in choked flames WW seem to exhibit larger velocity deficits than FT due to longer flame-precursor shock distances during quasi-steady propagation and to the increased presence of unburnt mixture downstream of the tip of the flame that homogeneously explodes providing additional support to the propagation of the flame.
Ignition and Flow Stopping Considerations for the Transmission of Hydrogen in the Existing Natural Gas Network
Sep 2023
Publication
This work formed part of the H21 programme whose objective is to reach the point whereby it is feasible to convert the existing natural gas (NG) distribution network to 100% hydrogen (H2) and provide a contribution to decarbonising the UK’s heat and power sectors with the focus on decarbonised fuel at point of use. Hydrogen has an ATEX Gas Group of IIC compared to IIA for natural gas which means further precautions are necessary to prevent the ignition of hydrogen during network operations. Both electrostatic and friction ignition risks were considered. Network operations considered include electrostatic precautions for polyethylene (PE) pipe and cutting and drilling of metallic pipes. As a result of the updated basis of safety from ignition considerations existing flow stopping methods were reviewed to see if they were compatible. Commonly used flow stopping methods were tested under laboratory conditions with hydrogen following the methodologies specified in the Gas Industry Standards (GIS). A new basis of safety for flow stopping has been proposed that looks at the flow past the secondary stop as double isolations are recommended for use with hydrogen.
Numerical Simulations of the Critical Diameter and Flame Stability for the Hydrogen Jet Flames
Sep 2023
Publication
This study focuses on development of a CFD model able to simulate the experimentally observed critical nozzle diameter for hydrogen non-premixed flames. The critical diameter represents the minimum nozzle size through which a free jet flame will remain stable at all driving pressures. Hydrogen non-premixed flames will not blow-out at diameters equal to or greater than the critical diameter. Accurate simulation of this parameter is important for assessment of thermally activated pressure relief device (TPRD) performance during hydrogen blowdown from a storage tank. At TPRD diameters below the critical value there is potential for a hydrogen jet flame to blow-out as the storage tank vents potentially leading to hydrogen accumulation in an indoor release scenario. Previous experimental studies have indicated that the critical diameter for hydrogen is approximately 1 mm. In this study flame stability is considered across a range of diameters and overpressures from 0.1 mm to 2 mm and from 0.2 MPa to 20 MPa respectively. The impact of turbulent Schmidt number Sct which is the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity on the hydrogen concentration profile in the region near the nozzle exit and subsequent influence on critical diameter was investigated and discussed. For lower Sct values the enhanced mass mixing resulted in smaller predicted critical diameters. The use of value Sct=0.61 in the model demonstrated the best agreement with experimental values of the critical diameter. The model reproduced the critical diameter of 1 mm and then was applied to predict flame stability for under-expanded hydrogen jets.
Sudden Releases of Hydrogen into a Tunnel
Sep 2023
Publication
This paper presents work undertaken by the HSE as part of the Hytunnel-CS project a consortium investigating safety considerations for fuel cell hydrogen (FCH) vehicles in tunnels and similar confined spaces. The sudden failure of a pressurised hydrogen vessel was identified as a scenario of concern due to the severity of the consequences associated with such an event. In order to investigate this scenario experimentally HSE designed a bespoke and reusable ‘sudden release’ vessel. This paper presents an overview of the vessel and the results of a series of 13 tests whereby hydrogen was released from the bespoke vessel into a tunnel at pressures up to 65 MPa. The starting pressure and the volume of hydrogen in the vessel were altered throughout the campaign. Four of the tests also included congestion in the tunnel. The tests reliably autoignited. Overpressure measurements and flame arrival times measured with exposed-tip thermocouples enabled analysis of the severity of the events. A high-pressure fast-acting pressure transducer in the body of the vessel showed the pressure decay in the vessel which shows that 90% of the hydrogen was evacuated in between 1.8 and 3.2 ms (depending on the hydrogen inventory). Schlieren flow imagery was also used at the release point of the hydrogen showing the progression of the shock front following initiation of the tests. An assessment of the footage shows an estimated initial velocity of Mach 3.9 at 0.4 m from the release point. Based on this an ignition mechanism is proposed based upon the temperature behind the initial shock front.
Hydrogen UK Supply Chain Strategic Assessment
Sep 2024
Publication
Hydrogen offers the UK a unique opportunity to deliver on our Net Zero ambitions enabling deep decarbonisation of the parts of the energy system that are challenging to electrify balancing the energy system by providing large scale long duration energy storage and reducing pressure on electricity infrastructure. The UK Government in recognition of the centrality of hydrogen to the future energy system has set a 10GW hydrogen production ambition to be achieved by 2030. This ambition and its supporting policies such as the Hydrogen Business Model the Low Carbon Hydrogen Standard and the Hydrogen Transport and Storage Business Models will unlock private sector investment and kick-start the UK’s hydrogen activity. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside a vibrant Research Development and Innovation (RD&I) and engineering environment has enabled rapid deployment of technologies such as offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Perspective on the Development and Integration of Hydrogen Sensors for Fuel Cell Control
Oct 2024
Publication
The measurement of hydrogen concentration in fuel cell systems is an important prerequisite for the development of a control strategy to enhance system performance reduce purge losses and minimize fuel cell aging effects. In this perspective paper the working principles of hydrogen sensors are analyzed and their requirements for hydrogen control in fuel cell systems are critically discussed. The wide measurement range absence of oxygen high humidity and limited space turn out to be most limiting. A perspective on the development of hydrogen sensors based on palladium as a gas-sensitive metal and based on the organic magnetic field effect in organic lightemitting devices is presented. The design of a test chamber where the sensor response can easily be analyzed under fuel cell-like conditions is proposed. This allows the generation of practical knowledge for further sensor development. The presented sensors could be integrated into the end plate to measure the hydrogen concentration at the anode in- and outlet. Further miniaturization is necessary to integrate them into the flow field of the fuel cell to avoid fuel starvation in each single cell. Compressed sensing methods are used for more efficient data analysis. By using a dynamical sensor model control algorithms are applied with high frequency to control the hydrogen concentration the purge process and the recirculation pump.
CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel
Sep 2023
Publication
In the present work we present the results of numerical simulations involving the dispersion and combustion of a hydrogen cloud released in an empty tunnel. The simulations were conducted with the use of ADREA-HF CFD code and the results are compared with measurements from experiments conducted by HSE in a tunnel with the exact same geometry. The length of the tunnel is equal to 70 m and the maximum height from the floor is equal to 3.25 m. Hydrogen release is considered to occur from a train containing pressurized hydrogen stored at 580 bars. The release diameter is equal to 4.7 mm and the release direction is upwards. Initially dispersion simulation was performed in order to define the initial conditions for the deflagration simulations. The effect of the initial wind speed and the effect of the ignition delay time were investigated. An extensive grid sensitivity study was conducted in order to achieve grid independent results. The CFD model takes into account the flame instabilities that are developed as the flame propagates inside the tunnel and turbulence that exists in front of the flame front. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Numerical Simulation and Field Experimental Study of Combustion Characteristics of Hydrogen-Enriched Natural Gas
Jun 2024
Publication
For the safe and efficient utilization of hydrogen-enriched natural gas combustion in industrial gas-fired boilers the present study adopted a combination of numerical simulation and field tests to investigate its adaptability. Firstly the combustion characteristics of hydrogen-enriched natural gas with different hydrogen blending ratios and equivalence ratios were evaluated by using the Chemkin Pro platform. Secondly a field experimental study was carried out based on the WNS2- 1.25-Q gas-fired boiler to investigate the boiler’s thermal efficiency heat loss and pollutant emissions after hydrogen addition. The results show that at the same equivalence ratio with the hydrogen blending ratio increasing from 0% to 25% the laminar flame propagation speed of the fuel increases the extinction strain rate rises and the combustion limit expands. The laminar flame propagation speed of premixed methane/air gas reaches the maximum value when the equivalence ratio is 1.0 and the combustion intensity of the flame is the highest at this time. In the field tests as the hydrogen blending ratio increases from 0% to nearly 10% with the increasing excess air ratio the boiler’s thermal efficiency decreases as well as the NOx emission. This indicates that there exists a tradeoff between the boiler thermal efficiency and NOx emission in practice.
Numerical Modelling of Hydrogen Release and Dispersion
Jul 2021
Publication
Hydrogen is the most abundant element on earth being a low polluting and high efficiency fuel that can be used for various applications such as power generation heating or transportation. As a reaction to climate change authorities are working for determining the most promising applications for hydrogen one of the best examples of crossborder initiative being the IPCEI (Important Project of Common European Interest) on Hydrogen under development at EU level. Given the large interest for future uses of hydrogen special safety measures have to be implemented for avoiding potential accidents. If hydrogen is stored and used under pressure accidental leaks from pressure vessels may result in fires or explosions. Worldwide researchers are investigating possible accidents generated by hydrogen leaks. Special attention is granted to the atmospheric dispersion after the release so that to avoid fires or explosions. The use of consequence modelling software within safety and risk studies has shown its’ utility worldwide. In this paper there are modelled the consequences of the accidental release and atmospheric dispersion of hydrogen from a pressure tank using state-of-the-art QRA software. The simulation methodology used in this paper uses the “leak” model for carrying out discharge calculations. This model calculates the release rate and state of the gas after its expansion to atmospheric pressure. Accidental release of hydrogen is modelled by taking into account the process and meteorological conditions and the properties of the release point. Simulation results can be used further for land use planning or may be used for establishing proper protection measures for surrounding facilities. In this work we analysed two possible accident scenarios which may occur at an imaginary hydrogen refuelling station accidents caused by the leaks of the pressure vessel with diameters of 10 and 20 mm for a pressure tank filled with hydrogen at 35 MPa / 70 MPa. Process Hazard Analysis Software Tool 8.4 has been used for assessing the effects of the scenarios and for evaluating the hazardous extent around the analysed installation. Accident simulation results have shown that the leak size has an important effect on the flammable/explosive ranges. Also the jet fire’s influence distance is strongly influenced by the pressure and actual size of the accidental release.
Hydrogen Risk Assessment Studies: A Review Toward Environmental Sustainability
Jan 2025
Publication
The transition to hydrogen as a clean energy source is critical for addressing climate change and supporting environmental sustainability. This review provides an accessible summary of general research trends in hydrogen risk assessment methodologies enabling diverse stakeholders including researchers policymakers and industry professionals to gain insights into this field. By examining representative studies across theoretical experimental and simulation-based approaches the review highlights prominent trends and applications within academia and industry. The key focus is on evaluating risks in stationary and transportation applications paying particular attention to hydrogen storage systems transportation infrastructures and energy systems. By offering a concise yet informative summary of hydrogen risk assessment trends this paper aims to serve as a foundational resource for fostering safer and more sustainable hydrogen systems.
A Multi-Zone Model for Hydrogen Accumulation and Ventilation in Enclosures
Sep 2023
Publication
Due to the small characteristic molecular size of hydrogen small leaks are more common in hydrogen systems compared to similar systems with hydrocarbons. This together with the high reactivity makes an efficient ventilation system very important in hydrogen applications. There are several models available for ventilation sizing that are based on either a well-mixed assumption or a fully stratified situation. However experiments show that many realistic releases will be neither and therefore additional models are needed. One possibility is to use CFD-models but the small release sizes for pinhole releases (<<1 mm) make it difficult to find an appropriate mesh without excessive computational time (especially since the simulations need to be iterated to find the optimum ventilation size). An alternative approach which is described and benchmarked in the current paper is to use a multi-zone model where the domain is divided into several large cells where the mass exchange is simplified compared to CFD and thus simulation time is reduced. The flow in the model is governed by mass conservation and density differences due to concentration gradients using the Bernoulli equation. The release of gas generates a plume which is modelled based on an empirical plume model which gives the entrainment and hydrogen source term for each cell. The model has a short run time and will therefore allow optimization in a short time frame. The model is benchmarked against five experiments with helium at the Canadian Nuclear Laboratories (CNL) in Canada and one hydrogen experiment performed at Lodz University of Technology in Poland. The result shows that the model can reasonably well reproduce accumulation in the experiments with small release without ventilation but appears to slightly underestimate the level of stratification and the interface height for ventilated cases where the source is elevated from the floor level.
Experimental Study on Dynamic Response Performance of Hydrogen Sensor in Confined Space under Ceiling
Oct 2024
Publication
With the advancement of Fuel Cell Vehicles (FCVs) detecting hydrogen leaks is critically important in facilities such as hydrogen refilling stations. Despite its significance the dynamic response performance of hydrogen sensors in confined spaces particularly under ceilings has not been comprehensively assessed. This study utilizes a catalytic combustion hydrogen sensor to monitor hydrogen leaks in a confined area. It examines the effects of leak size and placement height on the distribution of hydrogen concentrations beneath the ceiling. Results indicate that hydrogen concentration rapidly decreases within a 0.5–1.0 m range below the ceiling and declines more gradually from 1.0 to 2.0 m. The study further explores the attenuation pattern of hydrogen concentration radially from the hydrogen jet under the ceiling. By normalizing the radius and concentration it was determined that the distribution conforms to a Gaussian model akin to that observed in open space jet flows. Utilizing this Gaussian assumption the model is refined by incorporating an impact reflux term thereby enhancing the accuracy of the predictive formula.
A Thermodynamically Consistent Methodology to Develop Predictive Simplified Kinetics for Detonation Simulations
Sep 2023
Publication
The number of species and elementary reactions needed for describing the oxidation of fuels increases with the size of the molecule and in turn the complexity of detailed mechanisms. Although the kinetics for conventional fuels (H2 CH4 C3H8...) are somewhat well-established chemical integration in detonation applications remains a major challenge. Significant efforts have been made to develop reduction techniques that aim to keep the predictive capabilities of detailed mechanisms intact while minimizing the number of species and reactions required. However as their starting point of development is based on homogeneous reactors or ZND profiles reduced mechanisms comprising a few species and reactions are not predictive. The methodology presented here relies on defining virtual chemical species such that the thermodynamic equilibrium of the ZND structure is properly recovered thereby circumventing the need to account for minor intermediate species. A classical asymptotic expression relating the ignition delay time with the reaction rate constant is then used to fit the Arrhenius coefficients targeting computations carried out with detailed kinetics. The methodology was extended to develop a three-step mechanism in which the Arrhenius coefficients were optimized to accurately reproduce the one-dimensional laminar ZND structure and the D−κ curves for slightly-curved quasi-steady detonation waves. Two-dimensional simulations performed with the three-step mechanism successfully reproduce the spectrum of length scales present in soot foils computed with detailed kinetics (i.e. cell regularity and size). Results attest for the robustness of the proposed methodology/approximation and its flexibility to be adapted to different configurations.
Experimental Study on the Ignition of Hydrogen Containing Atmospheres by Mechanical Impacts
Sep 2023
Publication
In international regulations on explosion protection mechanical friction impact or abrasion is usually named as one of 13 ignition sources that must be avoided in hazardous zones with explosive atmospheres. In different studies it is even identified as one of the most frequent ignition sources in practice. The effectiveness of mechanical impacts as ignition source is dependent from several parameters including the minimum ignition energy of the explosive atmosphere the properties of the material pairing the kinetic impact energy or the impact velocity. By now there is no standard procedure to determine the effectiveness of mechanical impacts as ignition source. In some previous works test procedures with poor reproducibility or undefined kinetic impact energy were applied for this purpose. In other works only homogeneous material pairings were considered. In this work the effectiveness of mechanical impacts with defined and reproducible kinetic impact energy as ignition source for hydrogen containing atmospheres was studied systematically in dependence from the inhomogeneous material pairing considering materials with practical relevance like stainless steel low alloy steel concrete and non-iron-metals. It was found that ignition can be avoided if non-iron metals are used in combination with different metallic materials but in combination with concrete even the impact of non-iron-metals can be an effective ignition source if the kinetic impact energy is not further limited. Moreover the consequence of hydrogen admixture to natural gas on the effectiveness of mechanical impacts as ignition source was studied. In many cases ignition of atmospheres containing natural gas by mechanical impacts is rather unlikely. No influence could be observed for admixtures up to 25% hydrogen and even more. The results are mainly relevant in the context of repurposing the natural gas grid or adding hydrogen to the natural gas grid. Based on the test results it can be evaluated under which circumstances the use of tools made of non-iron-metals or other non-sparking materials can be an effective measure to avoid ignition sources in hazardous zones containing hydrogen for example during maintenance work.
Designing an Inherently Safe H2 Infrastructure: Combining Analytical, Experimental, and Numerical Investigations to Optimize H2 Refuelling Stations Safety by Passive Mitigation
Sep 2023
Publication
Natural ventilation is a well-known passive mitigation method to limit hydrogen build-up in confined spaces in case of accidental release [1-3]. In most cases a basic design of H2 infrastructure is adopted and vents installed for natural ventilation are adjusted according to safety targets and constraints of the considered structure. With the growing H2 mobility market the demand for H2 refueling infrastructure in our urban environment is on the rise. In order to meet both safety requirements and societal acceptance the design of such infrastructure is becoming more important. In this study a novel design concept is proposed for the hydrogen refueling station (HRS) by modifying physical structure while keeping safety consideration as the top priority of the concept. In this collaborative project between Air Liquide and the University of Delaware an extensive evaluation was performed on new structures of the processing container and dispenser of HRS by integrating safety protocols via passive means. Through a SWOT analysis combined with the most relevant approaches including analytical engineering models numerical simulations [4] and dedicated experimental trials an optimized design was obtained and its safety enhancement was fully evaluated. A small-scale processing container and an almost full-scale dispenser were built and tested to validate the design concepts by simulating accidental H2 release scenarios and assessing the associated consequences in terms of accumulation and potential flammable volumes formation. A conical dispenser and a V-shaped roof-top processing container which were easy to build and implement were designed and tested for this proof-of-concept study. This unique methodology from conception fundamental analysis investigation and validation through experimental design execution and evaluation is fully described in this study.
Comparative Study of LNG, Liquid Hydrogen ,and Liquid Ammonia Post-release Evaporation and Dispersion During Bunkering
Apr 2024
Publication
The use of alternative fuels is a primary means for decarbonising the maritime industry. Liquefied natural gas (LNG) liquid hydrogen (LH2) and liquid ammonia (LNH3) are liquified gases among the alternative fuels. The safety risks associated with these fuels differ from traditional fuels. In addition to their low-temperature hazards the flammability of LNG and LH2 and the high toxicity of LNH3 present challenges in fuel handlings due to their high likelihood of fuel release during bunkering. This study aims at drawing extensive comparisons of the evaporation and vapour dispersion behaviours for the three fuels after release accidents during bunkering and discuss their safety issues. The study involved the release event of the three fuels on the main deck area of a reference bulk carrier with a deadweight of 208000 tonnes. Two release scenarios were considered: Scenario 1 involved a release of 0.3 m3 of fuel and Scenario 2 involved a release of 100 kg of fuel. An empirical equation was used to calculate the fuel evaporation process and the Computational Fluid Dynamic (CFD) code FDS was employed to simulate the dispersion of vapour clouds. The obtained results reveal that LH2 has the highest evaporation rate followed by LNG and LNH3. The vapour clouds of LNG and LNH3 spread along the main deck surface while the LH2 vapour cloud exhibits upward dispersion. The flammable vapour clouds of LNG and LH2 remain within the main deck area whereas the toxic gas cloud of LNH3 disperses towards the shore and spreads near the ground on the shore side. Based on the dispersion behaviours the hazards of LNG and LH2 are com parable while LNH3 poses significantly higher hazards. In terms of hazard mitigations effective water curtain systems can suppress the vapour dispersion.
Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives
Jul 2024
Publication
Hydrogen (H2 ) is considered a suitable substitute for conventional energy sources because it is abundant and environmentally friendly. However the widespread adoption of H2 as an energy source poses several challenges in H2 production storage safety and transportation. Recent efforts to address these challenges have focused on improving the efficiency and cost-effectiveness of H2 production methods developing advanced storage technologies to ensure safe handling and transportation of H2 and implementing comprehensive safety protocols. Furthermore efforts are being made to integrate H2 into the existing energy infrastructure and explore new opportunities for its application in various sectors such as transportation industry and residential applications. Overall recent developments in H2 production storage safety and transportation have opened new avenues for the widespread adoption of H2 as a clean and sustainable energy source. This review highlights potential solutions to overcome the challenges associated with H2 production storage safety and transportation. Additionally it discusses opportunities to achieve a carbon-neutral society and reduce the dependence on fossil fuels.
Field Test Series for Development of Mitigation Barriers and its Designs Against Hydrogen Explosion
Sep 2023
Publication
A field test series where a composite pressure vessel for hydrogen is exploded by fire 1) to provide the facts and the data for the safety distance based on overpressure; 2) to validate the current status of mitigation barrier per KGS FP216 and further designs for developments of the codes and standards relating to hydrogen refueling stations. A pair of barriers to be tested are installed approximately 4 m apart standing face to face. The explosion source is a type-4 composite vessel of 175 L filled with compressed hydrogen up to 70 MPa. The vessel is in the middle of the barriers and the body part is heated with an LPG burner until it blows out. The incident overpressures from the blast are measured with 40 high-speed pressure sensors which are respectively installed 2 to 32 m away from the explosion. In the tests with the barrier constructed per the current status of KGS FP216 the explosion of the vessel resulted in partial destruction of the reinforced concrete barrier and made the steel plate barrier dissociated from the foundation then flew away approximately 25 m. The peak overpressure was 14.65 kPa at 32 m. The test data will be further analyzed to select the barriers for the subsequent tests and to develop the codes and standards for hydrogen refueling stations.
Computational Fluid Dynamic (CFD) Analysis of a Cold-adsorbed Hydrogen Tank During Refilling
Sep 2023
Publication
Hydrogen has the potential to be an important source of clean energy but the development of efficient and cost-effective methods for storing hydrogen is a key challenge that needs to be addressed in order to make widespread use of hydrogen as a possible energy sourc. There are different methods for storing hydrogen (i.e. compressed it at high pressures liquefied by cooling the hydrogen to a temperature of -253°C and stored with a chemical compound) each with its own advantages and disadvantages.<br/>MAST3RBoost (Maturing the Production Standards of Ultraporous Structures for High Density Hydrogen Storage Bank Operating on Swinging Temperatures and Low Compression) is a European project which aims to provide a solid benchmark of cold-adsorbed H2 storage (CAH2) at low compression (100 bar or below) by maturation of a new generation of ultraporous materials for mobility applications i.e. H2-powered vehicles including road and railway air-borne and waterborne transportation. Based on a new generation of Machine Learning-improved ultraporous materials – such as Activated Carbons (ACs) and high-density MOFs (Metal-organic Frameworks) – MAST3RBoost project will enable a disruptive path to meet the industry goals by developing the first worldwide adsorption-based demonstrator at the kg-scale.<br/>The design of the tank is supported by numerical investigation by mean of the use of Computational Fluid Dynamic (CFD) commercial code. In this a paper a preliminary analysis of the refilling of tank is presented focused on the effect of different tank configurations on the hydrogen temperature and on the hydrogen adsorption.
No more items...