Safety
Validation of CFD Calculations Against Ignited Impinging Jet Experiments
Sep 2007
Publication
Computational Fluid Dynamics (CFD) tools have been increasingly employed for carrying out quantitative risk assessment (QRA) calculations in the process industry. However these tools must be validated against representative experimental data in order to have a real predictive capability. As any typical accident scenario is quite complex it is important that the CFD tool is able to predict combined release and ignition scenarios reasonably well. However this Read More
The International Energy Agency Hydrogen Implementing Agreement Task on Hydrogen Safety
Sep 2009
Publication
The International Energy Agency’s Hydrogen Implementing Agreement (www.ieahia.org) initiated a collaborative task on hydrogen safety in 1994 and this has proved to an effective method of pooling expert knowledge to address the most significant problems associated with the barriers to the commercial adoption of hydrogen energy. Presently there are approximately 10 countries participating in the task and it has proven a valuable method of efficiently co Read More
Optimization of a Solar Hydrogen Storage System: Safety Considerations
Sep 2007
Publication
Hydrogen has been extensively used in many industrial applications for more than 100 years including production storage transport delivery and final use. Nevertheless the goal of the hydrogen energy system implies the use of hydrogen as an energy carrier in a more wide scale and for a public not familiarised with hydrogen technologies and properties.The road to the hydrogen economy passes by the development of safe practices in the production stor Read More
Risk Informed Separation Distances For Hydrogen Refuelling Stations
Sep 2011
Publication
The lay-out requirements developed for hydrogen systems operated in industrial environment are not suitable for the operating conditions specific to hydrogen refuelling stations (service pressure of up to 95 MPa facility for public use). A risk informed rationale has been developed to define and substantiate separation distance requirements in ISO 20100 Gaseous hydrogen – refuelling stations [1]. In this approach priority is given to preventing escalatio Read More
Structural Response for Vented Hydrogen Deflagrations: Coupling CFD and FE Tools
Sep 2017
Publication
This paper describes a methodology for simulating the structural response of vented enclosures during hydrogen deflagrations. The paper also summarises experimental results for the structural response of 20-foot ISO (International Organization for Standardization) containers in a series of vented hydrogen deflagration experiments. The study is part of the project Improving hydrogen safety for energy applications through pre-normative research on v Read More
Application of the Validated 3D Multiphase-multicomponent CFD Model to an Accidental Liquid Hydrogen Release Scenario in a Liquefication Plant
Sep 2017
Publication
Hydrogen-air mixtures are flammable in a wide range of compositions and have a low ignition energy compared to gaseous hydrocarbons. Due to its low density high buoyancy and diffusivity the mixing is strongly enhanced which supports distribution into large volumes if accidentally released. Economically valuable discontinuous transportation over large distances is only expected using liquid hydrogen (LH2). Releases of LH2 at its low temperature (2 Read More
Indoor Use of Hydrogen, Knowledge Gaps and Priorities for the Improvement of Current Standards on Hydrogen, a Presentation of HyIndoor European Project
Sep 2013
Publication
To develop safety strategies for the use of hydrogen indoors the HyIndoor project is studying the behaviour of a hydrogen release deflagration or non-premixed flame in an enclosed space such as a fuel cell or its cabinet a room or a warehouse. The paper proposes a safety approach based on safety objectives that can be used to take various scenarios of hydrogen leaks into account for the safe design of Hydrogen and Fuel Cell (HFC) early mar Read More
Hydrogen Storage - Recent Improvements and Industrial Prospectives
Sep 2013
Publication
This paper gives a historical and technical overview of hydrogen storage vessels and details the specific issues and constraints of hydrogen energy uses. Hydrogen as an industrial gas is stored either as a compressed or as a refrigerated liquefied gas. Since the beginning of the last century hydrogen is stored in seamless steel cylinders. At the end of the 60s tubes also made of seamless steels were used; specific attention was paid to hydrogen embrittlem Read More
Safety and Risk Management in Nuclear-Based Hydrogen Production with Thermal Water Splitting
Sep 2013
Publication
The challenges and approaches of the safety and risk management for the hydrogen production with nuclear-based thermochemical water splitting have been far from sufficiently reported as the thermochemical technology is still at a fledgling stage and the linkage of a nuclear reactor with a hydrogen production plant is unprecedented. This paper focuses on the safety issues arising from the interactions between the nuclear heat source and ther Read More
Hydrogen Storage: Recent Improvements and Industrial Perspectives
Sep 2017
Publication
Efficient storage of hydrogen is crucial for the success of hydrogen energy markets (early markets as well as transportation market). Hydrogen can be stored either as a compressed gas a refrigerated liquefied gas a cryo-compressed gas or in hydrides. This paper gives an overview of hydrogen storage technologies and details the specific issues and constraints related to the materials behaviour in hydrogen and conditions representative of hydro Read More
Hydrogen Deflagrations in Stratified Flat Layers in the Large-scale Vented Combustion Test Facility
Sep 2019
Publication
This paper examines the flame dynamics of vented deflagration in stratified hydrogen layers. It also compares the measured combustion pressure transients with 3D GOTHIC simulations to assess GOTHIC’s capability in simulating the associated phenomena. The experiments were performed in the Large-Scale Vented Combustion Test Facility at the Canadian Nuclear Laboratories. The stratified layer was formed by injecting hydrogen at a high elevation at Read More
Updated Jet Flame Radiation Modelling with Corrections for Buoyancy and Wind
Sep 2013
Publication
Radiative heat fluxes from small to medium-scale hydrogen jet flames (<10 m) compare favorably to theoretical predictions provided the product species thermal emittance and optical flame thickness are corrected for. However recent heat flux measurements from two large-scale horizontally orientated hydrogen flames (17.4 and 45.9 m respectively) revealed that current methods underpredicted the flame radiant fraction by 40% or more. Newly Read More
The Effect of Iron on the Solubility Behavior of Hydrogen in Tantalum
Sep 2013
Publication
The separation storage and recovery of hydrogen are key requirements for the efficient development of advanced hydrogen fuel technologies. The ideal hydrogen separation membrane should have high hydrogen permeability and good mechanical properties at a range of temperatures and pressures. Tantalum is a potential candidate with highest permeability to hydrogen among pure materials for hydrogen separation membrane. Isothermal as Read More
Numerical Investigation of Detonation in Stratified Combustible Mixture and Oxidizer with Concentration Gradients
Sep 2019
Publication
Hydrogen leakage in a closed space is one of the causes of serious accidents because of its high detonability. Assuming the situation that hydrogen is accumulated in a closed space two-dimensional numerical simulation for hydrogen oxygen detonation which propagates in stratified fuel and oxidizer with concentration gradient is conducted by using detailed chemical reaction model. The concentration gradient between fuel and oxidizer is expresse Read More
Simulation of Thermal Radiation from Hydrogen Under-expanded Jet Fire
Sep 2017
Publication
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable Read More
Effects of the Injector Direction on the Temperature Distribution During Filling of Hydrogen Tanks
Sep 2017
Publication
The development of the temperature field in hydrogen tanks during the filling process has been investigated with Computational Fluid Dynamics (CFD). Measurements from experiments undertaken at the JRC GasTef facility have been used to develop and validate the CFD modelling strategy; by means of the CFD calculations the effect of the injector direction on the temperature distribution has been analysed. It has been found that the dynamics of the Read More
Analysis of Transient Hydrogen Release, Dispersion and Explosion in a Tunnel with Fuel Cell Vehicles using All-Speed CFD Code
Sep 2019
Publication
Hydrogen energy is expanding world wide in recent years while hydrogen safety issues have drawn considerable attention. It is widely accepted that accidental hydrogen release in an open air environment will disperse quickly hence not causing significant hydrogen hazards. A hydrogen hazard is more likely to occur when hydrogen is accidentally released in a confined place i.e. parking garages and tunnels. Prediction the consequences of hydrog Read More
Predicting Radiative Characteristics of Hydrogen and Hythane Jet Fires Using Firefoam
Sep 2013
Publication
A possible consequence of pressurized hydrogen release is an under-expanded jet fire. Knowledge of the flame length radiative heat flux and fraction as well as the effects of variations in ground reflectance is important for safety assessment. The present study applies an open source CFD code FireFOAM to study the radiation characteristics of hydrogen and hydrogen/methane jet fires. For combustion the eddy dissipation concept for multi-component fuels Read More
Gas Detection of Hydrogen/Natural Gas Blends in the Gas Industry
Sep 2019
Publication
A key element in the safe operation of a modern gas distribution system is gas detection. The addition of hydrogen to natural gas will alter the characteristics of the fuel and therefore its impact on gas detection must be considered. It is important that gas detectors remain sufficiently sensitive to the presence of hydrogen and natural gas mixtures and that they do not lead to false readings. This paper presents analyses of work performed as part of the Offi Read More
Simulating Vented Hydrogen Deflagrations: Improved Modelling in the CFD Tool Flacs-Hydrogen
Sep 2019
Publication
This paper describes validation of the computational fluid dynamics tool FLACS-Hydrogen. The validation study focuses on concentration and pressure data from vented deflagration experiments performed in 20-foot shipping containers as part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA) funded by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU). The paper Read More
The Slow Burst Test as a Method for Probabilistic Quantification of Cylinder Degradation
Sep 2013
Publication
"The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of Read More
Materials Aspects Associated with the Addition of up to 20 mol% Hydrogen into an Existing Natural Gas Distribution Network
Sep 2019
Publication
The introduction of hydrogen into the UK natural gas main has been reviewed in terms of how materials within the gas distribution network may be affected by contact with up to 80% Natural Gas : 20 mol% hydrogen blend at up to 2 barg. A range of metallic polymeric and elastomeric materials in the gas distribution network (GDN) were assessed via a combination of literature review and targeted practical test programmes.The work considered:The Read More
Hydrogen Dispersion in a Closed Environment
Sep 2017
Publication
The highly combustible nature of hydrogen poses a great hazard creating a number of problems with its safety and handling. As a part of safety studies related to the use of hydrogen in a confined environment it is extremely important to have a good knowledge of the dispersion mechanism.The present work investigates the concentration field and flammability envelope from a small scale leak. The hydrogen is released into a 0.47 m × 0.33 m x 0.20 m Read More
Tests of the Vehicle’s Powertrain with Hydrogen Fuel Cells at a Low Temperature
Sep 2019
Publication
The article discusses issues related to the operation of fuel cells stack fed with hydrogen at low temperature. The test object was a Toyota Mirai passenger car equipped with this type of powertrain. Tests were carried out in a thermoclimatic chamber at the Cracow University of Technology. They had an initial character and their aim was to evaluate the work of individual subassemblies of the propulsion system including the hydrogen supply system in ter Read More
Determination of Distribution Function Used in Monte Carlo Simulation on Safety Analysis of Hydrogen Vessels
Sep 2019
Publication
The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution functio Read More
Hydrogen Compatibility of Austenitic Stainless Steel Tubing and Orbital Tube Welds
Sep 2013
Publication
Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore it is important to understand the eff Read More
The Dependence of Fatigue Crack Growth on Hydrogen in Warm-rolled 316 Austenitic Stainless Steel
Sep 2019
Publication
The fatigue crack growth rate of warm-rolled AISI 316 austenitic stainless steel was investigated by controlling rolling strain and temperature in argon and hydrogen gas atmospheres. The fatigue crack growth rates of warm-rolled 316 specimens tested in hydrogen decreased with increasing rolling temperature especially 400 °C. By controlling the deformation temperature and strain the influences of microstructure (including dislocation structure deforma Read More
Regulations, Codes, and Standards (RCS) For Large Scale Hydrogen Systems
Sep 2017
Publication
Hydrogen has potential applications that require larger-scale storage use and handling systems than currently are employed in emerging-market fuel cell applications. These potential applications include hydrogen generation and storage systems that would support electrical grid systems. There has been extensive work evaluating regulations codes and standards (RCS) for the emerging fuel cell market such as the infrastructure required to support f Read More
Modelling and Simulation of Lean Hydrogen-air Deflagrations
Sep 2013
Publication
The paper describes CFD modelling of lean hydrogen mixture deflagrations. Large eddy simulation (LES) premixed combustion model developed at the University of Ulster to account phenomena related to large-scale deflagrations was adjusted specifically for lean hydrogen-air flames. Experiments by Kumar (2006) on lean hydrogen-air mixture deflagrations in a 120 m3 vessel at initially quiescent conditions were simulated. 10% by volume hydrogen-ai Read More
Homogeneous and Inhomogeneous Hydrogen Deflagrations in 25 m3 Enclosure
Sep 2019
Publication
Explosion venting is a frequently used measure to mitigate the consequence of gas deflagrations in closed environments. Despite the effort to predict the vent area needed to achieved the protection through engineering formulas and CFD tools work has still to be done to reliably predict the outcome of a vented gas explosion. Most of available data derived from experimental campaigns performed in the past involved homogeneous conditions while especi Read More
Experimental and Numerical Study on Spontaneous Ignition of Hydrogen-methane Jets in Air
Sep 2013
Publication
This paper is an investigation of the spontaneous ignition process of high-pressure hydrogen and hydrogen-methane mixtures injected into air. The experiments were conducted in a closed channel filled with air where the hydrogen or hydrogen–methane mixture depressurised through different tubes (diameters d = 6 10 and 14 mm and lengths L = 10 25 40 50 75 and 100 mm). The methane addition to the mixture was 5% and 10% vol. The res Read More
Comparisons of Helium and Hydrogen Releases in 1 M3 and 2 M3 Two Vents Enclosures: Concentration Measurements at Different Flow Rates and for Two Diameters of Injection Nozzle
Oct 2015
Publication
This work presents a parametric study on the similitude between hydrogen and helium distribution when released in the air by a source located inside of a naturally ventilated enclosure with two vents. Several configurations were experimentally addressed in order to improve knowledge on dispersion. Parameters were chosen to mimic operating conditions of hydrogen energy systems. Thus the varying parameters of the study were mainly the s Read More
Simulation of Deflagration-to-detonation Transition of Lean H2-CO-Air Mixtures in Obstructed Channels
Sep 2019
Publication
The possibility of flame acceleration (FA) and deflagration-to-detonation transition (DDT) when homogeneous hydrogen-carbon monoxide-air (H2-CO-air) mixtures are used rises the need for an efficient simulation approach for safety assessment. In this study a modelling approach for H2-CO-air flames incorporating deflagration and detonation within one framework is presented. It extends the previous work on H2-air mixtures. The deflagration is Read More
Detailed Examination of Deformations Induced by Internal Hydrogen Explosions: Part 1 Experiments
Sep 2019
Publication
In industry handling hydrogen explosion presents a potential danger due to its effects on people and property. In the nuclear industry this explosion which is possible during severe accidents can challenge the reactor containment and it may lead to a release of radioactive materials into the environment. The Three Mile Island accident in the United States in 1979 and more recently the Fukushima accident in Japan have highlighted the importance of this Read More
Ignition of H2-NO2/N2O4 Mixtures Under Volumetric Expansion Conditions
Sep 2019
Publication
The competition between chemical energy release rate and volumetric expansion related to shock wave’s dynamics is of primary importance for a number of situations relevant to explosion safety. While studies have been performed on this topic over the years they have been limited to mixtures with monotonous energy release profile. In the present study the ignition of H2-NO2/N2O4 mixtures which exhibit a single-step or a two-step energy rel Read More
Impact of Mechanical Ventilation on Build-up and Concentration Distribution Inside a 1-m3 Enclosure Considering Hydrogen Energy
Sep 2019
Publication
Natural ventilation is an efficient and well-known way to mitigate a hydrogen build-up in the case of an accidental release in confined enclosures. However for some hydrogen energy applications natural ventilation is not possible or is not efficient enough to reach defined safety strategy. Thus mechanical or forced ventilation can be interesting means to avoid critical concentration of hydrogen considering degraded operation and associated potential hazardo Read More
The Study on Permissible Value of Hydrogen Gas Concentration in Purge Gas of Fuel Cell Vehicles
Sep 2019
Publication
Ignition conditions and risks of ignition on a permissible value of hydrogen concentration in purge gas prescribed by HFCV-GTR were reevaluated. Experiments were conducted to investigate burning behavior and thermal influence of continuous evacuation of hydrogen under continuous purge of air / hydrogen premixed gas which is close to an actual purge condition of FCV and thermal evacuation of hydrogen. As a result of the re-evaluation it Read More
Validation of Two-Layer Model for Underexpanded Hydrogen Jets
Sep 2019
Publication
Previous studies have shown that the two-layer model more accurately predicts hydrogen dispersion than the conventional notional nozzle models without significantly increasing the computational expense. However the model was only validated for predicting the concentration distribution and has not been adequately validated for predicting the velocity distributions. In the present study particle imaging velocimetry (PIV) was used to measure the velo Read More
Hydrogen-fueled Car Fire Spread to Adjacent Vehicles in Car Parks
Sep 2019
Publication
Car park fires are known to be dangerous due to the risk of fast fire spread from one car to another. In general no fatalities are recorded in such fires but they may have a great cost in relation to damaged cars and structural repair. A very recent example is the Liverpool multi-storey car park fire from December 31 2017. It destroyed 1400 cars and parts of the building structure collapsed. This questions the validity of current design praxis of car Read More
Non-adiabatic Under-expanded Jet Theory for Blowdown and Fire Resistance Rating of Hydrogen Tank
Sep 2019
Publication
The European Regulations on type-approval of hydrogen vehicles require thermally-activated pressure relief device (TPRD) to be installed on hydrogen onboard storage tanks to release its content in a fire event to prevent its catastrophic rupture. The aim of this study is to develop a model for design of an inherently safer system TPRD-storage tank. Parameters of tank materials and hydrogen external heat flux from the fire to the tank wall TPRD dia Read More
Near-term Location of Hydrogen Refueling Stations in Yokohama City from the Perspective of Safety
Sep 2019
Publication
The roll-out of hydrogen refuelling stations is a key step in the transition to a hydrogen economy. Since Japan has been shifting from the demonstration stage to the implementation stage of a hydrogen economy a near-term city-level roll-out plan is required. The aim of this study is to plan near-term locations for building hydrogen refuelling stations in Yokohama City from a safety perspective. Our planning provides location information for hydrogen refuellin Read More
Experimental Study on Accumulation of Helium Released into a Semi-confined Enclosure without Ventilation
Sep 2019
Publication
This paper examines the helium dispersion behaviour in a 16.6 m3 enclosure with a small opening in the floor and distributed leaks along the edges. Helium a simulant for hydrogen was injected near the center of the floor with an injection rate ranging from 2 to 50 standard liters per minute (Richardson number of 0.3–134) through an upward-facing nozzle. In a short-term transient the helium distribution predicted with the models of Baines & Turner (1969) a Read More
Validation of a 3d Multiphase-multicomponent CFD Model for Accidental Liquid and Gaseous Hydrogen Releases
Sep 2017
Publication
As hydrogen-air mixtures are flammable in a wide range of concentrations and the minimum ignition energy is low compared to hydrocarbon fuels the safe handling of hydrogen is of utmost importance. Additional hazards may arise with the accidental spill of liquid hydrogen. Such a release of LH2 leads to a formation of a cryogenic pool a dynamic vaporization process and consequently a dispersion of gaseous hydrogen into the environment. Several L Read More
Fatigue Behavior of AA2198 in Liquid Hydrogen
Aug 2019
Publication
Tensile and fatigue tests were performed on an AA2198 aluminum alloy in the T851 condition in ambient air and liquid hydrogen (LH2). All fatigue tests were performed under load control at a frequency of 20 Hz and a stress ratio of R=0.1. The Gecks-Och-Function [1] was fitted on the measured cyclic lifetimes.The tensile strength in LH2 was measured to be 46 % higher compared to the value determined at ambient conditions and the fatigue limit was increa Read More
CFD Modelling of Underexpanded Hydrogen Jets Exiting Rectangular Shaped Openings
May 2020
Publication
Underexpanded jet releases from circular nozzles have been studied extensively both experimentally and numerically. However jet releases from rectangular openings have received much less attention and information on their dispersion behaviour is not as widely available. In this paper Computational Fluid Dynamics (CFD) is used to assess the suitability of using a pseudo-source approach to model jet releases from rectangular openings. A comparativ Read More
Development of a Tangential Neutron Radiography System for Monitoring the Fatigue Cracks in Hydrogen Fuel Tanks
Jun 2016
Publication
Purpose- To present an overview of the research and development carried out in a European funded framework 7 (FP7) project called SafeHPower for the implementation of neutron radiography to inspect fatigue cracks in vehicle and storage hydrogen fuel tanks. Project background– Hydrogen (H2) is the most promising replacement fuel for road transport due to its abundance efficiency low carbon footprint and the absence of harmful emissions. For the Read More
An Innovative and Comprehensive Approach for the Consequence Analysis of Liquid Hydrogen Vessel Explosions
Oct 2020
Publication
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A Read More
Results of the Pre-normative Research Project PRESLHY for the Safe Use of Liquid Hydrogen
Sep 2021
Publication
Liquid hydrogen (LH2) compared to compressed gaseous hydrogen offers advantages for large-scale transport and storage of hydrogen with higher densities. Although the gas industry has good experience with LH2 only little experience is available for the new applications of LH2 as an energy carrier. Therefore the European FCH JU funded project PRESLHY conducted pre-normative research for the safe use of cryogenic LH2 in non-industrial set Read More
Safety System Design for Mitigating Risks of Intended Hydrogen Releases from Thermally Activated Pressure Relief Device of Onboard Storage
Sep 2019
Publication
All vehicular high-pressure hydrogen tanks are equipped with thermally-activated pressure relief devices (TPRDs) required by Global Technical Regulation. This safety device significantly reduces the risk of tank catastrophic rupture by venting the hydrogen pressure outside. However the released flammable hydrogen raises additional safety problems. Japan Automobile Research Institute has demonstrated that in the vehicle fire event once the TPRD o Read More
Effect of Deformation Microstructures on Hydrogen Embrittlement Sensitivity and Failure Mechanism of 304 Austenitic Stainless Steel: The Significant Role of Rolling Temperature
Feb 2022
Publication
Metastable austenitic stainless steels (ASSs) have excellent ductility but low strength so that their usage as load-bearing components is significantly limited. Rolling is an effective method of increasing strength whereas the effect of rolling temperature on microstructural evolution the hydrogen embrittlement (HE) sensitivity and fracture mechanisms is still unclear. In present study the effect of cold/warm rolling on detailed microstructural characteristics of 3 Read More
No more items...