Applications & Pathways
A Comprehensive Overview of Technologies Applied in Hydrogen Valleys
Dec 2024
Publication
Hydrogen valleys are encompassed within a defined geographical region with various technologies across the entire hydrogen value chain. The scope of this study is to analyze and assess the different hydrogen technologies for their application within the hydrogen valley context. Emphasizing on the coupling of renewable energy sources with electrolyzers to produce green hydrogen this study is focused on the most prominent electrolysis technologies incl Read More
Techno-Economic Feasibility of Fuel Cell Vehicle-to-Grid Fast Frequency Control in Non-Interconnected Islands
Dec 2024
Publication
This paper presents an innovative approach to fast frequency control in electric grids by leveraging parked fuel cell electric vehicles (FCEVs) especially heavy-duty vehicles such as trucks. Equipped with hydrogen storage tanks and fuel cells these vehicles can be repurposed as dynamic grid-support assets while parked in designated areas. Using an external cable and inverter system FCEVs inject power into the grid by converting DC from fuel cells into AC t Read More
Coordinated Volt-Var Control of Reconfigurable Microgrids with Power-to-Hydrogen Systems
Dec 2024
Publication
The integration of electrolyzers and fuel cells can cause voltage fluctuations within microgrids if not properly scheduled. Therefore controlling voltage and reactive power becomes crucial to mitigate the impact of fluctuating voltage levels ensuring system stability and preventing damage to equipment. This paper therefore seeks to enhance voltage and reactive power control within reconfigurable microgrids in the presence of innovative power-to-hyd Read More
Assessing the Potential of Hybrid Systems with Batteries, Fuel Cells and E-Fuels for Onboard Generation and Propulsion in Pleasure Vessels
Dec 2024
Publication
Electro-fuels (E-fuels) represent a potential solution for decarbonizing the maritime sector including pleasure vessels. Due to their large energy requirements direct electrification is not currently feasible. E-fuels such as synthetic diesel methanol ammonia methane and hydrogen can be used in existing internal combustion engines or fuel cells in hybrid configurations with lithium batteries to provide propulsion and onboard electricity. This study confirms th Read More
Design and Performance Optimization of a Radial Turbine Using Hydrogen Combustion Products
Dec 2024
Publication
The combustion of hydrogen increases the water content of the combustion products affecting the aerodynamic performance of turbines using hydrogen as a fuel. This study aims to design a radial turbine using the differential evolution (DE) algorithm to improve its characteristics and optimize its aerodynamic performance through an orthogonal experiment and analysis of means (ANOM). The effects of varying water content in combustion products rang Read More
Green Hydrogen Transformation of the Iron and Steel Production System: An Integrated Operating Concept for System-internal Balance, Lower Emissions, and Support for Power System Stability
Dec 2024
Publication
The green hydrogen transformation of the iron and steel industry is considered a technically viable option. Concretely large-scale renewable energy generation and water electrolyzer capacity are to be added to the production system. Given that renewables are intermittent and H2 demand is high there is continued reliance on the CO2 emitting upstream power system. This paper introduces a novel operating concept that regards an extended produ Read More
Numerical Investigation of the Potential of Using Hydrogen as an Alternative Fuel in an Industrial Burner
Dec 2024
Publication
This study investigates hydrogen and hydrogen-methane mixtures as alternative fuels for industrial burners focusing on combustion dynamics flame stability and emissions. CFD simulations in ANSYS Fluent utilized the RANS framework with the k-ε turbulence model and the mixture fraction/PDF approach. Supporting Python scripts and Cantera-based kinetic modeling employing the GRI-Mech 3.0 mechanism and Zeldovich pathways analyzed equivale Read More
Evaluation of CNG Engine Conversion to Hydrogen Fuel for Stationary and Transient Operations
Dec 2024
Publication
This study investigates the use of hydrogen (H2 ) as a substitute for compressed natural gas (CNG) in a heavyduty (HD) six-cylinder engine focusing on both port fuel injection (PFI) and direct injection (DI) systems. Numerical modeling in a 0D/1D environment was employed simulating engine operation under stationary conditions and during the worldwide harmonized transient cycle (WHTC) and worldwide harmonized vehicle cycle (WHVC) homologation Read More
Enhancing Heavy Duty Vehicle Hydrogen Refuelling by Alternative Approach to SAE J2601/2 Protocol and Flow Dynamics
Dec 2024
Publication
This paper analyzes the hydrogen refueling process for heavy-duty vehicles according to the SAE J2601/2 protocol. Attention is paid to two key aspects of the protocol that affect the refueling process: treatment of the storage system from a thermodynamic and geometric point of view and the maximum deliverable flow rate of the station in the refueling process. The effect of the ratio of the inner diameter to the inner length of the total volume on the refuelin Read More
Potential of Hydrogen Fuel Cell Aircraft for Commercial Applications with Advanced Airframe and Propulsion Technologies
Jan 2025
Publication
The present work demonstrates a comparative study of hydrogen fuel cells and combustion aircraft to investigate the potential of fuel cells as a visionary propulsion system for radically more sustainable medium- to long-range commercial aircraft. The study which considered future airframe and propulsion technologies under the Se2A project was conducted to quantify potential emissions and costs associated with such aircraft and to determine the b Read More
Experimental Investigation on the Optimal Injection and Combustion Phasing for a Direct Injection Hydrogen-fuelled Internal Combustion Engine for Heavy-duty Applications
Dec 2024
Publication
In the current context of increasing demand for clean transportation hydrogen usage in internal combustion engines (ICEs) represents a viable solution to abate all engine-out criteria pollutants and almost zeroing CO2 tailpipe emissions. Indeed the wider flammability limits thanks to the higher flame propagation speed and the lower minimum ignition energy compared with conventional fuels extend the stable combustion regime to leaner mixtures thus allo Read More
Applicability of Hydrogen Fuel for a Cruise Ship
Jan 2025
Publication
Cruise ships function as a means of transport while simultaneously accommodating thousands of guests providing a holiday experience with various entertainment options. This translates to high energy requirements for propulsion and hotel operations typically covered by the combustion of fossil fuels. The operation of cruise vessels with fossil fuels contributes to carbon dioxide and also local harmful emissions in ports when shore power connecti Read More
Development of a Method for Evaluating H2-Filling Stations
Nov 2024
Publication
To expedite the development of the infrastructural expansion for hydrogen applications the research project “THEWA” was founded. Within this project the development of hydrogen-refueling stations is being advanced so that the hydrogen strategy for mobility in Germany can move forward. One development point of the project is to develop an evaluation model that recommends a concept for hydrogen-refueling stations for initial individual situations. In Read More
Fuelling a Clean Future: A Systematic Review of Techno-Economic and Life Cycle Assessments in E-Fuel Development
Aug 2024
Publication
The transition to sustainable energy has ushered in the era of electrofuels (e-fuels) which are synthesised using electricity from renewable sources water and CO2 as a sustainable alternative to fossil fuels. This paper presents a systematic review of the techno-economic (TEA) and life cycle assessments (LCAs) of e-fuel production. We critically evaluate advancements in production technologies economic feasibility environmental implications and potential soci Read More
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
Apr 2024
Publication
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport in addition to fuel cell vehicles it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the o Read More
Machine Learning Models for the Prediction of Turbulent Combustion Speed for Hydrogen-natural Gas Spark Ignition Engines
May 2024
Publication
The work carried out in this paper focused on “Machine learning models for the prediction of turbulent combustion speed for hydrogen-natural gas spark ignition engines”. The aim of this work is to develop and verify the ability of machine learning models to solve the problem of estimating the turbulent flame speed for a spark-ignition internal combustion engine operating with a hydrogen-natural gas mixture then evaluate the relevance of these models Read More
Cost-optimal Design and Operation of Hydrogen Refueling Stations with Mechanical and Electrochemical Hydrogen Compressors
Sep 2024
Publication
Hydrogen refueling stations (HRS) can cause a significant fraction of the hydrogen refueling cost. The main cost contributor is the currently used mechanical compressor. Electrochemical hydrogen compression (EHC) has recently been proposed as an alternative. However its optimal integration in an HRS has yet to be investigated. In this study we compare the performance of a gaseous HRS equipped with different compressors. First we develop dynamic mod Read More
Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining
Dec 2023
Publication
As a versatile energy carrier hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting storing and utilizing hydrogen is rising rapidly. However the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to fi Read More
An Assessment of Decarbonisation Pathways for Intercontinental Deep-sea Shipping Using Power-to-X Fuels
Aug 2024
Publication
Shipping corridors act as the arteries of the global economy. The maritime shipping sector is also a major source of greenhouse gas emissions accounting for 2.9% of the global total. The international nature of the shipping sector combined with issues surrounding the use of battery technology means that these emissions are considered difficult to eliminate. This work explores the transition to renewable fuels by examining the use of electrofuels (in the for Read More
Characterizing Hydrogen-diesel Dual-fuel Performance and Emissions in a Commercial Heavy-duty Diesel Truck
Sep 2024
Publication
This study investigates hydrogen (H2) as a supplementary fuel in heavy-duty diesel engines using pre-manifold injection. A H2-diesel dual-fuel (H2DF) system was implemented on a commercial class-8 heavy-duty diesel truck without modifying the original diesel injection system and engine control unit (ECU). Tests were conducted on a chassis dynamometer at engine speeds between 1000 and 1400 rpm with driver-demanded torques from 10 to 75%. The hy Read More
Greening of European Sea Ports - Final Report
Mar 2024
Publication
The report addresses the environmental challenges faced by European sea ports and aims to provide guidance to smaller ports for improving their environmental performance while achieving sustainability goals through experiences gained by implementing noteworthy green initiatives in practice. Larger ports possess significant advantages in terms of financial resources risk tolerance and organisational capacity. They often have the means to inve Read More
Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Jul 2024
Publication
This article presents the concept of green transformation of the coal mining sector. Pump stations that belong to Spółka Restrukturyzacji Kopal´n S.A. (SRK S.A. Bytom Poland) pump out approximately 100 million m3 of mine water annually. These pump stations protect neighboring mines and lower-lying areas from flooding and protect subsurface aquifers from contamination. The largest cost component of maintaining a pumping station is the expenditu Read More
Hydrogen Refueling Station Cost Model Applied to Five Real Case Studies for Fuel Cell buses
Oct 2021
Publication
Hydrogen Refueling Stations (HRS) are a key infrastructure to the successful deployment of hydrogen mobility. Their cost-effectiveness will represent an increasingly crucial issue considering the foreseen growth of vehicle fleets from few captive fleets to large-scale penetration of hydrogen vehicles. In this context a detailed component-oriented cost model is important to assess HRS costs for different design concepts layout schemes and possible cus Read More
Optimal Integration of Hybrid Renewable Energy Systems for Decarbonized Urban Electrification and Hydrogen Mobility
Aug 2024
Publication
This study addresses cost-optimal sizing and energy management of a grid-integrated solar photovoltaic wind turbine hybrid renewable energy system integrated with electrolyzer and hydrogen storage tank to simultaneously meet electricity and hydrogen demands considering the case study of Dijon France. Mixed Integer Linear Programming optimization problem is formulated to evaluate two objective case scenarios: single objective and multi-objecti Read More
Research on the Optimal Scheduling Strategy of the Integrated Energy System of Electricity to Hydrogen under the Stepped Carbon Trading Mechanism
Sep 2024
Publication
Under the guidance of energy-saving and emission reduction goals a lowcarbon economic operation method for integrated energy systems (IES) has been proposed. This strategy aims to enhance energy utilization efficiency bolster equipment operational flexibility and significantly cut down on carbon emissions from the IES. Firstly a thorough exploration of the two-stage operational framework of Power-to-Gas (P2G) technology is conducted. Electrolyzers Read More
Assessing the Cost-effectiveness of Carbon Neutrality for Light-duty Vehicle Sector in China
Nov 2023
Publication
China’s progress in decarbonizing its transportation particularly vehicle electrification is notable. However the economically effective pathways are underexplored. To find out how much cost is necessary for carbon neutrality for the light-duty vehicle (LDV) sector this study examines twenty decarbonization pathways combining the New Energy and Oil Consumption Credit model and the China-Fleet model. We find that the 2060 zero-gr Read More
Hydrogen-powered Aircraft: Fundamental Concepts, Key Technologies, and Environmental Impacts
Sep 2024
Publication
Civil aviation provides an essential transportation network that connects the world and supports global economic growth. To maintain these benefits while meeting environmental goals next-generation aircraft must have drastically reduced climate impacts. Hydrogen-powered aircraft have the potential to fly existing routes with no carbon emissions and reduce or eliminate other emissions. This paper is a comprehensive guide to hydrogen-powered airc Read More
Techno-economic Feasibility of Integrating Hybrid-battery Hydrogen Energy Storage in Academic Buildings
Apr 2024
Publication
Green hydrogen production and storage are vital in mitigating carbon emissions and sustainable transition. However the high investment cost and management requirements are the bottleneck of utilizing hybrid hydrogen-based systems in microgrids. Given the necessity of cost-effective and optimal design of these systems the present study examines techno-economic feasibility of integrating hybrid hydrogen-based systems into an outdoor tes Read More
A Multi-objective Planning Tool for the Optimal Supply of Green Hydrogen for an Inustrial Port Area Decarbonisation
Jul 2024
Publication
This study addresses the challenge of decarbonizing highly energy-intensive Industrial Port Areas (IPA) focusing on emissions from various sources like ship traffic warehouses buildings cargo handling equipment and hardto-abate industry typically hosted in port areas. The analysis and proposal of technological solutions and their optimal integration in the context of IPA is a topic of growing scientific interest with considerable social and economic implicatio Read More
Comparative Study of Different Alternative Fuel Options for Shipowners Based on Carbon Intensity Index Model Under the Background of Green Shipping Development
Nov 2024
Publication
The International Maritime Organization (IMO)’s annual operational carbon intensity index (CII) rating requires that from 1 January 2023 all applicable ships meet both technical and operational energy efficiency requirements. In this paper we conduct a comparative study of different alternative fuel options based on a CII model from the perspective of shipowners. The advantages and disadvantages of alternative fuel options such as liquefied natural gas (LN Read More
Numerical Modelling of Hydrogen Release and Dispersion in Under-deck Compressed Hydrogen Storage of Marine Ships
Feb 2024
Publication
There is growing interest in using hydrogen (H2) as a marine fuel. Fire and explosion risks depend on hydrogen release and dispersion characteristics. Based on a validated Computational Fluid Dynamics (CFD) model this study performed hydrogen release and dispersion analysis on an under-deck compressed H2 storage system for a Live-Fish Carrier. A realistic under-deck H2 storage room was modelled based on the ship’s main dimensions and operational Read More
Assessing the Carbon Intensity of e-fuels Production in European Countries: A Temporal Analysis
Nov 2024
Publication
The transport sector heavily relies on the use of fossil fuels which are causing major environmental concerns. Solutions relying on the direct or indirect use of electricity through efuel production are emerging to power the transport sector. To ensure environmental benefits are achieved over this transition an accurate estimation of the impact of the use of electricity is needed. This requires a high temporal resolution to capture the high variability of elec Read More
Sustainability Assessment of Alternative Energy Fuels for Aircrafts—A Life Cycle Analysis Approach
Nov 2024
Publication
Aviation is of crucial importance for the transportation sector and fundamental for the economy as it facilitates trade and private travel. Nonetheless this sector is responsible for a great amount of global carbon dioxide emissions exceeding 920 million tonnes annually. Alternative energy fuels (AEFs) can be considered as a promising solution to tackle this issue with the potential to lower greenhouse gas emissions and reduce reliance on fossil fuels in t Read More
The Use of Alternative Fuels for Maritime Decarbonization: Special Marine Environmental Risks and Solutons from an International Law Perspective
Jan 2023
Publication
The introduction of several alternative marine fuels is considered an important strategy for maritime decarbonization. These alternative marine fuels include liquefied natural gas (LNG) liquefied biogas (LBG) hydrogen ammonia methanol ethanol hydrotreated vegetable oil (HVO) etc. In some studies nuclear power and electricity are also included in the scope of alternative fuels for merchant ships. However the operation of alternative-fuel-powered ships has Read More
Data-driven Optimal Scheduling for Underground Space Based Integrated Hydrogen Energy System
Dec 2021
Publication
Integrated hydrogen energy systems (IHESs) have attracted extensive attention in miti-gating climate problems. As a kind of large-scale hydrogen storage device undergroundhydrogen storage (UHS) can be introduced into IHES to balance the seasonal energy mis-match while bringing challenges to optimal operation of IHES due to the complex geolog-ical structure and uncertain hydrodynamics. To address this problem a deep deterministicpolicy grad Read More
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
Sep 2024
Publication
Unmanned aerial vehicles (UAVs) have become an integral part of modern life serving both civilian and military applications across various sectors. However existing power supply systems such as batteries often fail to provide stable long-duration flights limiting their applications. Previous studies have primarily focused on battery-based power which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange m Read More
Optimization and Dynamic Responses of an Integrated Fuel Cell and Battery System for an 800 kW Ferry: A Case Study
Aug 2022
Publication
The recent targets by different countries to stop the sales or registrations of internal combustion engines (ICE) have led to the further development of battery and fuel cell technologies to provide power for different applications. The main aim of this study is to evaluate the possibility of using an integrated Lithium-Ion battery and proton exchange membrane fuel cell (PEMFC) as the prime mover for a case study of a 800 kW ferry with a total length of 50.8 m Read More
Net-Zero Greenhouse Gas Emission Electrified Aircraft Propulsion for Large Commercial Transport
Sep 2024
Publication
Until recently electrified aircraft propulsion (EAP) technology development has been driven by the dual objectives of reducing greenhouse gas (GHG) emissions and addressing the depletion of fossil fuels. However the increasing severity of climate change posing a significant threat to all life forms has resulted in the global consensus of achieving net-zero GHG emissions by 2050. This major shift has alerted the aviation electrification industry to c Read More
Fuel Cell Electric Vehicle Hydrogen Consumption and Battery Cycle Optimization Using Bald Eagle Search Algorithm
Sep 2024
Publication
In this study the Bald Eagle Search Algorithm performed hydrogen consumption and battery cycle optimization of a fuel cell electric vehicle. To save time and cost the digital vehicle model created in Matlab/Simulink and validated with real-world driving data is the main platform of the optimization study. The digital vehicle model was run with the minimum and maximum battery charge states determined by the Bald Eagle Search Algorithm and hydrogen cons Read More
Fuel Cell Systems for Long-endurance Autonomous Underwater Vehicles - Challenges and Benefits
Jun 2019
Publication
Autonomous underwater vehicles (AUVs) are programmable robotic vehicles that can drift drive or glide through the ocean without real-time control by human operators. AUVs that also can follow a planned trajectory with a chosen depth profile are used for geophysical surveys subsea pipeline inspection marine archaeology and more. Most AUVs are followed by a mother ship that adds significantly to the cost of an AUV mission. One pathway to red Read More
Design Trends and Challenges in Hydrogen Direct Injection (H2DI) Internal Combustion Engines - A Review
Sep 2024
Publication
The hydrogen internal combustion engine (H2-ICE) is proposed as a robust and viable solution to decarbonise the heavy-duty on- and off-road as well as the light-duty automotive sectors of the transportation markets and is therefore the subject of rapidly growing research interest. With the potential for engine performance improvement by controlling the internal mixture formation and avoiding combustion anomalies hydrogen direct injection (H2DI) is a Read More
Multi-Objective Parameter Configuration Optimization of Hydrogen Fuel Cell Hybrid Power System for Locomotives
Sep 2024
Publication
Conventional methods of parameterizing fuel cell hybrid power systems (FCHPS) often rely on engineering experience which leads to problems such as increased economic costs and excessive weight of the system. These shortcomings limit the performance of FCHPS in real-world applications. To address these issues this paper proposes a novel method for optimizing the parameter configuration of FCHPS. First the power and energy requirements o Read More
A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles
Jul 2023
Publication
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles there can be various operational pressure and volume capacity of the tanks ranging from passenger vehicles to heavy-duty trucks. The current commercial hydrogen storage method for vehicles involves storing compressed hydrogen gas in high-pressure tan Read More
A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell
Feb 2024
Publication
This paper addresses the problem of the reduction in the huge energy demand of hospitals and health care facilities. The sharp increase in the natural gas price due to the Ukrainian–Russian war has significantly reduced economic savings achieved by combined heat and power (CHP) units especially for hospitals. In this framework this research proposes a novel system based on the integration of a reversible CHP solid oxide fuel cell (SOFC) and a photovoltai Read More
Machine Learning-powered Performance Monitoring of Proton Exchange Membrane Water Electrolyzers for Enhancing Green Hydrogen Production as a Sustainable Fuel for Aviation Industry
Aug 2024
Publication
Aviation is a major contributor to transportation carbon emissions but aims to reduce its carbon footprint. Sustainable and environmentally friendly green hydrogen fuel is essential for decarbonization of this industry. Using the extremely low temperature of liquid hydrogen in aviation sector unlocks the opportunity for cryoelectric aircraft concept which exploits the advantageous properties of superconductors onboard. A significant barrier for gre Read More
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Dec 2022
Publication
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade pushing the research developed by academia and industries. This paper aims to present a com Read More
Review of Decompression Damage of the Polymer Liner of the Type IV Hydrogen Storage Tank
May 2023
Publication
The type IV hydrogen storage tank with a polymer liner is a promising storage solution for fuel cell electric vehicles (FCEVs). The polymer liner reduces the weight and improves the storage density of tanks. However hydrogen commonly permeates through the liner especially at high pressure. If there is rapid decompression damage may occur due to the internal hydrogen concentration as the concentration inside creates the pressure difference. Thus Read More
Hydrogen Refueling Station: Overview of the Technological Status and Research Enhancement
Jan 2023
Publication
Hydrogen refueling stations (HRSs) are key infrastructures rapidly spreading out to support the deployment of fuel cell electric vehicles for several mobility purposes. The research interest in these energy systems is increasing focusing on different research branches: research on innovation on equipment and technology proposal and development of station layout and research aiming to provide experimental data sets for perfor mance investigation. Th Read More
Climate Neutrality of the French Energy System: Overview and Impacts of Sustainable Aviation Fuel Production
Aug 2024
Publication
CO2 emission reduction of sectors such as aviation maritime shipping road haulage and chemical production is challenging but necessary. Although these sectors will most likely continue to rely on carbonaceous energy carriers they are expected to gradually shift away from fossil fuels. In order to do so the prominent option is to utilize alternative carbon sources—like biomass and CO2 originating from carbon capture—for the production of non-fossil c Read More
Wind-coupled Hydrogen Integration for Commercial Greenhouse Food and Power Production: A Case Study
Oct 2024
Publication
This study investigates the feasibility of using green hydrogen technology produced via Proton Exchange Membrane (PEM) electrolysis powered by a 200 MW wind farm for a commercial Greenhouse in Ontario Canada. Nine different scenarios are analyzed exploring various approaches to hydrogen (H2) production transportation and utilization for electricity generation. The aim is to transition from using natural gas to using varying combinations of H2 and nat Read More
No more items...