Skip to content
1900

Techno-Economic Feasibility of Fuel Cell Vehicle-to-Grid Fast Frequency Control in Non-Interconnected Islands

Abstract

This paper presents an innovative approach to fast frequency control in electric grids by leveraging parked fuel cell electric vehicles (FCEVs), especially heavy-duty vehicles such as trucks. Equipped with hydrogen storage tanks and fuel cells, these vehicles can be repurposed as dynamic grid-support assets while parked in designated areas. Using an external cable and inverter system, FCEVs inject power into the grid by converting DC from fuel cells into AC, to be compatible with grid requirements. This functionality addresses sudden power imbalances, providing a rapid and efficient solution for frequency stabilization. The system’s external inverter serves as a central control hub, monitoring real-time grid frequency and directing FCEVs to supply virtual inertia and primary reserves through droop control, as required. Simulation results validate that FCEVs could effectively complement thermal generators, preventing unacceptable frequency drops, load shedding, and network blackouts. A techno-economic analysis demonstrates the economic feasibility of the concept, concluding that each FCEV consumes approximately 0.3 kg of hydrogen per day, incurring a daily cost of around EUR 1.5. For an island grid with a nominal power of 100 MW, maintaining frequency stability requires a fleet of 100 FCEVs, resulting in a total daily cost of EUR 150. Compared to a grid-scale battery system offering equivalent frequency response services, the proposed solution is up to three times more cost-effective, highlighting its economic and technical potential for grid stabilization in renewable-rich, non-interconnected power systems.

Related subjects: Applications & Pathways
Countries: Greece
Loading

Article metrics loading...

/content/journal6624
2024-12-24
2025-04-07
/content/journal6624
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error