Applications & Pathways
Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants
Nov 2016
Publication
This paper introduces a value chain design for transportation fuels and a respective business case taking into account hybrid PV-Wind power plants electrolysis and hydrogen-to-liquids (H2tL) based on hourly resolved full load hours (FLh). The value chain is based on renewable electricity (RE) converted by power-to-liquids (PtL) facilities into synthetic fuels mainly diesel. Results show that the proposed RE-diesel value chains are competitive for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost) depending on the chosen specific value chain and assumptions for cost of capital available oxygen sales and CO2 emission costs. A sensitivity analysis indicates that the RE-PtL value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy and a special focus on mid to long-term electrolyser and H2tL efficiency improvements. The substitution of fossil fuels by hybrid PV-Wind power plants could create a PV-wind market potential in the order of terawatts.
Concept Design and Energy Balance Optimization of a Hydrogen Fuel Cell Helicoptor for Unmanned Aerial Vehicle and Aerotaxi Applications
May 2023
Publication
In the new scenario where the transportation sector must be decarbonized to limit global warming fuel cellpowered aerial vehicles have been selected as a strategic target application to compose part of the urban fleet to minimize road transport congestion and make goods and personal transportation fast and efficient. To address the necessity of clean and efficient urban air transport this work consists of the conceptual development of a lightweight rotary-winged transport vehicle using a hydrogen-based fuel cell propulsion system and the optimization of its energy balance. For that purpose the methods for integrating the coupled aerodynamic and propulsion system sizing and optimization was developed with the aim of designing concepts capable of carrying 0 (unmanned aerial vehicle — Design 1) and 1 (Aerotaxi — Design 2) passengers for a distance of 300 km at a cruise altitude of 500 m with a minimum climbing rate capability of 6 m s−1 at 1000 m. The results show how these designs with the desired performance specifications can be obtained with a vehicle mass ranging from 416 to 648 kg depending on the application and with specific range and endurance respectively within 46.2–47.8 km/kg and 20.4–21.3 min/kg for design 1 and 33.3–33.8 km/kg and 12.5–13.9 min/kg for design 2.
The Role of Hydrogen Storage in an Electricity System with Large Hydropower Resources
Feb 2024
Publication
Hydrogen is considered one of the key pillars of an effective decarbonization strategy of the energy sector; however the potential of hydrogen as an electricity storage medium is debated. This paper investigates the role of hydrogen as an electricity storage medium in an electricity system with large hydropower resources focusing on the Swiss electricity sector. Several techno-economic and climate scenarios are considered. Findings suggest that hydrogen storage plays no major role under most conditions because of the large hydropower resources. More specifically no hydrogen storage is installed in Switzerland if today’s values of net-transfer capacities and low load-shedding costs are assumed. This applies even to hydrogen-favorable climate scenarios (dry years with low precipitation and dam inflows) and economic assumptions (high learning rates for hydrogen technologies). In contrast hydrogen storage is installed when net-transfer capacities between countries are reduced below 30% of current values and load-shedding costs are above 1000 EUR/MWh. When installed hydrogen is deployed in a few large-scale installations near the national borders.
A Review of Liquid Hydrogen Aircraft and Propulsion Technologies
Jan 2024
Publication
Sustainable aviation is a key part of achieving Net Zero by 2050 and is arguably one of the most challenging sectors to decarbonise. Hydrogen has gained unprecedented attention as a future fuel for aviation for use within fuel cell or hydrogen gas turbine propulsion systems. This paper presents a survey of the literature and industrial projects on hydrogen aircraft and associated enabling technologies. The current and predicted technology capabilities are analysed to identify important trends and to assess the feasibility of hydrogen propulsion. Several key enabling technologies are discussed in detail and gaps in knowledge are identified. It is evident that hydrogen propelled aircraft are technologically viable by 2050. However convergence of a number of critical factors is required namely: the extent of industrial collaboration the understanding of environmental science and contrails green hydrogen production and its availability at the point of use and the safety and certification of the aircraft and supporting infrastructure.
An Optimization-Based Model for A Hybrid Photovoltaic-Hydrogen Storage System for Agricultural Operations in Saudi Arabia
Apr 2023
Publication
Renewable energy technologies and resources particularly solar photovoltaic systems provide cost-effective and environmentally friendly solutions for meeting the demand for electricity. The design of such systems is a critical task as it has a significant impact on the overall cost of the system. In this paper a mixed-integer linear programming-based model is proposed for designing an integrated photovoltaic-hydrogen renewable energy system to minimize total life costs for one of Saudi Arabia’s most important fields a greenhouse farm. The aim of the proposed system is to determine the number of photovoltaic (PV) modules the amount of hydrogen accumulated over time and the number of hydrogen tanks. In addition binary decision variables are used to describe either-or decisions on hydrogen tank charging and discharging. To solve the developed model an exact approach embedded in the general algebraic modeling System (GAMS) software was utilized. The model was validated using a farm consisting of 20 greenhouses a worker-housing area and a water desalination station with hourly energy demand. The findings revealed that 1094 PV panels and 1554 hydrogen storage tanks are required to meet the farm’s load demand. In addition the results indicated that the annual energy cost is $228234 with a levelized cost of energy (LCOE) of 0.12 $/kWh. On the other hand the proposed model reduced the carbon dioxide emissions to 882 tons per year. These findings demonstrated the viability of integrating an electrolyzer fuel cell and hydrogen tank storage with a renewable energy system; nevertheless the cost of energy produced remains high due to the high capital cost. Moreover the findings indicated that hydrogen technology can be used as an energy storage solution when the production of renewable energy systems is variable as well as in other applications such as the industrial residential and transportation sectors. Furthermore the results revealed the feasibility of employing renewable energy as a source of energy for agricultural operations.
Operating Characteristics Analysis and Capacity Configuration Optimization of Wind-Solar-Hydrogen Hybrid Multi-energy Complementary System
Dec 2023
Publication
Wind and solar energy are the important renewable energy sources while their inherent natures of random and intermittent also exert negative effect on the electrical grid connection. As one of multiple energy complementary route by adopting the electrolysis technology the wind-solar-hydrogen hybrid system contributes to improving green power utilization and reducing its fluctuation. Therefore the moving average method and the hybrid energy storage module are proposed which can smooth the wind-solar power generation and enhance the system energy management. Moreover the optimization of system capacity configuration and the sensitive analysis are implemented by the MATLAB program platform. The results indicate that the 10-min grid-connected volatility is reduced by 38.7% based on the smoothing strategy and the internal investment return rate can reach 13.67% when the electricity price is 0.04 $/kWh. In addition the annual coordinated power and cycle proportion of the hybrid energy storage module are 80.5% and 90% respectively. The developed hybrid energy storage module can well meet the annual coordination requirements and has lower levelized cost of electricity. This method provides reasonable reference for designing and optimizing the wind-solar-hydrogen complementary system.
Improving Ecological Efficiency of Gas Turbine Power System by Combusting Hydrogen and Hydrogen-Natural Gas Mixtures
Apr 2023
Publication
Currently the issue of creating decarbonized energy systems in various spheres of life is acute. Therefore for gas turbine power systems including hybrid power plants with fuel cells it is relevant to transfer the existing engines to pure hydrogen or mixtures of hydrogen with natural gas. However significant problems arise associated with the possibility of the appearance of flashback zones and acoustic instability of combustion an increase in the temperature of the walls of the flame tubes and an increase in the emission of nitrogen oxides in some cases. This work is devoted to improving the efficiency of gas turbine power systems by combusting pure hydrogen and mixtures of natural gas with hydrogen. The organization of working processes in the premixed combustion chamber and the combustion chamber with a sequential injection of ecological and energy steam for the “Aquarius” type power plant is considered. The conducted studies of the basic aerodynamic and energy parameters of a gas turbine combustor working on hydrogen-containing gases are based on solving the equations of conservation and transfer in a multicomponent reacting system. A four-stage chemical scheme for the burning of a mixture of natural gas and hydrogen was used which allows for the rational parameters of environmentally friendly fuel burning devices to be calculated. The premixed combustion chamber can only be recommended for operations on mixtures of natural gas with hydrogen with a hydrogen content not exceeding 20% (by volume). An increase in the content of hydrogen leads to the appearance of flashback zones and fuel combustion inside the channels of the swirlers. For the combustion chamber of the combined-cycle power plant “Vodoley” when operating on pure hydrogen the formation of flame flashback zones does not occur.
Fuelling the Transition Podcast: How Will Hydrogen Heat and Safety in the Home?
Jan 2022
Publication
In this episode Angela Needle Director of Strategy at Cadent and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss a range of topics concerning hydrogen and the energy transition. This includes Cadent’s involvement in hydrogen through HyNet the role of hydrogen in heat safety and plans for the first hydrogen village. They also explore Angela’s role as co-founder of the Women’s Utilities Network a group focussed on helping women develop their skills within the energy space.
The podcast can be found on their website.
The podcast can be found on their website.
Impact of Fuel Production Technologies on Energy Consumption and GHG Emissions from Diesel and Electric–Hydrogen Hybrid Buses in Rio de Janeiro, Brazil
Apr 2023
Publication
In view of the GHG reduction targets to be met Brazilian researchers are looking for cleaner alternatives to energy sources. These alternatives are primarily to be applied in the transport sector which presents high energy consumption as well as high CO2 emissions. In this sense this research developed an LCI study considering two bus alternatives for the city of Rio de Janeiro: diesel-powered internal combustion buses (ICEB) and a hydrogen-powered polymer fuel cell hybrid bus (FCHB). For the FCHB three hydrogen production methods were also included: water electrolysis (WE) ethanol steam reforming (ESR) and natural gas steam reforming (NGSR). The research was aimed at estimating energy consumption including the percentage of energy that is renewable as well as CO2 emissions. The results show diesel as the energy source with the highest emissions as well as the highest fossil energy consumption. Regarding the alternatives for hydrogen production water electrolysis stood out with the lowest emissions.
Industrial and Academic Collaboration Strategies on Hydrogen Fuel Cell Technology Development in Malaysia
Nov 2013
Publication
Hydrogen fuel cells are electrochemical power generators of high conversion efficiency and incredibly clean operation. Throughout the world the growth of fuel cell research and application has been very rapid in the last ten years where successful pilot projects on many areas have been implemented. In Malaysia approximately RM40 million has been granted to academic research institutions for fuel cell study and development. Recently Malaysia saw the emergence of its first hydrogen fuel cell developer signaling the readiness of the industrial sector to be involved in marketing the potential of fuel cells. Focusing mainly on Polymer Electrolyte Membrane fuel cell technology this paper demonstrates the efforts by Malaysian institutions both industrial and academic to promote hydrogen fuel cell education training application R&D as well as technology transfer. Emphasis is given to the existing collaboration between G-Energy Technologies and UniversitiTeknologi MARA that culminates with the successful application of a locally developed fuel cell system for a single-seated vehicle. Briefs on the potential of realizing a large-scale utilization of this clean technology into Malaysia’s mainstream power industry domestic consumers and energy consuming industries is also discussed. Key challenges are also identified where pilot projects government policy and infrastructural development is central to strengthen the prospect of hydrogen fuel cell implementation in Malaysia.
Simulating Offshore Hydrogen Production via PEM Electrolysis using Real Power Production Data from a 2.3 MW Floating Offshore Wind Turbine
Mar 2023
Publication
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs and hydrogen production system efficiency and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e. utilization factor of approximately 68%) the lowest hydrogen production cost was 4.53 $/kg H2 and the system efficiency was in the range 56.1e56.9% in all cases.
Life Cycle Assessment of an Autonomous Underwater Vehicle that Employs Hydrogen Fuel Cell
Aug 2023
Publication
In recent years there has been a significant increase in the adoption of autonomous vehicles for marine and submarine missions. The advancement of emerging imaging navigation and communication technologies has greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a European research endeavor focused on identifying strategies for achieving minimal environmental impact. To measure these facts this article evaluates the product impacts employing the Life Cycle Assessment methodology for the first time following the ISO 14040 standard. In this analysis the quantitative values of Damage and Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results report that the main contributors in environmental impact terms have been placed during the manufacturing phase. Thus one of the challenges is accomplished avoiding the use phase emissions that are the focus to reduce nowadays in the marine industry.
Feasibility Study on the Provision of Electricity and Hydrogen for Domestic Purposes in the South of Iran using Grid-connected Renewable Energy Plants
Dec 2018
Publication
This work presents a feasibility study on the provision of electricity and hydrogen with renewable grid connected and off-the-grid systems for Bandar Abbas City in the south of Iran. The software HOMER Pro® has been used to perform the analysis. A techno-enviro-economic study comparing a hybrid system consisting of the grid/wind turbine and solar cell is done. The wind turbine is analyzed using four types of commercially available vertical axis wind turbines (VAWTs). According to the literature review no similar study has been performed so far on the feasibility of using VAWTs and also no work exists on the use of a hybrid system in the studied area. The results indicated that the lowest price of providing the required hydrogen was $0.496 which was achieved using the main grid. Also the lowest price of the electricity generated was $1.55 which was obtained through using EOLO VAWT in the main grid/wind turbine/solar cell scenario. Also the results suggested that the highest rate of preventing CO2 emission which was also the lowest rate of using the national grid with 3484 kg/year was associated with EOLO wind turbines where only 4% of the required electricity was generated by the national grid.
Modelling of Fast Fueling of Pressurized Hydrogen Tanks for Maritime Applications
Apr 2023
Publication
This paper studies fast fueling of gaseous hydrogen into large hydrogen (H2) tanks suitable for maritime applications. Three modeling methods have been developed and evaluated: (1) Two-dimensional computational fluid dynamic (CFD) modeling (2) One-dimensional wall discretized modeling and (3) Zero-dimensional modeling. A detailed 2D CFD simulation of a small H2-tank was performed and validated with data from literature and then used to simulate a large H2-tank. Results from the 2D-model show non-uniform temperature distribution inside the large tank but not in the small H2-tank. The 1D-model can predict the mean temperature in small H2-tanks but not the inhomogeneous temperature field in large H2-tanks. The 0D-model is suitable as a screening tool to obtain rough estimates. Results from the modeling of the large H2-tank show that the heat transfer to the wall during fast filling is inhibited by heat conduction in the wall which leads to an unacceptably high mean hydrogen temperature.
Assessing the Potential of Decarbonization Options for Industrial Sectors
Jan 2024
Publication
Industry emits around a quarter of global greenhouse gas (GHG) emissions. This paper presents the first comprehensive review to identify the main decarbonization options for this sector and their abatement potentials. First we identify the important GHG emitting processes and establish a global average baseline for their current emissions intensity and energy use. We then quantify the energy and emissions reduction potential of the most significant abatement options as well as their technology readiness level (TRL). We find that energy-intensive industries have a range of decarbonization technologies available with medium to high TRLs and mature options also exist for decarbonizing low-temperature heat across a wide range of industrial sectors. However electrification and novel process change options to reduce emissions from high-temperature and sector-specific processes have much lower TRLs in comparison. We conclude by highlighting important barriers to the deployment of industrial decarbonization options and identifying future research development and demonstration needs.
Preliminary Design of a Fuel Cell/Battery Hybrid Powertrain for a Heavy-duty Yard Truck for Port Logistics
Jun 2021
Publication
The maritime transport and the port-logistic industry are key drivers of economic growth although they represent major contributors to climate change. In particular maritime port facilities are typically located near cities or residential areas thus having a significant direct environmental impact in terms of air and water quality as well as noise. The majority of the pollutant emissions in ports comes from cargo ships and from all the related ports activities carried out by road vehicles. Therefore a progressive reduction of the use of fossil fuels as a primary energy source for these vehicles and the promotion of cleaner powertrain alternatives is in order. The present study deals with the design of a new propulsion system for a heavy-duty vehicle for port applications. Specifically this work aims at laying the foundations for the development of a benchmark industrial cargo–handling hydrogen-fueled vehicle to be used in real port operations. To this purpose an on-field measurement campaign has been conducted to analyze the duty cycle of a commercial Diesel-engine yard truck currently used for terminal ports operations. The vehicle dynamics has been numerically modeled and validated against the acquired data and the energy and power requirements for a plug-in fuel cell/battery hybrid powertrain replacing the Diesel powertrain on the same vehicle have been evaluated. Finally a preliminary design of the new powertrain and a rule-based energy management strategy have been proposed and the electric energy and hydrogen consumptions required to achieve the target driving range for roll-on and roll-off operations have been estimated. The results are promising showing that the hybrid electric vehicle is capable of achieving excellent energy performances by means of an efficient use of the fuel cell. An overall amount of roughly 12 kg of hydrogen is estimated to be required to accomplish the most demanding port operation and meet the target of 6 h of continuous operation. Also the vehicle powertrain ensures an adequate all-electric range which is between approximately 1 and 2 h depending on the specific port operation. Potentially the hydrogen-fueled yard truck is expected to lead to several benefits such as local zero emissions powertrain noise elimination reduction of the vehicle maintenance costs improving of the energy management and increasing of operational efficiency.
Techno-economic Modelling of Zero-emission Marine Transport with Hydrogen Fuel and Superconducting Propulsion System: Case Study of a Passenger Ferry
Mar 2023
Publication
This paper proposes a techno-economic model for a high-speed hydrogen ferry. The model can describe the system properties i.e. energy demand weight and daily operating expenses of the ferry. A novel aspect is the consideration of superconductivity as a measure for cost saving in the setting where liquid hydrogen (LH2) can be both coolant and fuel. We survey different scenarios for a high-speed ferry that could carry 300 passengers. The results show that despite higher energy demand compressed hydrogen gas is more economical compared with LH2 for now; however constructing large-scale hydrogen liquefaction plants make it competitive in the future. Moreover compressed hydrogen gas is restricted to a shorter distance while LH2 makes longer distances possible and whenever LH2 is accessible using a superconducting propulsion system has a beneficial impact on both energy and cost savings. These effects strengthen if the operational time or the weight of the ferry increases.
The Impact of Sustainable Energy Technologies and Demand Response Programs on the Hub's Planning by the Practical Consideration of Tidal Turbines as a Novel Option
Apr 2023
Publication
This paper investigates a multi-objective optimal energy planning strategy for a hub incorporating renewable and non-renewable resources like PV tidal turbine fuel-cell CHP boiler micro-turbine reactor reformer electrolyzer and energy storage by utilizing the time of use program (TOU). In this strategy tidal turbine fuel-cell and reformer technologies are considered novel technologies that simultaneously reduce the proposed hub’s cost and pollution. The hub’s total cost and pollution are considered objective functions. To make the results more realistic characteristics of the tidal turbine are investigated by utilizing the manufactory’s company information. The problem is then modeled as real mixed integer programming (RMIP) and is solved in GAMS software using a CPLEX solver. Epsilon constraints method and fuzzy satisfying approach are used to select the optimal solution based on the proposed model. Finally a sensitivity analysis is performed to assess the effective parameters that affect the planning’s results. The results show that the overall pollution is reduced by about 9% by assuming the proposed planning and the total profit is increased by about 30%.
Towards Climate-neutral Aviation: Assessment of Maintenance Requirements for Airborne Hydrogen Storage and Distribution Systems
Apr 2023
Publication
Airlines are faced with the challenge of reducing their environmental footprint in an effort to push for climate-neutral initiatives that comply with international regulations. In the past the aviation industry has followed the approach of incremental improvement of fuel efficiency while simultaneously experiencing significant growth in annual air traffic. With the increase in air traffic negating any reduction in Greenhouse Gas (GHG) emissions more disruptive technologies such as hydrogen-based onboard power generation are required to reduce the environmental impact of airline operations. However despite initial euphoria and first conceptual studies for hydrogen-powered aircraft several decades ago there still has been no mass adoption to this day. Besides the challenges of a suitable ground infrastructure this can partly be attributed to uncertainties with the associated maintenance requirements and the expected operating costs to demonstrate the economic viability of this technology. With this study we address this knowledge gap by estimating changes towards scheduled maintenance activities for an airborne hydrogen storage and distribution system. In particular we develop a detailed system design for a hydrogen-powered fuel-cell-based auxiliary power generation and perform a comparative analysis with an Airbus A320 legacy system. That analysis allows us to (a) identify changes for the expected maintenance effort to enhance subsequent techno-economic assessments (b) identify implications of specific design assumptions with corresponding maintenance activities while ensuring regulatory compliance and (c) describe the impact on the resulting task execution. The thoroughly examined interactions between system design and subsequent maintenance requirements of this study can support practitioners in the development of prospective hydrogen-powered aircraft. In particular it allows the inclusion of maintenance implications in early design stages of corresponding system architectures. Furthermore since the presented methodology is transferable to different design solutions it provides a blueprint for alternative operating concepts such as the complete substitution of kerosene by hydrogen to power the main engines.
Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables
Jul 2024
Publication
Integrating carbon capture and storage (CCS) technology into an integrated energy system (IES) can reduce its carbon emissions and enhance its low-carbon performance. However the full CCS of flue gas displays a strong coupling between lean and rich liquor as carbon dioxide liquid absorbents. Its integration into IESs with a high penetration level of renewables results in insufficient flexibility and renewable curtailment. In addition integrating split-flow CCS of flue gas facilitates a short capture time giving priority to renewable energy. To address these limitations this paper develops a carbon capture utilization and storage (CCUS) method into which storage tanks for lean and rich liquor and a two-stage power-to-gas (P2G) system with multiple utilizations of hydrogen including a fuel cell and a hydrogen-blended CHP unit are introduced. The CCUS is integrated into an IES to build an electricity–heat–hydrogen–gas IES. Accordingly a deep low-carbon economic optimization strategy for this IES which considers stepwise carbon trading coal consumption renewable curtailment penalties and gas purchasing costs is proposed. The effects of CCUS the twostage P2G system and stepwise carbon trading on the performance of this IES are analyzed through a case-comparative analysis. The results show that the proposed method allows for a significant reduction in both carbon emissions and total operational costs. It outperforms the IES without CCUS with an 8.8% cost reduction and a 70.11% reduction in carbon emissions. Compared to the IES integrating full CCS the proposed method yields reductions of 6.5% in costs and 24.7% in emissions. Furthermore the addition of a two-stage P2G system with multiple utilizations of hydrogen further amplifies these benefits cutting costs by 13.97% and emissions by 12.32%. In addition integrating CCUS into IESs enables the full consumption of renewables and expands hydrogen utilization and the renewable consumption proportion in IESs can reach 69.23%.
Grid-neutral Hydrogen Mobility: Dynamic Modelling and Techno-economic Assessment of a Renewable-powered Hydrogen Plant
Jun 2024
Publication
The seasonally varying potential to produce electricity from renewable sources such as wind PV and hydropower is a challenge for the continuous supply of hydrogen for transport and mobility. Seasonal storage of energy allows to avoid the use of grid electricity when it is scarce; storage systems can thus increase the resilience of the energy system. For grid-neutral and renewable hydrogen production an electrolyser is considered together with a Power-to-Gas seasonal storage system which consists of a methanation the gas grid as intermediate storage and a steam reformer. As feed stream electricity from an own photovoltaic (PV) system is considered and for some cases additional electricity from the grid or from a wind turbine. The dynamic operation of the plant during a year is simulated. It is possible to safely supply fuel cell vehicles with hydrogen from the grid-neutral plant without using electricity when it is scarce and expensive. To supply 135 kgH2/day unit sizes of 1 MW–2.9 MW for the PV system and 0.9 MW–2.6 MW for the electrolysis are required depending on the amount of available grid-electricity. The usage of grid-electricity increases the capacity factor of the electrolysis which results in decreased unit sizes and in a better economic performance. Seasonal storage of energy is required which results in an increased hydrogen production in summer of approximately 50% more than directly needed by the fuel cell vehicles. The overall efficiency from electricity to hydrogen is decreased due to the storage path by 10%-points to 56% based on the higher heating value. Assuming a cost-equivalent hydrogen price per driven kilometre in comparison to the actual diesel price and electricity costs of 10 Ct/kWhel from the grid the revenues of the system are higher than the operating costs.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Investigation on Implementing Hydrogen Technology in Residential Sector
Jul 2024
Publication
Rapid urbanization and globalization are causing a rise in the energy demand within the residential sector. Currently majority of the energy demand for the residential sector being supplied from fossil fuels these sources account for greenhouse gas emissions responsible for anthropogenic-driven climate change. About 85 % of the world’s energy demands are being met by non-renewable sources of energy. An immediate need to shift towards renewable energy sources to generate electricity is the need of the hour. These long-standing renewable energy sources including solar hydropower and wind energy have been crucial pillars of sustainable energy for years. However as their implementation has matured we are increasingly recognizing their limitations. Issues such as the scarcity of suitable locations and the significant carbon footprint associated with constructing renewable energy infrastructure are becoming more apparent. Hydrogen has been found to play a vital role as an energy carrier in framing the energy picture in the 21st century. Currently about 1 % of the global energy demands are being met by hydrogen energy harnessed through renewable methods. Its low carbon emissions when compared to other methods lower comparative production costs and high energy efficiency of 40–60 % make it a suitable choice. Integrating hydrogen production systems with other renewable source of energy such as solar and wind energy have been discussed in this review in detail. With the concepts of green buildings or net zero energy buildings gaining attraction integration of hydrogen-based systems within residential and office sectors through the use of devices such as micro–Combined Heat and Power devices (mCHP) have proven to be effective and efficient. These devices have been found to save the consumed energy by 22 % along with an effective reduction in carbon emissions of 18 % when used in residential sectors. Using the rejected energy from other processes these mCHP devices can prove to be vital in meeting the energy demands of the residential sector. Through the support of government schemes mCHP devices have been widely used in countries such as Japan and Finland and have benefitted from the same. Hydrogen storage is critical for efficient operation of the integrated renewable systems as improper storage of the hydrogen produced could lead to human and environmental disasters. Using boron hydrides or ammonia (121 kg H2/m3 ) or through organic carriers hydrogen can be stored safely and easily regenerated without loss of material. A thorough comparison of all the renewable sources of energy that are used extensively is required to evaluate the merits of using hydrogen as an energy carrier which has been addressed in this review paper. The need to address the research gap in application of mCHP devices in the residential sector and the benefits they provide has been addressed in this review. With about 2500 GW of energy ready to be harnessed through the mCHP devices globally the potential of mCHP systems globally are discussed in detail in this paper. This review discusses challenges and solutions to hydrogen production storage and ways to implement hydrogen technology in the residential sector. This review allows researchers to build a renewable alternative with hydrogen as a clean energy vector for generating electricity in residential systems.
The Future Role of Offshore Renewable Energy Technologies in the North Sea Energy System
Jul 2024
Publication
Offshore renewables are expected to play a significant role in achieving the ambitious emission targets set by the North Sea countries. Among other factors energy technology costs and their cost reduction potential determine their future role in the energy system. While fixed-bottom offshore wind is well-established and competitive in this region generation costs of other emerging offshore renewable technologies remain high. Hence it is vital to better understand the future role of offshore renewables in the North Sea energy system and the impact of technological learning on their optimal deployments which is not well-studied in the current literature. This study implements an improved framework of integrated energy system analysis to overcome the stated knowledge gap. The approach applies detailed spatial constraints and opportunities of energy infrastructure deployment in the North Sea and also technology cost reduction forecasts of offshore renewables. Both of these parameters are often excluded or overlooked in similar analyses leading to overestimation of benefits and technology deployments in the energy system. Three significant conclusions are derived from this study. First offshore wind plays a crucial role in the North Sea power sector where deployment grows to a maximum of 498 GW by 2050 (222 GW of fixed-bottom and 276 GW of floating wind) from 100 GW in 2030 contributing up to 51% of total power generation and declining cumulative system cost of power and hydrogen system by 4.2% (approx. 40 billion EUR in cost savings) when compared with the slow learning and constrained space use case. Second floating wind deployment is highly influenced by its cost reduction trend and ability to produce hydrogen offshore; emphasizing the importance of investing in floating wind in this decade as the region lacks commercial deployments that would stimulate its cost reduction. Also the maximum floating wind deployment in the North Sea energy system declined by 70% (162 GW from 276 GW) when offshore hydrogen production was avoided while fixed-bottom offshore wind deployment remains unchanged. Lastly the role of other emerging offshore renewables remains limited in all scenarios considered as they are expensive compared to other technology choices in the system. However around 8 GW of emerging technologies was observed in Germany and the Netherlands when the deployment potential of fixed-bottom offshore wind became exhausted.
A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions
Aug 2024
Publication
Natural gas (NG) is favored for transportation due to its availability and lower CO2 emissions than fossil fuels despite drawbacks like poor lean combustion ability and slow burning. According to a few recent studies using hydrogen (H2 ) alongside NG and diesel in Tri-fuel mode addresses these drawbacks while enhancing efficiency and reducing emissions making it a promising option for diesel engines. Due to the importance and novelty of this the continuation of ongoing research and insufficient literature studies on HNG–diesel engine emissions that are considered helpful to researchers this research has been conducted. This review summarizes the recent research on the HNG–diesel Tri-fuel engines utilizing hydrogen-enriched natural gas (HNG). The research methodology involved summarizing the effect of engine design operating conditions fuel mixing ratios and supplying techniques on the CO CO2 NOx and HC emissions separately. Previous studies show that using natural gas with diesel increases CO and HC emissions while decreasing NOx and CO2 compared to pure diesel. However using hydrogen with diesel reduces CO CO2 and HC emissions but increases NOx. On the other hand HNG–diesel fuel mode effectively mitigates the disadvantages of using these fuels separately resulting in decreased emissions of CO CO2 HC and NOx. The inclusion of hydrogen improves combustion efficiency reduces ignition delay and enhances heat release and in-cylinder pressure. Additionally operational parameters such as engine power speed load air–fuel ratio compression ratio and injection parameters directly affect emissions in HNG–diesel Tri-fuel engines. Overall the Tri-fuel approach offers promising emissions benefits compared to using natural gas or hydrogen separately as dual-fuels.
Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study
Jul 2024
Publication
This article presents the concept of green transformation of the coal mining sector. Pump stations that belong to Spółka Restrukturyzacji Kopal´n S.A. (SRK S.A. Bytom Poland) pump out approximately 100 million m3 of mine water annually. These pump stations protect neighboring mines and lower-lying areas from flooding and protect subsurface aquifers from contamination. The largest cost component of maintaining a pumping station is the expenditure for purchasing electricity. Investment towards renewable energy sources will reduce the environmental footprint of pumping station operation by reducing greenhouse gas emissions. The concept of liquidation of an exemplary mining site in the context of a circular economy by proposing the development/revitalization of a coal mine site is presented. This concept involves the construction of a complex consisting of photovoltaic farms combined with efficient energy storage in the form of green hydrogen produced by water electrolysis. For this purpose the potential of liquidated mining sites will be utilized including the use of pumped mine wastewater. This article is conceptual. In order to reach the stated objective a body of literature and legal regulations was analyzed and an empirical study was conducted. Various scenarios for the operation of mine pumping stations have been proposed. The options presented provide full or nearly full energy self-sufficiency of the proposed pumping station operation concept. The effect of applying any option for upgrading the pumping station could result in the creation of jobs that are alternatives to mining jobs and a guarantee of efficient asset management.
Techno‐Economic Analysis of Hydrogen as a Storage Solution in an Integrated Energy System for an Industrial Area in China
Jun 2024
Publication
This study proposes four kinds of hybrid source–grid–storage systems consisting of pho‐ tovoltaic and wind energy and a power grid including different batteries and hydrogen storage systems for Sanjiao town. HOMER‐PRO was applied for the optimal design and techno‐economic analysis of each case aiming to explore reproducible energy supply solutions for China’s industrial clusters. The results show that the proposed system is a fully feasible and reliable solution for in‐ dustry‐based towns like Sanjiao in their pursuit of carbon neutrality. In addition the source‐side price sensitivity analysis found that the hydrogen storage solution was cost‐competitive only when the capital costs on the storage and source sides were reduced by about 70%. However the hydro‐ gen storage system had the lowest carbon emissions about 14% lower than the battery ones. It was also found that power generation cost reduction had a more prominent effect on the whole system’s NPC and LCOE reduction. This suggests that policy support needs to continue to push for genera‐ tion‐side innovation and scaling up while research on different energy storage types should be en‐ couraged to serve the needs of different source–grid–load–storage systems.
A Study on the Promoting Role of Renewable Hydrogen in the Transformation of Petroleum Refining Pathways
Jun 2024
Publication
The refining industry is shifting from decarbonization to hydrogenation for processing heavy fractions to reduce pollution and improve efficiency. However the carbon footprint of hydrogen production presents significant environmental challenges. This study couples refinery linear programming models with life cycle assessment to evaluate from a long-term perspective the role of low-carbon hydrogen in promoting sustainable and profitable hydrogenation refining practices. Eight hydrogen-production pathways were examined including those based on fossil fuels and renewable energy providing hydrogen for three representative refineries adopting hydrogenation decarbonization and co-processing routes. Learning curves were used to predict future hydrogen cost trends. Currently hydrogenation refineries using fossil fuels benefit from significant cost advantages in hydrogen production demonstrating optimal economic performance. However in the long term with increasing carbon taxes hydrogenation routes will be affected by the high carbon emissions associated with fossil-based hydrogen losing economic advantages compared to decarbonization pathways. With increasing installed capacity and technological advancements low-carbon hydrogen is anticipated to reach cost parity with fossil-based hydrogen before 2060. Coupling renewable hydrogen is expected to yield the most significant economic advantages for hydrogenation refineries in the long term. Renewable hydrogen drives the transition of refining processing routes from a decarbonization-oriented approach to a hydrogenation-oriented paradigm resulting in cleaner refining processes and enhanced competitiveness under emission-reduction pressures.
Optimization of the Joint Operation of an Electricity–Heat– Hydrogen–Gas Multi-Energy System Containing Hybrid Energy Storage and Power-to-Gas–Combined Heat and Power
Jun 2024
Publication
With the continuous development of hydrogen storage systems power-to-gas (P2G) and combined heat and power (CHP) the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally multiple scenarios are set up and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the twostage P2G the system emissions reduction can be 5.97% and 23.07% respectively and the total cost of operation can be reduced by 7.5% and 14.5% respectively.
Enhanced Management of Unified Energy Systems Using Hydrogen Fuel Cell Combined Heat and Power with a Carbon Trading Scheme Incentivizing Emissions Reduction
Jun 2024
Publication
In the quest to achieve “double carbon” goals the urgency to develop an efficient Integrated Energy System (IES) is paramount. This study introduces a novel approach to IES by refining the conventional Power-to-Gas (P2G) system. The inability of current P2G systems to operate independently has led to the incorporation of hydrogen fuel cells and the detailed investigation of P2G’s dual-phase operation enhancing the integration of renewable energy sources. Additionally this paper introduces a carbon trading mechanism with a refined penalty–reward scale and a detailed pricing tier for carbon emissions compelling energy suppliers to reduce their carbon footprint thereby accelerating the reduction in system-wide emissions. Furthermore this research proposes a flexible adjustment mechanism for the heat-to-power ratio in cogeneration significantly enhancing energy utilization efficiency and further promoting conservation and emission reductions. The proposed optimization model in this study focuses on minimizing the total costs including those associated with carbon trading and renewable energy integration within the combined P2G-Hydrogen Fuel Cell (HFC) cogeneration system. Employing a bacterial foraging optimization algorithm tailored to this model’s characteristics the study establishes six operational modes for comparative analysis and validation. The results demonstrate a 19.1% reduction in total operating costs and a 22.2% decrease in carbon emissions confirming the system’s efficacy low carbon footprint and economic viability.
Design of an Electric Vehicle Charging System Consisting of PV and Fuel Cell for Historical and Tourist Regions
Jun 2024
Publication
One of the most important problems in the widespread use of electric vehicles is the lack of charging infrastructure. Especially in tourist areas where historical buildings are located the installation of a power grid for the installation of electric vehicle charging stations or generating electrical energy by installing renewable energy production systems such as large-sized PV (photovoltaic) and wind turbines poses a problem because it causes the deterioration of the historical texture. Considering the need for renewable energy sources in the transportation sector our aim in this study is to model an electric vehicle charging station using PVPS (photovoltaic power system) and FC (fuel cell) power systems by using irradiation and temperature data from historical regions. This designed charging station model performs electric vehicle charging meeting the energy demand of a house and hydrogen production by feeding the electrolyzer with the surplus energy from producing electrical energy with the PVPS during the daytime. At night when there is no solar radiation electric vehicle charging and residential energy demand are met with an FC power system. One of the most important advantages of this system is the use of hydrogen storage instead of a battery system for energy storage and the conversion of hydrogen into electrical energy with an FC. Unlike other studies in our study fossil energy sources such as diesel generators are not included for the stable operation of the system. The system in this study may need hydrogen refueling in unfavorable climatic conditions and the energy storage capacity is limited by the hydrogen fuel tank capacity.
Optimization Strategy for Low-Carbon Economy of Integrated Energy System Considering Carbon Capture-Two Stage Power-to-Gas Hydrogen Coupling
Jun 2024
Publication
To further optimize the low-carbon economy of the integrated energy system (IES) this paper establishes a two-stage P2G hydrogen-coupled electricity–heat–hydrogen–gas IES with carbon capture (CCS). First this paper refines the two stages of P2G and introduces a hydrogen fuel cell (HFC) with a hydrogen storage device to fully utilize the hydrogen energy in the first stage of power-to-gas (P2G). Then the ladder carbon trading mechanism is considered and CCS is introduced to further reduce the system’s carbon emissions while coupling with P2G. Finally the adjustable thermoelectric ratio characteristics of the combined heat and power unit (CHP) and HFC are considered to improve the energy utilization efficiency of the system and to reduce the system operating costs. This paper set up arithmetic examples to analyze from several perspectives and the results show that the introduction of CCS can reduce carbon emissions by 41.83%. In the CCS-containing case refining the P2G two-stage and coupling it with HFC and hydrogen storage can lead to a 30% reduction in carbon emissions and a 61% reduction in wind abandonment costs; consideration of CHP and HFC adjustable thermoelectric ratios can result in a 16% reduction in purchased energy costs.
Operation Optimization of Regional Integrated Energy Systems with Hydrogen by Considering Demand Response and Green Certificate–Carbon Emission Trading Mechanisms
Jun 2024
Publication
Amidst the growing imperative to address carbon emissions aiming to improve energy utilization efficiency optimize equipment operation flexibility and further reduce costs and carbon emissions of regional integrated energy systems (RIESs) this paper proposes a low-carbon economic operation strategy for RIESs. Firstly on the energy supply side energy conversion devices are utilized to enhance multi-energy complementary capabilities. Then an integrated demand response model is established on the demand side to smooth the load curve. Finally consideration is given to the RIES’s participation in the green certificate–carbon trading market to reduce system carbon emissions. With the objective of minimizing the sum of system operating costs and green certificate–carbon trading costs an integrated energy system optimization model that considers electricity gas heat and cold coupling is established and the CPLEX solver toolbox is used for model solving. The results show that the coordinated optimization of supply and demand sides of regional integrated energy systems while considering multi-energy coupling and complementarity effectively reduces carbon emissions while further enhancing the economic efficiency of system operations.
Charting the Course: Navigating Decarbonisation Pathways in Greece, Germany, The Netherlands, and Spain’s Industrial Sectors
Jul 2024
Publication
In the quest for a sustainable future energy-intensive industries (EIIs) stand at the forefront of Europe’s decarbonisation mission. Despite their significant emissions footprint the path to comprehensive decarbonisation remains elusive at EU and national levels. This study scrutinises key sectors such as non-ferrous metals steel cement lime chemicals fertilisers ceramics and glass. It maps out their current environmental impact and potential for mitigation through innovative strategies. The analysis spans across Spain Greece Germany and the Netherlands highlighting sector-specific ecosystems and the technological breakthroughs shaping them. It addresses the urgency for the industry-wide adoption of electrification the utilisation of green hydrogen biomass bio-based or synthetic fuels and the deployment of carbon capture utilisation and storage to ensure a smooth transition. Investment decisions in EIIs will depend on predictable economic and regulatory landscapes. This analysis discusses the risks associated with continued investment in high-emission technologies which may lead to premature decommissioning and significant economic repercussions. It presents a dichotomy: invest in climate-neutral technologies now or face the closure and offshoring of operations later with consequences for employment. This open discussion concludes that while the technology for near-complete climate neutrality in EIIs exists and is rapidly advancing the higher costs compared to conventional methods pose a significant barrier. Without the ability to pass these costs to consumers the adoption of such technologies is stifled. Therefore it calls for decisive political commitment to support the industry’s transition ensuring a greener more resilient future for Europe’s industrial backbone.
Review of Hydrogen-Driven Power-to-X Technology and Application Status in China
Jul 2024
Publication
Given China’s ambition to realize carbon peak by 2030 and carbon neutralization by 2060 hydrogen is gradually becoming the pivotal energy source for the needs of energy structure optimization and energy system transformation. Thus hydrogen combined with renewable energy has received more and more attention. Nowadays power-to-hydrogen power-to-methanol and power-to-ammonia are regarded as the most promising three hydrogen-driven power-to-X technologies due to the many commercial or demonstration projects in China. In this paper these three hydrogen-driven power-to-X technologies and their application status in China are introduced and discussed. First a general introduction of hydrogen energy policies in China is summarized and then the basic principles technical characteristics trends and challenges of the three hydrogen-driven power-to-X technologies are reviewed. Finally several typical commercial or demonstration projects are selected and discussed in detail to illustrate the development of the power-to-X technologies in China.
Renewable Electricity and Green Hydrogen Integration for Decarbonization of “Hard-to-Abate” Industrial Sectors
Jul 2024
Publication
This paper investigates hydrogen’s potential to accelerate the energy transition in hardto-abate sectors such as steel petrochemicals glass cement and paper. The goal is to assess how hydrogen produced from renewable sources can foster both industrial decarbonization and the expansion of renewable energy installations especially solar and wind. Hydrogen’s dual role as a fuel and a chemical agent for process innovation is explored with a focus on its ability to enhance energy efficiency and reduce CO2 emissions. Integrating hydrogen with continuous industrial processes minimizes the need for energy storage making it a more efficient solution. Advances in electrolysis achieving efficiencies up to 60% and storage methods consuming about 10% of stored energy for compression are discussed. Specifically in the steel sector hydrogen can replace carbon as a reductant in the direct reduced iron (DRI) process which accounts for around 7% of global steel production. A next-generation DRI plant producing one million tons of steel annually would require approximately 3200 MW of photovoltaic capacity to integrate hydrogen effectively. This study also discusses hydrogen’s role as a co-fuel in steel furnaces. Quantitative analyses show that to support typical industrial plants hydrogen facilities of several hundred to a few thousand MW are necessary. “Virtual” power plants integrating with both the electrical grid and energy-intensive systems are proposed highlighting hydrogen’s critical role in industrial decarbonization and renewable energy growth.
Local Energy Community to Support Hydrogen Production and Network Flexibility
Jul 2024
Publication
This paper deals with the optimal scheduling of the resources of a renewable energy community whose coordination is aimed at providing flexibility services to the electrical distribution network. The available resources are renewable generation units battery energy storage systems dispatchable loads and power-to-hydrogen systems. The main purposes behind the proposed strategy are enhancement of self-consumption and hydrogen production from local resources and the maximization of the economic benefits derived from both the selling of hydrogen and the subsidies given to the community for the shared energy. The proposed approach is formulated as an economic problem accounting for the perspectives of both community members and the distribution system operator. In more detail a mixed-integer constrained non-linear optimization problem is formulated. Technical constraints related to the resources and the power flows in the electrical grid are considered. Numerical applications allow for verifying the effectiveness of the procedure. The results show that it is possible to increase self-consumption and the production of green hydrogen while providing flexibility services through the exploitation of community resources in terms of active and reactive power support. More specifically the application of the proposed strategy to different case studies showed that daily revenues of up to EUR 1000 for each MW of renewable energy generation installed can be obtained. This value includes the benefit obtained thanks to the provision of flexibility services which contribute about 58% of the total.
Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry
Jul 2024
Publication
Hydrogen produced from renewable energy sources is a valuable energy carrier for linking growing renewable electricity generation with the hard-to-abate sectors such as cement steel glass chemical and ceramics industries. In this context this paper presents a new model of hydrogen production based on solar photovoltaics and wind energy with application to a real-world ceramics factory. For this task a novel multipurpose profit-maximizing model is implemented using GAMS. The developed model explores hydrogen production with multiple value streams that enable technical and economical informed decisions under specific scenarios. Our results show that it is profitable to sell the hydrogen produced to the gas grid rather than using it for self-consumption for low-gas-price scenarios. On the other hand when the price of gas is significantly high it is more profitable to use as much hydrogen as possible for self-consumption to supply the factory and reduce the internal use of natural gas. The role of electricity self-consumption has proven to be key for the project’s profitability as without this revenue stream the project would not be profitable in any analysed scenario.
Artificial Intelligence for Hydrogen-Enabled Integrated Energy Systems: A Systematic Review
Aug 2024
Publication
Hydrogen-enabled Integrated Energy Systems (H-IES) stand out as a promising solution with the potential to replace current non-renewable energy systems. However their development faces challenges and has yet to achieve widespread adoption. These main challenges include the complexity of demand and supply balancing dynamic consumer demand and challenges in integrating and utilising hydrogen. Typical energy management strategies within the energy domain rely heavily on accurate models from domain experts or conventional approaches such as simulation and optimisation approaches which cannot be satisfied in the real-world operation of H-IES. Artificial Intelligence (AI) or Advanced Data Analytics (ADA) especially Machine Learning (ML) has the ability to overcome these challenges. ADA is extensively used across several industries however further investigation into the incorporation of ADA and hydrogen for the purpose of enabling H-IES needs to be investigated. This paper presents a systematic literature review to study the research gaps research directions and benefits of ADA as well as the role of hydrogen in H-IES.
Fuelling a Clean Future: A Systematic Review of Techno-Economic and Life Cycle Assessments in E-Fuel Development
Aug 2024
Publication
The transition to sustainable energy has ushered in the era of electrofuels (e-fuels) which are synthesised using electricity from renewable sources water and CO2 as a sustainable alternative to fossil fuels. This paper presents a systematic review of the techno-economic (TEA) and life cycle assessments (LCAs) of e-fuel production. We critically evaluate advancements in production technologies economic feasibility environmental implications and potential societal impacts. Our findings indicate that while e-fuels offer a promising solution to reduce carbon emissions their economic viability depends on optimising production processes and reducing input material costs. The LCA highlights the necessity of using renewable energy for hydrogen production to ensure the genuine sustainability of e-fuels. This review also identifies knowledge gaps suggesting areas for future research and policy intervention. As the world moves toward a greener future understanding the holistic implications of e-fuels becomes paramount. This review aims to provide a comprehensive overview to guide stakeholders in their decision-making processes.
Hydrogen Production from Wave Power Farms to Refuel Hydrogen-Powered Ships in the Mediterranean Sea
Aug 2024
Publication
The maritime industry is a major source of greenhouse gas (GHG) emissions largely due to ships running on fossil fuels. Transitioning to hydrogen-powered marine transportation in the Mediterranean Sea requires the development of a network of hydrogen refueling stations across the region to ensure a steady supply of green hydrogen. This paper explores the technoeconomic viability of harnessing wave energy from the Mediterranean Sea to produce green hydrogen for hydrogenpowered ships. Four promising island locations—near Sardegna Galite Western Crete and Eastern Crete—were selected based on their favorable wave potential for green hydrogen production. A thorough analysis of the costs associated with wave power facilities and hydrogen production was conducted to accurately model economic viability. The techno-economic results suggest that with anticipated cost reductions in wave energy converters the levelized cost of hydrogen could decrease to as low as 3.6 €/kg 4.3 €/kg 5.5 €/kg and 3.9 €/kg for Sardegna Galite Western Crete and Eastern Crete respectively. Furthermore the study estimates that in order for the hydrogen-fueled ships to compete effectively with their oil-fueled counterparts the levelized cost of hydrogen must drop below 3.5 €/kg. Thus despite the competitive costs further measures are necessary to make hydrogen-fueled ships a viable alternative to conventional diesel-fueled ships.
Design of a Hydrogen Refueling Station with Hydrogen Production by Electrolysis, Storage and Dispensing for a Bus Fleet in the City of Valencia
Jul 2024
Publication
Hydrogen technologies are evolving to decarbonise the transport sector. The present work focuses on the technical design of a Hydrogen Refueling Station to supply hydrogen to five buses in the city of Valencia Spain. The study deals with the technical selection of the components from production to consumption setting an efficient standardisation method. Different calculation are used to size the storage systems for 70.8 kg of hydrogen produced by the elecrolyser daily. For the high-pressure storage system massive and cascade methods are proposed being the last one more efficient (1577.53 Nm3 non usable volume compared to 9948.95 Nm3 of the massive method).
Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study
Jul 2024
Publication
The growing concern about climate change and the contemporary increase in mobility requirements call for faster cheaper safer and cleaner means of transportation. The retrofitting of fossil-fueled piston engine ultralight aerial vehicles to hydrogen power systems is an option recently proposed in this direction. The goal of this investigation is a comparative analysis of the environmental impact of conventional and hydrogen-based propulsive systems. As a case study a hybrid electric configuration consisting of a fuel cell with a nominal power of about 30 kW a 6 kWh LFP battery and a pressurized hydrogen vessel is proposed to replace a piston prop configuration for an ultralight aerial vehicle. Both power systems are modeled with a backward approach that allows the efficiency of the main components to be evaluated based on the load and altitude at every moment of the flight with a time step of 1 s. A typical 90 min flight mission is considered for the comparative analysis which is performed in terms of direct and indirect emissions of carbon dioxide water and pollutant substances. For the hydrogen-based configuration two possible strategies are adopted for the use of the battery: charge sustaining and charge depleting. Moreover the effect of the altitude on the parasitic power of the fuel cell compressor and consequently on the net efficiency of the fuel cell system is taken into account. The results showed that even if the use of hydrogen confines the direct environmental impact to the emission of water (in a similar quantity to the fossil fuel case) the indirect emissions associated with the production transportation and delivery of hydrogen and electricity compromise the desired achievement of pollutant-free propulsion in terms of equivalent emissions of CO2 and VOCs if hydrogen is obtained from natural gas reforming. However in the case of green hydrogen from electrolysis with wind energy the total (direct and indirect) emissions of CO2 can be reduced up to 1/5 of the fossil fuel case. The proposed configuration has the additional advantage of eliminating the problem of lead which is used as an additive in the AVGAS 100LL.
Mitigating Risks in Hydrogen-powered Transportation: A Comprehensive Risk Assessment for Hydrogen Refuelling Stations, Vehicles, and Garages
Oct 2024
Publication
Hydrogen is increasingly seen as a viable alternative to fossil fuels in transportation crucial to achieving net-zero energy goals. However the rapid expansion of hydrogen-powered transportation is outpacing safety standards posing significant risks due to limited operational experience involvement of new actors and lack of targeted guidelines. This study addresses the urgent need for a tailored comprehensive risk assessment framework. Using Structured What-If (SWIFT) and bowtie barrier analysis the research evaluates a hypothetical pilot project focusing on hydrogen refuelling stations vehicles and garages. The study identifies critical hazards and assesses the adequacy of current risk mitigation measures. Key findings reveal gaps in safety practices leading to 41 actionable steps and 5 key activities to help new actors manage hydrogen risks effectively. By introducing novel safety guidelines this research contributes to the development of safe hydrogen use and advances the understanding of hydrogen risks ensuring its sustainable integration into transportation systems.
Lifetime Design, Operation, and Cost Analysis for the Energy System of a Retrofitted Cargo Vessel with Fuel Cells and Batteries
Oct 2024
Publication
Fuel cell-battery electric drivetrains are attractive alternatives to reduce the shipping emissions. This research focuses on emission-free cargo vessels and provides insight on the design lifetime operation and costs of hydrogen-hybrid systems which require further research for increased utilization. A representative round trip is created by analysing one-year operational data based on load ramps and power frequency. A low-pass filter controller is employed for power distribution. For the lifetime cost analysis 14 scenarios with varying capital and operational expenses were considered. The Net Present Value of the retrofitted fuel cell-battery propulsion system can be up to $ 2.2 million lower or up to $ 18.8 million higher than the original diesel mechanical configuration highly dependent on the costs of green hydrogen and carbon taxes. The main propulsion system weights and volumes of the two versions are comparable but the hydrogen tank (68 tons 193 m3 ) poses significant design and safety challenges.
Assessment of a Coupled Electricity and Hydrogen Sector in the Texas Energy System in 2050
Oct 2024
Publication
Due to its ability to reduce emissions in the hard-to-abate sectors hydrogen is expected to play a significant role in future energy systems. This study modifies a sector-coupled dynamic modeling framework for electricity and hydrogen by including policy constraints carbon prices and possible hydrogen pathways and applies it to Texas in 2050. The impact of financial policies including the US clean hydrogen production tax credit on required infrastructure and costs are explored. Due to low natural gas prices financial levers are necessary to promote low-carbon hydrogen production as the optimized solution. The Levelized Costs of Hydrogen are found to be $1.50/kg in the base case (primarily via steam methane reformation production) and lie between $2.10 - 3.10/kg when production is via renewable electrolysis. The supporting infrastructure required to supply those volumes of renewable hydrogen is immense. The hydrogen tax credit was found to be enough to drive production via electrolysis.
A Perspective on Broad Deployment of Hydrogen-fueled Vehicles for Ground Freight Transportation with a Comparison to Electric Vehicles
Oct 2024
Publication
The pressing global challenge of climate change necessitates a concerted effort to limit greenhouse gas emissions particularly carbon dioxide. A critical pathway is to replace fossil fuel sources by electrification including transportation. While electrification of light-duty vehicles is rapidly expanding the heavy-duty vehicle sector is subject to challenges notably the logistical drawbacks of the size and weight of high-capacity batteries required for range as well as the time for battery charging. This Perspective highlights the potential of hydrogen fuel-cell vehicles as a viable alternative for heavy-duty road transportation. We evaluate the implications of hydrogen integration into the freight economy energy dynamics and CO2 mitigation and envision a roadmap for a holistic energy transition. Our critical opinion presented in this Perspective is that federal incentives to produce hydrogen could foster growth in the nascent hydrogen economy. The pathway that we propose is that initial focus on operators of large fleets that could control their own fueling infrastructure. This opinion was formed from private discussions with numerous stakeholders during the formation of one of the awarded hydrogen hubs if they focus on early adopters that could leverage the hydrogen supply chain.
Optimizing Green Hydrogen Production from Wind and Solar for Hard-to-abate Industrial Sectors Across Multiple Sites in Europe
Jul 2024
Publication
This article analyzes a power-to-hydrogen system designed to provide high-temperature heat to hard-to-abate industries. We leverage on a geospatial analysis for wind and solar availability and different industrial demand profiles with the aim to identify the ideal sizing of plant components and the resulting Levelized Cost of Hydrogen (LCOH). We assess the carbon intensity of the produced hydrogen especially when grid electricity is utilized. A methodology is developed to size and optimize the PV and wind energy capacity the electrolyzer unit and hybrid storage by combining compressed hydrogen storage with lithium-ion batteries. The hydrogen demand profile is generated synthetically thus allowing different industrial consumption profiles to be investigated. The LCOH in a baseline scenario ranges from 3.5 to 8.9 €/kg with the lowest values in wind-rich climates. Solar PV only plays a role in locations with high PV full-load hours. It was found that optimal hydrogen storage can cover the users’ demand for 2–3 days. Most of the considered scenarios comply with the emission intensity thresholds set by the EU. A sensitivity analysis reveals that a lower variability of the demand profile is associated with cost savings. An ideally constant demand profile results in a cost reduction of approximately 11 %.
Path Analysis of Using Hydrogen Energy to Reduce Greenhouse Gas Emissions in Global Aviation
Jul 2024
Publication
The rapid growth of global aviation emissions has significantly impacted the environment leading to an urgent need to use carbon reduction methods. This paper analyzes global aviation’s carbon dioxide (CO2) N2O and CH4 emission changes under different hydrogen energy application paths. The global warming potential over a 100-year period (GWP100) method is used to convert the emissions of N2O and CH4 into CO2-equivalent. Here we report the results: if the global aviation industry begins using hydrogen turbine engines by 2040 it could reduce cumulative CO2-equivalent emissions by 2.217E+10 tons by 2080 which is 2.12% higher than starting hydrogen fuel cell engines in 2045. However adopting hydrogen fuel cell engines 10 years earlier shows greater reduction capabilities than hydrogen turbine engines achieving an accumulated reduction of 3.006E+10 tons of CO2-equivalent emissions. Therefore the timing of adoption notably affects hydrogen fuel cell engines more than hydrogen turbine engines. Delaying adoption makes hydrogen fuel cell engines’ performance lag hydrogen turbine engines.
Hydrogen-fuelled Internal Combustion Engines: Direct Injection Versus Port-fuel Injection
Jul 2024
Publication
The road-transport is one of the major contributors to greenhouse global gas (GHG) emissions where hydrogen (H2) combustion engines can play a crucial role in the path towards the sector’s decarbonization goal. This study focuses on comparing the performance and emissions of port-fuel injection (PFI) and direct injection (DI) in a spark ignited combustion engine when is fuelled by hydrogen and other noteworthy fuels like methane and coke oven gas (COG). Computational fluid dynamic simulations are performed at optimal spark advance and air-fuel ratio (λ) for engine speeds between 2000 and 5000 rpm. Analysis reveals that brake power increases by 40% for DI attributed to 30.6% enhanced volumetric efficiency while the sNOx are reduced by 36% compared to PFI at optimal λ = 1.5 for hydrogen. Additionally H2 results in 71.8% and 67.2% reduction in fuel consumption compared to methane and COG respectively since the H2 lower heating value per unit of mass is higher.
A Multi-objective Planning Tool for the Optimal Supply of Green Hydrogen for an Inustrial Port Area Decarbonisation
Jul 2024
Publication
This study addresses the challenge of decarbonizing highly energy-intensive Industrial Port Areas (IPA) focusing on emissions from various sources like ship traffic warehouses buildings cargo handling equipment and hardto-abate industry typically hosted in port areas. The analysis and proposal of technological solutions and their optimal integration in the context of IPA is a topic of growing scientific interest with considerable social and economic implications. Representing the main novelties of the work this study introduces (i) the development of a novel IPA energy and green hydrogen hub located in a tropical region (Singapore); (ii) a multi-objective optimization approach to analyse synthesize and optimize the design and operation of the hydrogen and energy hub with the aim of supporting decision-making for decarbonization investments. A sensitivity analysis identifies key parameters affecting optimization results indicating that for large hydrogen demands imported ammonia economically outperforms other green hydrogen carriers. Conversely local hydrogen production via electrolysis becomes economically viable when the capital cost of alkaline electrolyser drops by at least 30 %. Carbon tax influences the choice of green hydrogen but its price variation mainly impacts system operation rather than design. Fuel cells and batteries are not considered economically feasible solutions in any scenario.
Predictive Maintenance and Reinspection Strategies for Hydrogen Refueling Station Pressure Vessels: A Case Study in South Korea
Jul 2024
Publication
Hydrogen refueling stations rely on pressure vessels capable of withstanding pressures up to 90 MPa while mitigating concerns related to hydrogen embrittlement. However a gap exists in understanding the long-term fatigue behavior of these vessels under real operational conditions. This study focuses on evaluating the safety of SA372 pressure vessels using operational data from a hydrogen refueling station in Pyeongtaek South Korea. A predictive reinspection methodology is proposed based on this evaluation. Parameters including hydrogen-induced stress intensity factor (KIH) initial crack size (a0 c0) and pressure vessel specifications are considered to assess critical crack depth (ac) critical usage cycles (Nc) and allowable usage cycles (Nallowed). Leveraging operational data collected between August and November 2023 fatigue analysis and Rainflow counting inform reinspection schedules. Results indicate a need for mid-bank vessel reinspection within the second year high-bank vessel reinspection every 20 years and low-bank vessel reinspection every 143 years in accordance with safety regulations. Additionally a revised refueling logic is proposed to optimize vehicle charging methods and pressure ranges enhancing operational safety. This study serves as a preliminary investigation highlighting the need for broader data collection and analysis to generalize findings across multiple stations.
Assessment of Energy Footprint of Pure Hydrogen-Supplied Vehicles in Real Conditions of Long-Term Operation
Jul 2024
Publication
The desire to maintain CO2 concentrations in the global atmosphere implies the need to introduce ’new’ energy carriers for transport applications. Therefore the operational consumption of each such potential medium in the ’natural’ exploitation of vehicles must be assessed. A useful assessment method may be the vehicle’s energy footprint resulting from the theory of cumulative fuel consumption presented in the article. Using a (very modest) database of long-term use of hydrogen-powered cars the usefulness of this method was demonstrated. Knowing the energy footprint of vehicles of a given brand and type and the statistical characteristics of the footprint elements it is also possible to assess vehicle fleets in terms of energy demand. The database on the use of energy carriers such as hydrogen in the long-term operation of passenger vehicles is still relatively modest; however as it has been shown valuable data can be obtained to assess the energy demand of vehicles of a given brand and type. Access to a larger operational database will allow for wider use of the presented method.
Component and System Levels Limitations in Power-Hydrogen Systems: Analytical Review
Jun 2024
Publication
This study identifies limitations and research and development (R&D) gaps at both the component and system levels for hydrogen energy systems (HESs) and specifies how these limitations impact HES adoption within the electric power system (EPS) decarbonization roadmap. To trace these limitations and potential solutions an analytical review is conducted in electrification and integration of HESs renewable energy sources (RESs) and multi-carrier energy systems (MCESs) in sequence. The study also innovatively categorizes HES integration challenges into component and system levels. At the component level technological aspects of hydrogen generation storage transportation and refueling are explored. At the system level HES coordination hydrogen market frameworks and adoption challenges are evaluated. Findings highlight R&D gaps including misalignment between HES operational targets and techno-economic development integration insufficiency model deficiencies and challenges in operational complexity. This study provides insights for sustainable energy integration by supporting the transition to a decarbonized energy system.
Green Hydrogen Energy Systems: A Review on Their Contribution to a Renewable Energy System
Jun 2024
Publication
Accelerating the transition to a cleaner global energy system is essential for tackling the climate crisis and green hydrogen energy systems hold significant promise for integrating renewable energy sources. This paper offers a thorough evaluation of green hydrogen’s potential as a groundbreaking alternative to achieve near-zero greenhouse gas (GHG) emissions within a renewable energy framework. The paper explores current technological options and assesses the industry’s present status alongside future challenges. It also includes an economic analysis to gauge the feasibility of integrating green hydrogen providing a critical review of the current and future expectations for the levelized cost of hydrogen (LCOH). Depending on the geographic location and the technology employed the LCOH for green hydrogen can range from as low as EUR 1.12/kg to as high as EUR 16.06/kg. Nonetheless the findings suggest that green hydrogen could play a crucial role in reducing GHG emissions particularly in hard-to-decarbonize sectors. A target LCOH of approximately EUR 1/kg by 2050 seems attainable in some geographies. However there are still significant hurdles to overcome before green hydrogen can become a cost-competitive alternative. Key challenges include the need for further technological advancements and the establishment of hydrogen policies to achieve cost reductions in electrolyzers which are vital for green hydrogen production.
Advancing Renewable Energy: Strategic Modeling and Optimization of Flywheel and Hydrogen-based Energy System
Sep 2024
Publication
This study introduces a hybrid energy storage system that combines advanced flywheel technology with hydrogen fuel cells and electrolyzers to address the variability inherent in renewable energy sources like solar and wind. Flywheels provide quick energy dispatch to meet peak demand while hydrogen fuel cells offer sustained power over extended periods. The research explores the strategic integration of these technologies within a hybrid photovoltaic (PV)-flywheel‑hydrogen framework aiming to stabilize the power supply. To evaluate the impact of flywheel integration on system sizing and load fluctuations simulations were conducted both before and after the flywheel integration. The inclusion of the flywheel resulted in a more balanced energy production and consumption profile across different seasons notably reducing the required fuel cell capacity from 100 kW to 30 kW. Additionally the integration significantly enhanced system stability enabling the fuel cell and electrolyzer to operate at consistent power during load fluctuations. The system achieved efficiencies of 71.42 % for the PEM electrolyzer and 62.14 % for the PEM fuel cell. However the introduction of the flywheel requires a higher capacity of PV modules and a larger electrolyzer. The overall flywheel's efficiency was impacted by parasitic energy losses resulting in an overall efficiency of 46.41 %. The minimum efficiency observed across various scenarios of the model studied was 3.14 % highlighting the importance of considering these losses in the overall system design. Despite these challenges the hybrid model demonstrated a substantial improvement in the reliability and stability of renewable energy systems effectively bridging short-term and long-term energy storage solutions.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
Comparative Analysis of Solar Cells and Hydrogen Fuels: A Mini Review
Jul 2024
Publication
The aim of this mini-review is to compare the effectiveness and potential of solar cells and hydrogen fuel technologies in clean energy generation. Key aspects such as efficiency scalability environmental footprint and technological maturity are examined. Solar cells are analyzed for their ability to convert sunlight into electricity efficiently and their potential for widespread deployment with minimal environmental impact. Hydrogen fuel technologies are assessed based on their efficiency in hydrogen production scalability and overall environmental footprint from production to end use. The review identifies significant challenges including high costs infrastructure needs and policy requirements as well as opportunities for innovation and market growth. The findings provide insights to guide decision-making towards a sustainable energy future.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Comparative Study of Electric and Hydrogen Mobility Infrastructures for Sustainable Public Transport: A PyPSA Optimization for a Remote Island Context
Jul 2024
Publication
Decarbonizing road transportation is vital for addressing climate change given that the sector currently contributes to 16% of global GHG emissions. This paper presents a comparative analysis of electric and hydrogen mobility infrastructures in a remote context i.e. an off-grid island. The assessment includes resource assessment and sizing of renewable energy power plants to facilitate on-site self-production. We introduce a comprehensive methodology for sizing the overall infrastructure and carry out a set of techno-economic simulations to optimize both energy performance and cost-effectiveness. The levelized cost of driving at the hydrogen refueling station is 0.40 e/km i.e. 20% lower than the electric charging station. However when considering the total annualized cost the battery-electric scenario (110 ke/year) is more favorable compared to the hydrogen scenario (170 ke/year). To facilitate informed decision-making we employ a multi-criteria decision-making analysis to navigate through the techno-economic findings. When considering a combination of economic and environmental criteria the hydrogen mobility infrastructure emerges as the preferred solution. However when energy efficiency is taken into account electric mobility proves to be more advantageous.
Capacity Expansion Planning of Hydrogen-Enabled Industrial Energy Systems for Carbon Dioxide Peaking
Jul 2024
Publication
As the main contributor of carbon emissions the low-carbon transition of the industrial sector is important for achieving the goal of carbon dioxide peaking. Hydrogen-enabled industrial energy systems (HIESs) are a promising way to achieve the low-carbon transition of industrial energy systems since the hydrogen can be well coordinated with renewable energy sources and satisfy the high and continuous industrial energy demand. In this paper the long-term capacity expansion planning problem of the HIES is formulated from the perspective of industrial parks and the targets of carbon dioxide peaking and the gradual decommissioning of existing equipment are considered as constraints. The results show that the targets of carbon dioxide peaking before different years or with different emission reduction targets can be achieved through the developed method while the economic performance is ensured to some extent. Meanwhile the overall cost of the strategy based on purchasing emission allowance is three times more than the cost of the strategy obtained by the developed method while the emissions of the two strategies are same. In addition long-term carbon reduction policies and optimistic expectations for new energy technologies will help industrial parks build more new energy equipment for clean transformation.
Developing Hydrogen Energy Hubs: The Role of H2 Prices, Wind Power and Infrastructure Investments in Northern Norway
Aug 2024
Publication
Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea which can be used to produce hydrogen. However exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh excluding costs for storage and transport with blue hydrogen being cheaper than green. Depending on the assumptions a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh transported by pipelines. Expanding power generation capacity can be crucial and electricity and hydrogen exports are unlikely to co-exist.
Will Hydrogen and Synthetic Fuels Energize our Future? Their Role in Europe's Climate-neutral Energy System and Power System Dynamics
Aug 2024
Publication
This study evaluates the technoeconomic impacts of direct and indirect electrification on the EU's net-zero emissions target by 2050. By linking the JRC-EU-TIMES long-term energy system model with PLEXOS hourly resolution power system model this research offers a detailed analysis of the interactions between electricity hydrogen and synthetic fuel demand production technologies and their effects on the power sector. It highlights the importance of high temporal resolution power system analysis to capture the synergistic effects of these components often overlooked in isolated studies. Results indicate that direct electrification increases significantly and unimpacted by biomass CCS and nuclear energy assumptions. However indirect electrification in the form of hydrogen varies significantly between 1400 and 2200 TWhH2 by 2050. Synthetic fuels are essential for sector coupling making up 6–12% of total energy consumption by 2050 with the power sector supplying most hydrogen and CO2 for their production. Varying levels of indirect electrification impact electrolysers renewable energy and firm capacities. Higher indirect electrification increases electrolyser capacity factors by 8% leading to more renewable energy curtailment but improves system reliability by reducing 11 TWh unserved energy and increasing flexibility options. These insights inform EU energy policies stressing the need for a balanced approach to electrification biomass use and CCS to achieve a sustainable and reliable net-zero energy system by 2050. We also explore limitations and sensitivities.
An Assessment of Decarbonisation Pathways for Intercontinental Deep-sea Shipping Using Power-to-X Fuels
Aug 2024
Publication
Shipping corridors act as the arteries of the global economy. The maritime shipping sector is also a major source of greenhouse gas emissions accounting for 2.9% of the global total. The international nature of the shipping sector combined with issues surrounding the use of battery technology means that these emissions are considered difficult to eliminate. This work explores the transition to renewable fuels by examining the use of electrofuels (in the form of liquid hydrogen methane methanol ammonia and Fischer-Tropsch fuel) to decarbonise large container ships from a technical economic and environmental perspective. For an equivalent range to current fossil fuel vessels the cargo capacity of vessels powered by electrofuels decreases by between 3% and 16% depending on the fuel of choice due to the lower energy density compared with conventional marine fuels. If vessel operators are willing to sacrifice range cargo space can be preserved by downsizing onboard energy storage which necessitates more frequent refuelling. For a realistic green hydrogen cost of €3.5/kg (10.5 €c/kWh) in 2030 the use of electrofuels in the shipping sector results in an increase in the total cost of ownership of between 124% and 731% with liquid hydrogen in an internal combustion engine being the most expensive and methanol in an internal combustion engine resulting in the lowest cost increase. Despite this we find that the increased transportation costs of some consumer goods to be relatively small adding for example less than €3.27 to the cost of a laptop. In general fuels which do not require cryogenic storage and can be used in internal combustion engines result in the lowest cost increases. For policymakers reducing the environmental impact of the shipping sector is a key priority. The use of liquid hydrogen which results in the largest cost increase offers a 70% reduction in GHG emissions for an electricity carbon intensity of 80 gCO2e/ kWh which is the greatest reduction of all fuels assessed in this work. A minimum carbon price of €400/tCO2 is required to allow these fuels to reach parity with conventional shipping operations. To meet European Union emissions reductions targets electricity with an emissions intensity below 40 gCO2e/kWh is required which suggests that for electrofuels to be truly sustainable direct connection with a source of renewable electricity is required.
Green Hydrogen and Wind Synergy: Assessing Economic Benefits and Optimal Operational Strategies
Aug 2024
Publication
Volatile electricity prices have raised concerns about the economic feasibility of wind projects in Finland. This study assesses the economic viability and optimal operational strategies for integrating wind-powered green hydrogen production systems. Utilizing modeling and optimization this research evaluates various wind farms in Western Finland over electricity market scenarios from 2019 to 2022 with forecasts extending to 2030. Key economic metrics considered include internal rate of return future value net present value (NPV) and the levelized cost of hydrogen (LCOH). Results indicate that integration of hydrogen production with wind farms shows economic benefits over standalone wind projects potentially reducing LCOH to €2.0/kgH2 by 2030 in regular and low electricity price scenarios and to as low as €0.6/kgH2 in high-price scenarios. The wind farm with the highest capacity factor achieves 47% reductions in LCOH and 22% increases in NPV underscoring the importance of strategic site selection and operational flexibility.
Economic and Environmental Analyses of an Integrated Power and Hydrogen Production Systems Based on Solar Thermal Energy
Aug 2024
Publication
This study introduces a novel hybrid solar–biomass cogeneration power plant that efficiently produces heat electricity carbon dioxide and hydrogen using concentrated solar power and syngas from cotton stalk biomass. Detailed exergy-based thermodynamic economic and environmental analyses demonstrate that the optimized system achieves an exergy efficiency of 48.67% and an exergoeconomic factor of 80.65% and produces 51.5 MW of electricity 23.3 MW of heat and 8334.4 kg/h of hydrogen from 87156.4 kg/h of biomass. The study explores four scenarios for green hydrogen production pathways including chemical looping reforming and supercritical water gasification highlighting significant improvements in levelized costs and the environmental impact compared with other solar-based hybrid systems. Systems 2 and 3 exhibit superior performance with levelized costs of electricity (LCOE) of 49.2 USD/MWh and 55.4 USD/MWh and levelized costs of hydrogen (LCOH) of between 10.7 and 19.5 USD/MWh. The exergoenvironmental impact factor ranges from 66.2% to 73.9% with an environmental impact rate of 5.4–7.1 Pts/MWh. Despite high irreversibility challenges the integration of solar energy significantly enhances the system’s exergoeconomic and exergoenvironmental performance making it a promising alternative as fossil fuel reserves decline. To improve competitiveness addressing process efficiency and cost reduction in solar concentrators and receivers is crucial.
Economic Framework for Green Shipping Corridors: Evaluating Cost-effective Transition from Fossil Fuels Towards Hydrogen
Aug 2024
Publication
Global warming’s major cause is the emission of greenhouse-effect gases (GHG) especially carbon dioxide (CO2) whose main source is the combustion of fossil fuels. Fossil fuels serve as the primary energy source in many industries including shipping which is the focus of this study. One of the measures proposed to tackle GHG emissions is the development of green shipping corridors - carbon-free shipping routes that require the transition to alternative fuels which are gaining competitiveness. One of the reasons for that is carbon pricing which taxes CO2 emissions. However the lack of consensus on the most cost-advantageous alternative fuel in the long run results in the delay of the implementation of green shipping corridors. To make it more accessible for stakeholders to conduct an economic analysis of the various options a framework to determine and minimize the costs of transitioning from fossil fuels to any alternative fuel is proposed over the period of one voyage considering the lost opportunity cost the deployment cost of bunkering vessels at the necessary call ports the cost of converting the vessel the car-bon emissions tax cost and the fuel cost. This will allow stakeholders to choose the most economical alternative fuel accelerating the development of green shipping corridor initiatives. To validate the effectiveness of the framework it was applied in a case study involving a shipowner seeking to transition from heavy fuel oil (HFO) to Ammonia Hydrogen Liquefied Natural Gas (LNG) or Methanol. This study faced limitations due to the unknown costs of installing bunkering vessels for Ammonia and Hydrogen. However it evaluates the cost-effectiveness of alternative fuels providing insights into their short-term economic viability. The results showed that Hydrogen is the most costadvantageous fuel until a deployment cost per bunkering vessel of 1990285$ for a sailing speed of 22 knots and 2190171$ for a sailing speed of 18 knots is reached after which LNG becomes the most economical option regardless of variations in the carbon tax. Moreover a sensitivity analysis was conducted to determine the effects of variations in parameters such as carbon tax fuel prices and vessel conversion costs in the total cost of each fuel option. Results highlighted that even though HFO remains the most economical fuel option even when considering a high increase in carbon tax the cost gap between HFO and alternative fuels narrows significantly with the increase in carbon tax. Furthermore the sailing speed impacts the fuels’ competitiveness as the cost difference between HFO and alternative fuels decreases at higher speeds.
Hydrogen Energy in Electrical Power Systems: A Review and Future Outlook
Aug 2024
Publication
Hydrogen energy as a zero-carbon emission type of energy is playing a significant role in the development of future electricity power systems. Coordinated operation of hydrogen and electricity will change the direction and shape of energy utilization in the power grid. To address the evolving power system and promote sustainable hydrogen energy development this paper initially examines hydrogen preparation and storage techniques summarizes current research and development challenges and introduces several key technologies for hydrogen energy application in power systems. These include hydrogen electrification technology hydrogen-based medium- and long-term energy storage and hydrogen auxiliary services. This paper also analyzes several typical modes of hydrogen–electricity coupling. Finally the future development direction of hydrogen energy in power systems is discussed focusing on key issues such as cost storage and optimization.
Forecasting the Development of Clean Energy Vehicles in Large Cities: A System Dynamics Perspective
Jan 2024
Publication
Clean energy vehicles (CEVs) e.g. battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are being adopted gradually to substitute for internal combustion engine vehicles (ICEVs) around the world. The fueling infrastructure is one of the key drivers for the development of the CEV market. When the government develops funding policies to support the fueling infrastructure development for FCEVs and BEVs it has to assess the effectiveness of different policy options and identify the optimal policy combination which is very challenging in transportation research. In this paper we develop a system dynamics model to study the feedback mechanism between the fueling infrastructure funding policies and the medium- to long-term diffusion of FCEVs and BEVs and the competition between FCEVs and BEVs based on relevant policy and market data in Guangzhou China. The results of the modeling analysis are as follows. (1) Funding hydrogen refueling stations and public charging piles has positive implications for achieving the substitution of CEVs for ICEVs. (2) Adjusting the funding ratio of hydrogen refueling stations and public charging piles or increasing the funding budget and extending the funding cycle does not have a significant impact on the overall substitution of CEVs for ICEVs but only impacts the relative competitive advantage between FCEVs and BEVs. (3) An equal share of funding for hydrogen refueling stations and public charging piles would have better strategic value for future net-zero-emissions urban transportation. (4) Making a moderate-level full investment in hydrogen refueling stations coupled with hydrogen refueling subsidies can provide the ideal conditions for FCEV diffusion.
Energy and Economic Advantages of Using Solar Stills for Renewable Energy-Based Multi-Generation of Power and Hydrogen for Residential Buildings
Apr 2024
Publication
The multi-generation systems with simultaneous production of power by renewable energy in addition to polymer electrolyte membrane electrolyzer and fuel cell (PEMFC-PEMEC) energy storage have become more and more popular over the past few years. The fresh water provision for PEMECs in such systems is taken into account as one of the main challenges for them where conventional desalination technologies such as reverse osmosis (RO) and mechanical vapor compression (MVC) impose high electricity consumption and costs. Taking this point into consideration as a novelty solar still (ST) desalination is applied as an alternative to RO and MVC for better techno-economic justifiability. The comparison made for a residential building complex in Hawaii in the US as the case study demonstrated much higher technical and economic benefits when using ST compared with both MVC and RO. The photovoltaic (PV) installed capacity decreased by 11.6 and 7.3 kW compared with MVC and RO while the size of the electrolyzer declined by 9.44 and 6.13% and the hydrogen storage tank became 522.1 and 319.3 m3 smaller respectively. Thanks to the considerable drop in the purchase price of components the payback period (PBP) dropped by 3.109 years compared with MVC and 2.801 years compared with RO which is significant. Moreover the conducted parametric study implied the high technical and economic viability of the system with ST for a wide range of building loads including high values.
Hydrogen Supply Chain and Refuelling Network Design: Assessment of Alternative Scenarios for the Long-haul Road Freight in the UK
Mar 2023
Publication
Shifting from fossil fuels to clean alternative fuel options such as hydrogen is an essential step in decarbonising the road freight transport sector and facilitating an efficient transition towards zero-emissions goods distribution of the future. Designing an economically viable and competitive Hydrogen Supply Chain (HSC) to support and accelerate the widespread adoption of hydrogen powered Heavy Goods Vehicles (H2-HGVs) is however significantly hindered by the lack of the infrastructure required for producing storing transporting and distributing the required hydrogen. This paper focuses on a bespoke design of a hydrogen supply chain and distribution network for the long-haul road freight transportation in the UK and develops an improved end-to-end and spatially-explicit optimisation tool to perform scenario analysis and provide important first-hand managerial and policy making insights. The proposed methodology improves over existing grid-based methodologies by incorporating spatially-explicit locations of Hydrogen Refuelling Stations (HRSs) and allowing further flexibility and accuracy. Another distinctive feature of the method and the analyses carried out in the paper pertains to the inclusion of bulk geographically agnostic as well as geological underground hydrogen storage options and reporting on significant cost saving opportunities. Finally the curve for H2-HGVs penetration levels safety stock period decisions and the transport mode capacity against hydrogen levelized cost at pump have been generated as important policy making tools to provide decision support and insights into cost resilience and reliability of the HSC.
Greenhouse Gas Emissions of a Hydrogen Engine for Automotive Application through Life-Cycle Assessment
May 2024
Publication
Hydrogen combustion engine vehicles have the potential to rapidly enter the market and reduce greenhouse gas emissions (GHG) compared to conventional engines. The ability to provide a rapid market deployment is linked to the fact that the industry would take advantage of the existing internal combustion engine production chain. The aim of this paper is twofold. First it aims to develop a methodology for applying life-cycle assessment (LCA) to internal combustion engines to estimate their life-cycle GHG emissions. Also it aims to investigate the decarbonization potential of hydrogen engines produced by exploiting existing diesel engine technology and assuming diverse hydrogen production routes. The boundary of the LCA is cradle-to-grave and the assessment is entirely based on primary data. The products under study are two monofuel engines: a hydrogen engine and a diesel engine. The hydrogen engine has been redesigned using the diesel engine as a base. The engines being studied are versatile and can be used for a wide range of uses such as automotive cogeneration maritime off-road and railway; however this study focuses on their application in pickup trucks. As part of the redesign process certain subsystems (e.g. combustion injection ignition exhaust gas recirculation and exhaust gas aftertreatment) have been modified to make the engine run on hydrogen. Results revealed that employing a hydrogen engine using green hydrogen (i.e. generated from water electrolysis using wind-based electricity) might reduce GHG emission by over 90% compared to the diesel engine This study showed that the benefits of the new hydrogen engine solution outweigh the increase of emissions related to the redesign process making it a potentially beneficial solution also for reconditioning current and used internal combustion engines.
Performance, Emissions, and Economic Analyses of Hydrogen Fuel Cell Vehicles
May 2024
Publication
The transport sector is considered to be a significant contributor to greenhouse gas emissions as this sector emits about one-fourth of global CO2 emissions. Transport emissions contribute toward climate change and have been linked to adverse health impacts. Therefore alternative and sustainable transport options are urgent for decarbonising the transport sector and mitigating those issues. Hydrogen fuel cell vehicles are a potential alternative to conventional vehicles which can play a significant role in decarbonising the future transport sector. This study critically analyses the recent works related to hydrogen fuel cell integration into vehicles modelling and experimental investigations of hydrogen fuel cell vehicles with various powertrains. This study also reviews and analyses the performance energy management strategies lifecycle cost and emissions of fuel cell vehicles. Previous literature suggested that the fuel consumption and well-to-wheel greenhouse gas emissions of hydrogen fuel cell-powered vehicles are significantly lower than that of conventional internal combustion vehicles. Hydrogen fuel cell vehicles consume about 29–66 % less energy and cause approximately 31–80 % less greenhouse gas emissions than conventional vehicles. Despite this the lifecycle cost of hydrogen fuel cell vehicles has been estimated to be 1.2–12.1 times higher than conventional vehicles. Even though there has been recent progress in energy management in hydrogen fuel cell electric vehicles there are a number of technical and economic challenges to the commercialisation of hydrogen fuel cell vehicles. This study presents current knowledge gaps and details future research directions in relation to the research advancement of hydrogen fuel cell vehicles.
Study on the Effects of the Hydrogen Substitution Rate on the Performance of a Hydrogen–Diesel Dual-Fuel Engine under Different Loads
Aug 2023
Publication
Due to having zero carbon emissions and renewable advantages hydrogen has great prospects as a renewable form of alternate energy. Engine load and hydrogen substitution rate have a considerable influence on a hydrogen–diesel dual-fuel engine’s efficiency. This experiment’s objective is to study the influence of hydrogen substitution rate on engine combustion and emission under different loads and to study the impact of exhaust gas recirculation (EGR) technology or main injection timing on the engine’s capability under high load and high hydrogen substitution rate. The range of the maximum hydrogen substitution rate was determined under different loads (30%~90%) at 1800 rpm and then the effects of the EGR rate (0%~15%) and main injection timing (−8 ◦CA ATDC~0 ◦CA ATDC) on the engine performance under 90% high load were studied. The research results show that the larger the load the smaller the maximum hydrogen substitution rate that can be added to the dual-fuel engine. Under each load with the increase of the hydrogen substitution rate the cylinder pressure and the peak heat release rate (HRR) increase the equivalent brake-specific fuel consumption (BSFCequ) decreases the thermal efficiency increases the maximum thermal efficiency is 43.1% the carbon dioxide (CO2 ) emission is effectively reduced by 35.2% and the nitrogen oxide (NOx) emission decreases at medium and low loads and the maximum increase rate is 20.1% at 90% load. Under high load with the increase of EGR rate or the delay of main injection timing the problem of NOx emission increases after hydrogen doping can be effectively solved. As the EGR rate rises from 0% to 15% the maximum reduction of NOx is 63.1% and with the delay of main injection timing from −8 ◦CA ATDC to 0 ◦CA ATDC the maximum reduction of NOx is 44.5%.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
Techno-economic Analysis and Predictive Operation of a Power-to-hydrogen for Renewable Microgrids
Oct 2023
Publication
To enhance renewable energy (RE) generation and maintain power balance energy storage systems are of utmost importance. This research introduces a cutting-edge Power-to-Hydrogen (PtH) framework that harnesses hydrogen as a clean and versatile energy storage medium. The primary focus of this study lies in optimizing power flow within a microgrid (G) equipped with RE and energy storage systems considering various factors such as RE generation power demand battery charge cycles and operational costs. To achieve the optimal balance between power generation and consumption a sophisticated mathematical solution is devised. This solution governs the charging and discharging patterns for both battery and electrolyzer ensuring a harmonious power equilibrium. The use of short-term forecasting further refines the optimization process adapting the parameters based on anticipated RE sources and load requirements. To fine-tune the power management solution for day-to-day operations an artificial neural fuzzy inference system (ANFIS)-based shortterm prediction model is employed. The predictive analysis provides confidence intervals for crucial aspects including power generation demand battery charging cycles and hydrogen generation. This facilitates precise cost estimation across various hydrogen and heat price ranges. the proposed PtH optimization framework offers an efficient approach to balance power generation and consumption in Gs driven by RE sources and energy storage. To validate the proposed approach numerical simulations are performed based on data from wind and solar farms load requirements and cost of energy. The results show that the proposed energy management strategy significantly reduces operational costs and optimizes PtH generation while maintaining power balance within the microgrid (G). The predictive approach helps fine-tune the optimization process improving efficiency and cost-effectiveness. The research convincingly demonstrate the economic advantages of adopting hydrogen as an energy storage medium paving the way for a cleaner and more sustainable energy future.
Power Cost and CO2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles
Nov 2023
Publication
Hydrogen is considered the primary energy source of the future. The best use of hydrogen is in microgrids that have renewable energy sources (RES). These sources have a small impact on the environment when it comes to carbon dioxide (CO2 ) emissions and a power generation cost close to that of conventional power plants. Therefore it is important to study the impact on the environment and the power cost. The proposed microgrid comprises loads RESs (micro-hydro and photovoltaic power plants) a hydrogen storage tank an electric battery and fuel cell vehicles. The power cost and CO2 emissions are calculated and compared for various scenarios including the four seasons of the year compared with the work of other researchers. The purpose of this paper is to continuously supply the loads and vehicles. The results show that the microgrid sources and hydrogen storage can supply consumers during the spring and summer. For winter and autumn the power grid and steam reforming of natural gas must be used to cover the demand. The highest power costs and CO2 emissions are for winter while the lowest are for spring. The power cost increases during winter between 20:00 and 21:00 by 336%. The CO2 emissions increase during winter by 8020%.
Science and Technology of Ammonia Combustion
Nov 2018
Publication
This paper focuses on the potential use of ammonia as a carbon-free fuel and covers recent advances in the development of ammonia combustion technology and its underlying chemistry. Fulfilling the COP21 Paris Agreement requires the de-carbonization of energy generation through utilization of carbon-neutral and overall carbon-free fuels produced from renewable sources. Hydrogen is one of such fuels which is a potential energy carrier for reducing greenhouse-gas emissions. However its shipment for long distances and storage for long times present challenges. Ammonia on the other hand comprises 17.8% of hydrogen by mass and can be produced from renewable hydrogen and nitrogen separated from air. Furthermore thermal properties of ammonia are similar to those of propane in terms of boiling temperature and condensation pressure making it attractive as a hydrogen and energy carrier. Ammonia has been produced and utilized for the past 100 years as a fertilizer chemical raw material and refrigerant. Ammonia can be used as a fuel but there are several challenges in ammonia combustion such as low flammability high NOx emission and low radiation intensity. Overcoming these challenges requires further research into ammonia flame dynamics and chemistry. This paper discusses recent successful applications of ammonia fuel in gas turbines co-fired with pulverize coal and in industrial furnaces. These applications have been implemented under the Japanese ‘Cross-ministerial Strategic Innovation Promotion Program (SIP): Energy Carriers’. In addition fundamental aspects of ammonia combustion are discussed including characteristics of laminar premixed flames counterflow twin-flames and turbulent premixed flames stabilized by a nozzle burner at high pressure. Furthermore this paper discusses details of the chemistry of ammonia combustion related to NOx production processes for reducing NOx and validation of several ammonia oxidation kinetics models. Finally LES results for a gas-turbine-like swirl-burner are presented for the purpose of developing low-NOx single-fuelled ammonia gas turbine combustors.
An Integrated Demand Response Dispatch Strategy for Low-carbon Energy Supply Park Considering Electricity-Hydrogen-Carbon Coordination
Apr 2023
Publication
Driven by the goal of ‘carbon peak carbon neutrality’ an integrated demand response strategy for integrated electricity– hydrogen energy systems is proposed for low-carbon energy supply parks considering the multi-level and multi-energy characteristics of campus-based microgrids. Firstly considering the spatial and temporal complementary nature of wind and photovoltaic generation and energy utilization the energy flow framework of the park is built based on the electricity and hydrogen energy carriers. Clean energy is employed as the main energy supply and power heat cooling and gas loads are considered energy consumption. Secondly the operation mechanism of coupled hydrogen storage hydrogen fuel cell and carbon capture equipment is analyzed in the two-stage power-to-gas conversion process. Thirdly considering the operating costs and environmental costs of the park an integrated demand response dispatch model is constructed for the coupled electricity– hydrogen–carbon system while satisfying the system equipment constraints network constraints and energy balance constraints of the park system. Finally Case study in an energy supply park system is implemented. The dispatch results of the integrated demand response with customer participation in the conventional electricity–hydrogen and electricity–hydrogen–carbon modes are compared to verify the effectiveness of the proposed strategy in renewable accommodation environmental protection and economic benefits.
Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization
Apr 2024
Publication
To reach climate neutrality by 2050 a goal that the European Union set itself it is necessary to change and modify the whole EU’s energy system through deep decarbonization and reduction of greenhouse-gas emissions. The study presents a current insight into the global energy-transition pathway based on the hydrogen energy industry chain. The paper provides a critical analysis of the role of clean hydrogen based on renewable energy sources (green hydrogen) and fossil-fuels-based hydrogen (blue hydrogen) in the development of a new hydrogen-based economy and the reduction of greenhouse-gas emissions. The actual status costs future directions and recommendations for low-carbon hydrogen development and commercial deployment are addressed. Additionally the integration of hydrogen production with CCUS technologies is presented.
Perspectives on the Development of Technologies for Hydrogen as a Carrier of Sustainable Energy
Aug 2023
Publication
Hydrogen is a prospective energy carrier because there are practically no gaseous emissions of greenhouse gases in the atmosphere during its use as a fuel. The great benefit of hydrogen being a practically inexhaustible carbon-free fuel makes it an attractive alternative to fossil fuels. I.e. there is a circular process of energy recovery and use. Another big advantage of hydrogen as a fuel is its high energy content per unit mass compared to fossil fuels. Nowadays hydrogen is broadly used as fuel in transport including fuel cell applications as a raw material in industry and as an energy carrier for energy storage. The mass exploitation of hydrogen in energy production and industry poses some important challenges. First there is a high price for its production compared to the price of most fossil fuels. Next the adopted traditional methods for hydrogen production like water splitting by electrolysis and methane reforming lead to the additional charging of the atmosphere with carbon dioxide which is a greenhouse gas. This fact prompts the use of renewable energy sources for electrolytic hydrogen production like solar and wind energy hydropower etc. An important step in reducing the price of hydrogen as a fuel is the optimal design of supply chains for its production distribution and use. Another group of challenges hindering broad hydrogen utilization are storage and safety. We discuss some of the obstacles to broad hydrogen application and argue that they should be overcome by new production and storage technologies. The present review summarizes the new achievements in hydrogen application production and storage. The approach of optimization of supply chains for hydrogen production and distribution is considered too.
Renewable Hydrogen Requirements and Impacts for Network Balancing: A Queensland Cae Study
Dec 2023
Publication
Hydrogen is the gas of the moment: an abundant element that can be created using renewable energy transported in gaseous or liquid form and offering the ability to provide energy with only water vapour as an emission. Hydrogen can also be used in a fuel blend in electricity generation gas turbines providing a low carbon option for providing the peak electricity to cover high demand and firming.<br/>While the electricity grid is itself transforming to decarbonising hard-to-abate industries such as cement and bauxite refineries are slower to reduce emissions constrained by their high temperature process requirements. Hydrogen offers a solution allowing onsite production process heat with waste heat recovery supporting blended gas turbine generation for onsite electricity supply.<br/>This article builds on decarbonisation pathway simulation results from an ANEM model of the electricity grid identifying the amount of peak demand energy required from gas turbines. The research then examines the quantity flow rate storage requirements and emissions reduction if this peak generation were supplied by open cycle hydrogen capable gas turbines.
The Fuel Flexibility of Gas Turbines: A Review and Retrospective Outlook
May 2023
Publication
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure temperature and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular as heavy-duty gas turbines have moderate compression ratios and ample stall margins they can burn not only high- and medium-BTU fuels but also low-BTU ones. As a result these machines have gained remarkable fuel flexibility. Dry Low Emissions combustors which were initially confined to burning standard natural gas have been gradually adapted to an increasing number of alternative gaseous fuels. The paper first delivers essential technical considerations that underlie this important fuel portfolio. It then reviews the spectrum of alternative GT fuels which currently extends from lean gases (coal bed coke oven blast furnace gases . . . ) to rich refinery streams (LPG olefins) and from volatile liquids (naphtha) to heavy hydrocarbons. This “fuel diet” also includes biogenic products (biogas biodiesel and ethanol) and especially blended and pure hydrogen the fuel of the future. The paper also outlines how historically land-based GTs have gradually gained new fuel territories thanks to continuous engineering work lab testing experience extrapolation and validation on the field.
Optimal Integration of Hybrid Renewable Energy Systems for Decarbonized Urban Electrification and Hydrogen Mobility
Aug 2024
Publication
This study addresses cost-optimal sizing and energy management of a grid-integrated solar photovoltaic wind turbine hybrid renewable energy system integrated with electrolyzer and hydrogen storage tank to simultaneously meet electricity and hydrogen demands considering the case study of Dijon France. Mixed Integer Linear Programming optimization problem is formulated to evaluate two objective case scenarios: single objective and multi-objective minimizing total annual costs and grid carbon emission footprint. The study incorporates various technical economic and environmental indicators focusing on the impact of sensitivity lying on various grid electricity purchase rates within the French electricity market prices. The results highlight that rising grid prices drive increased integration of renewable sources while lower prices favor ultimate grid dependency. Constant hydrogen demand necessitates the installation of two electrolyzers. Notably grid electricity prices above 60 e/MWh result increase in the size of the hydrogen tank and electrolyzer operation to prevent renewable energy losses. Grid prices above 140 e/MWh depict 70% of electrical and 80% of electrolyzer demand provided by the renewable generation resulting in a carbon emission below 0.0416 Mt of CO2 and 0.643 kgCO2 /kgH2 . Conversely grid prices below 20 e/MWh lead ultimately to 100% grid dependency with a higher carbon emission of approximately 0.14 Mt of CO2 and 4.13 kgCO2 /kgH2 reducing the total annual cost to 41.63 Million e. Increase in grid prices from 20e/MWh to 180 e/MWh resulted in increase of hydrogen specific costs from 1.23 to 3.58 e/kgH2 . Finally the Pareto front diagram is employed to illustrate the trade-off between total annual cost and carbon emission due to grid imports aiding in informed decision-making.
Electricity Supply Configurations for Green Hydrogen Hubs: A European Case Study on Decarbonizing Urban Transport
Aug 2024
Publication
In this study a techno-economic analysis tool for conducting detailed feasibility studies on the deployment of green hydrogen hubs for fuel cell bus fleets is developed. The study evaluates and compares five green hydrogen hub configurations’ operational and economic performance under a typical metropolitan bus fleet refuelling schedule. Each configuration differs based on its electricity sourcing characteristics such as the mix of energy sources capacity sizing financial structure and grid interaction. A detailed comparative analysis of distinct green hydrogen hub configurations for decarbonising a fleet of fuel-cell buses is conducted. Among the key findings is that a hybrid renewable electricity source and hydrogen storage are essential for cost-optimal operation across all configurations. Furthermore bi-directional grid-interactive configurations are the most costefficient and can benefit the electricity grid by flattening the duck curve. Lastly the paper highlights the potential for cost reduction when the fleet refuelling schedule is co-optimized with the green hydrogen hub electricity supply configuration.
Machine Learning-powered Performance Monitoring of Proton Exchange Membrane Water Electrolyzers for Enhancing Green Hydrogen Production as a Sustainable Fuel for Aviation Industry
Aug 2024
Publication
Aviation is a major contributor to transportation carbon emissions but aims to reduce its carbon footprint. Sustainable and environmentally friendly green hydrogen fuel is essential for decarbonization of this industry. Using the extremely low temperature of liquid hydrogen in aviation sector unlocks the opportunity for cryoelectric aircraft concept which exploits the advantageous properties of superconductors onboard. A significant barrier for green hydrogen adoption relates to its high cost and the immediate need for large-scale production which Proton Exchange Membrane Water Electrolyzers (PEMWE) can address through optimal dynamic performance high lifetimes good efficiencies and importantly scalability. In PEMWE the cell is a crucial component that facilitates the electrolysis process and consists of a polymer membrane and electrodes. To control the required production rate of hydrogen the output power of cell should be monitored which usually is done by measuring the cell’s potential and current density. In this paper five different machine learning (ML) models based on different algorithms have been developed to predict this parameter. Findings of the work highlight that the model based on Cascade-Forward Neural Network (CFNN) is investigated to accurately predict the cell potential of PEMWE under different anodic material and working conditions with an accuracy of 99.998 % and 0.001884 in terms of R2 and root mean square error respectively. It can predict the cell potential with a relative error of less than 0.65 % and an absolute error of below 0.01 V. The Standard deviation of 0.000061 for 50 iterations of stability analysis indicated that this model has less sensitivity to the random selection of training data. By accurately estimating different cell’s output with one model and considering its ultra-fast response CFNN model has the potential to be used for both monitoring and the designing purposes of green hydrogen production.
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
Sep 2024
Publication
Unmanned aerial vehicles (UAVs) have become an integral part of modern life serving both civilian and military applications across various sectors. However existing power supply systems such as batteries often fail to provide stable long-duration flights limiting their applications. Previous studies have primarily focused on battery-based power which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange membrane (PEM) fuel cells present a promising alternative providing high power and efficiency without noise vibrations or greenhouse gas emissions. Due to hydrogen’s high specific energy which is substantially higher than that of combustion engines and battery-based alternatives UAV operational time can be significantly extended. This paper investigates the potential of PEM fuel cells as an alternative power source for electric propulsion in UAVs. This study introduces an adaptive fully functioning PEM fuel cell model developed using a reduced-order modeling approach and optimized for UAV applications. This research demonstrates that PEM fuel cells can effectively double the flight endurance of UAVs compared to traditional battery systems achieving energy densities of around 1700 Wh/kg versus 150–250 Wh/kg for batteries. Despite a slight increase in system mass fuel cells enable significantly longer UAV operations. The scope of this study encompasses the comparison of battery-based and fuel cell-based propulsion systems in terms of power mass and flight endurance. This paper identifies the limitations and optimal applications for fuel cells providing strong evidence for their use in UAVs where extended flight time and efficiency are critical.
Research on Energy Management in Hydrogen–Electric Coupled Microgrids Based on Deep Reinforcement Learning
Aug 2024
Publication
Hydrogen energy represents an ideal medium for energy storage. By integrating hydrogen power conversion utilization and storage technologies with distributed wind and photovoltaic power generation techniques it is possible to achieve complementary utilization and synergistic operation of multiple energy sources in the form of microgrids. However the diverse operational mechanisms varying capacities and distinct forms of distributed energy sources within hydrogen-coupled microgrids complicate their operational conditions making fine-tuned scheduling management and economic operation challenging. In response this paper proposes an energy management method for hydrogen-coupled microgrids based on the deep deterministic policy gradient (DDPG). This method leverages predictive information on photovoltaic power generation load power and other factors to simulate energy management strategies for hydrogen-coupled microgrids using deep neural networks and obtains the optimal strategy through reinforcement learning ultimately achieving optimized operation of hydrogen-coupled microgrids under complex conditions and uncertainties. The paper includes analysis using typical case studies and compares the optimization effects of the deep deterministic policy gradient and deep Q networks validating the effectiveness and robustness of the proposed method.
Entropy Production and Filling Time in Hydrogen Refueling Stations: An Economic Assessment
Aug 2024
Publication
A multi-objective optimization is performed to obtain fueling conditions in hydrogen stations leading to improved filling times and thermodynamic efficiency (entropy production) of the de facto standard of operation which is defined by the protocol SAE J2601. After finding the Pareto frontier between filling time and total entropy production it was found that SAE J2601 is suboptimal in terms of these process variables. Specifically reductions of filling time from 47 to 77% are possible in the analyzed range of ambient temperatures (from 10 to 40 °C) with higher saving potential the hotter the weather conditions. Maximum entropy production savings with respect to SAE J2601 (7% for 10 °C 1% for 40 °C) demand a longer filling time that increases with ambient temperature (264% for 10 °C 350% for 40 °C). Considering average electricity prices in California USA the operating cost of the filling process can be reduced between 8 and 28% without increasing the expected filling time.
Alternative Fuels in Sustainable Logistics—Applications, Challenges, and Solutions
Sep 2024
Publication
Logistics is becoming more cost competitive while customers and regulatory bodies pressure businesses to disclose their carbon footprints creating interest in alternative fuels as a decarbonization strategy. This paper provides a thematic review of the role of alternative fuels in sustainable air land and sea logistics their challenges and potential mitigations. Through an extensive literature survey we determined that biofuels synthetic kerosene natural gas ammonia alcohols hydrogen and electricity are the primary alternative fuels of interest in terms of environmental sustainability and techno-economic feasibility. In air logistics synthetic kerosene from hydrogenated esters and fatty acids is the most promising route due to its high technical maturity although it is limited by biomass sourcing. Electrical vehicles are favorable in road logistics due to cheaper green power and efficient vehicle designs although they are constrained by recharging infrastructure deployment. In sea logistics liquified natural gas is advantageous owing to its supply chain maturity but it is limited by methane slip control and storage requirements. Overall our examination indicates that alternative fuels will play a pivotal role in the logistics networks of the future.
A 500 kW Hydrogen Fuel Cell-powered Vessel: From Concept to Sailing
Sep 2024
Publication
This paper presents the “Three Gorges Hydrogen Boat No. 1” a novel green hydrogen-powered vessel that has been successfully delivered and is currently sailing. This vessel integrated with a hydrogen production and bunkering station at its dedicated dock achieves zero-carbon emissions. It stores 240 kg of 35 MPa gaseous hydrogen and has a fuel cell system rated at 500 kW. We analysed the engineering details of the marine hydrogen system including hydrogen bunkering storage supply fuel cell and the hybrid power system with lithium-ion batteries. In the first bunkering trial the vessel was safely refuelled with 200 kg of gaseous hydrogen in 156 min via a bunkering station 13 m above the water surface. The maximum hydrogen pressure and temperature recorded during bunkering were 35.05 MPa and 39.04 ◦C respectively demonstrating safe and reliable shore-toship bunkering. For the sea trial the marine hydrogen system operated successfully during a 3-h voyage achieving a maximum speed of 28.15 km/h (15.2 knots) at rated propulsion power. The vessel exhibited minimal noise and vibration and its dynamic response met load change requirements. To prevent rapid load changes to the fuel cells 68 s were used to reach 483 kW from startup and 62 s from 480 kW to zero. The successful bunkering and operation of this hydrogen-powered vessel demonstrates the feasibility of zero-carbon emission maritime transport. However four lessons were identified concerning bunkering speed hydrogen cylinder leakage hydrogen pressure regulator malfunctions and fuel cell room space. The novelty of this work lies in the practical demonstration of a fully operational hydrogen-powered maritime vessel achieving zero emissions encompassing its design building operation and lessons learned. These parameters and findings can be used as a baseline for further engineering research.
Whole System Impacts of Decarbonising Transport with Hydrogen: A Swedish Case Study
Oct 2024
Publication
This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs coupled with the Swedish electricity system to study the inter-dependencies between them. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain designs comprehend centralised production decentralised production a combination of both and with/without seasonal variation in hydrogen demand. The supply chain design is modelled to minimize the overall cost while meeting the hydrogen demands. The outputs of the supply chain model include the hydrogen refuelling stations’ locations the electrolyser’s locations and their respective sizes as well as the operational schedule. The electricity system model shows that the average electricity prices in Sweden for zones SE1 SE2 SE3 and SE4 will be 4.28 1.88 8.21 and 8.19 €/MWh respectively. The electricity is mainly generated from wind and hydropower (around 42% each) followed by nuclear (14%) solar (2%) and then bio-energy (0.3%). In addition the hydrogen supply chain design that leads to a lower overall cost is the decentralised design with a cost of 1.48 and 1.68 €/kgH2 in scenarios without and with seasonal variation respectively. The seasonal variation in hydrogen demand increases the cost of hydrogen regardless of the supply chain design.
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Critical Perspective on Green Hydrogen-based Seasonal Operation of Energy-intensive Industry Sectors with Solid Products
Nov 2024
Publication
In the light of a future decarbonized power grid based primarily on non-dispatchable renewable energy sources the operation of industrial plants should be decarbonized and flexible. An innovative novel concept combining industrial plants with (i) a water electrolysis unit (ii) a hydrogen storage unit and (iii) a fuel cell unit would enable seasonal supply-demand balancing in the local power grid and storage of surplus energy in the form of stable solid products. The feasibility of this concept was demonstrated in a case study taking into account the overall energy balance and economics. The characteristics of the local power grid and the hydrogen round-trip efficiency must be carefully considered when dimensioning the hydrogen units. It was found that industries producing iron and steel cement ceramics glass aluminum paper and other metals have the potential for seasonal operation. Future research efforts in the fields of technology economics and social sciences should support the sustainable flexibility transition of energy-intensive industries with solid products.
The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level
Nov 2024
Publication
The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels or a dispenser. This may lead to a hydrogen cloud occurring near the source of the release or at a given distance. The range of the cloud was analyzed in connection to the amount of the released gas and the wind velocity. The results of the calculations were compared for chosen structures in the station. Then potential fires and explosions were investigated. The hazard zones were calculated with respect to heat fluxes generated in the fires and the overpressure generated in explosions. The maximum ranges of these zones vary from about 14 to 30 m and from about 9 to 14 m for a fires and an explosions of hydrogen respectively. Finally human death probabilities are presented as functions of the distance from the sources of the uncontrolled hydrogen releases. These are shown for different amounts and pressures of the released gas. In addition the risk of human death is determined along with the area where it reaches the highest value in the whole station. The risk of human death in this area is 1.63 × 10−5 [1/year]. The area is approximately 8 square meters.
Synergy-based Hydrogen Pricing in Hydrogen-Integrated Electric Power System: Sensititivy Analysis
Nov 2024
Publication
Hydrogen price significantly impacts its potential as a viable alternative in the sustainable energy transition. This study introduces a synergy-based Hydrogen Pricing Mechanism (HPM) within an integrated framework. The HPM leverages synergy between a Renewable-Penetrated Electric Power System (RP-EPS) and a Hydrogen Energy System (HES). Utilizing the Alternating Direction Method of Multipliers (ADMM) it facilitates data exchange quantifying integration levels and simplifying the complexities. The study assesses the HPM’s operational sensitivity across various scenarios of hydrogen generation transportation and storage. It also evaluates the benefits of synergy-based versus stand-alone HPMs. Findings indicate that the synergy-based HPM effectively integrates infrastructure and operational improvements from both EPS and HES leading to optimized hydrogen pricing.
Analysis of the Combustion Speed in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline Blends at Different Air Fuel Ratios
Nov 2024
Publication
The use of hydrogen in internal combustion engines is a promising solution for the decarbonisation of the transport sector. The current transition scenario is marked by the unavailability and storage challenges of hydrogen. Dual fuel combustion of hydrogen and gasoline in current spark ignition engines is a feasible solution in the short and medium term as it can improve engine efficiency reduce pollutant emissions and contribute significantly in tank to wheel decarbonisation without major engine modification. However new research is needed to understand how the incorporation of hydrogen affects existing engines to effectively implement gasoline-hydrogen dual fuel option. Understanding the impact of hydrogen on the combustion process (e.g. combustion speed) will guide and optimize the operation of engines under dual fuel combustion conditions. In this work a commercial gasoline direct injection engine has been modified to operate with gasolinehydrogen fuels. The experiments have been carried out at various air–fuel ratios ranging from stoichiometric to lean combustion conditions at constant engine speed and torque. At each one of the 14 experimental points 200-cycle in-cylinder pressure traces were recorded and processed with a quasi-dimensional diagnostic model and a combustion speed analysis was then carried out. It has been understood that hydrogen mainly reduces the duration of the first combustion phase. Hydrogen also enables to increase air excess ratios (lean in fuel combustion) without significantly increasing combustion duration. Furthermore a correlation is proposed to predict combustion speed as a function of the fuel and air mixture properties. This correlation can be incorporated to calculate combustion duration in predictive models of engines operating under different fuel mixtures and different geometries of the combustion chamber with pent-roof cylinder head and flat piston head.
Energy Efficiency of Hydrogen for Vehicle Propulsion: On- or Off-board H2 to Electricity Conversion?
Nov 2024
Publication
If hydrogen fuel is available to support the transportation sector decarbonization its usage can be placed either directly onboard in a fuel cell vehicle or indirectly off-board by using a fuel cell power station to produce electricity to charge a battery electric vehicle. Therefore in this work the direct and indirect conversion scenarios of hydrogen to vehicle propulsion were investigated regarding energy efficiency. Thus in the first scenario hydrogen is the fuel for the onboard electricity production to propel a fuel cell vehicle while in the second hydrogen is the electricity source to charge the battery electric vehicle. When simulated for a drive cycle results have shown that the scenario with the onboard fuel cell consumed about 20% less hydrogen demonstrating higher energy efficiency in terms of driving range. However energy efficiency depends on the outside temperature when heat loss utilization is considered. For outside temperatures of − 5 ◦C or higher the system composed of the battery electric vehicle fueled with electricity from the off-board fuel cell was shown to be more energyefficient. For lower temperatures the system composed of the onboard fuel cell again presented higher total (heat + electricity) efficiency. Therefore the results provide valuable insights into how hydrogen fuel can be used for vehicle propulsion supporting the hydrogen economy development.
Transitioning to a Renewable Hydrogen System: Optimal Infrastructure for Self-sufficient Hydrogen Supply in Austria by 2030
Aug 2024
Publication
In this study we employ an optimization model to optimally design a self-sufficient independent of any imports and exports hydrogen infrastructure for Austria by 2030. Our approach integrates key hydrogen technologies within a detailed spatial investment and operation model – coupled with a European scale electricity market model. We focus on optimizing diverse infrastructure componentsincluding trailers pipelines electrolyzers and storages to meet Austria's projected hydrogen demand. To accurately estimate this demand in hourly resolution we combine existing hydrogen strategies and projections to account for developments in various industrial sectors consider demand driven by the transport sector and integrate hydrogen demand arising from its use in gas-powered plants. Accounting for the inherent uncertainty linked to such projections we run the analysis for two complementary scenarios. Our approach addresses the challenges of integrating large quantities of renewable hydrogen into a future energy system by recognizing the critical role of domestic production in the early market stages. The main contribution of this work is to address the gap in optimizing hydrogen infrastructure for effective integration of domestic renewable hydrogen production in Austria by 2030 considering sector coupling potentials optimal electrolyzer placement and the design of local hydrogen networks.
No more items...