Skip to content
1900

Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks

Abstract

Integrated steelworks off-gases are generally exploited to produce heat and electricity. However, further valorization can be achieved by using them as feedstock for the synthesis of valuable products, such as methane and methanol, with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project, several activities were carried out: from laboratory analyses to simulation investigations, from design, development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses, business models and investigation of implementation cases. The final developed methane production reactors are,respectively, an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed, commissioned, and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore, both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions, and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks, especially in case green electricity is available at an affordable price.

Funding source: The work described in this paper was developed within the project entitled “Integrated and intelligent upgrade of carbon sources through hydrogen addition for the steel industry”, i3 upgrade) (GA No. 800659), which has received funding from the Research Fund for Coal and Steel of the European Union. In case of Polish authors, this scientific work is financed from science funding granted in the years 2018–2022 for the implementation of an international project entitled “i 3 upgrade” co-financed by the Minister of Education and Science of the Republic of Poland under the agreement no. 4049/ FBWiS/2018/2.
Related subjects: Applications & Pathways
Countries: Austria ; Germany ; Greece ; Italy ; Poland
Loading

Article metrics loading...

/content/journal6410
2023-07-31
2024-12-18
/content/journal6410
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error