- Home
- A-Z Publications
- Publications
Publications
Flammability Reduction in a Pressurised Water Electrolyser Based on a Thin Polymer Electrolyte Membrane through a Pt-alloy Catalytic Approach
Jan 2019
Publication
Various Pt-based materials (unsupported Pt PtRu PtCo) were investigated as catalysts for recombining hydrogen and oxygen back into water. The recombination performance correlated well with the surface Pt metallic state. Alloying cobalt to platinum was observed to produce an electron transfer favouring the occurrence of a large fraction of the Pt metallic state on the catalyst surface. Unsupported PtCo showed both excellent recombinati Read More
Thermodynamic Analysis of Hydrogen Production via Chemical Looping Steam Methane Reforming Coupled with In Situ CO2 Capture
Dec 2014
Publication
A detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR) using CaO and NiO as CO2 sorbent and oxygen transfer material (OTM) respectively was conducted. Conventional reforming (SMR) and sorption enhanced reforming (SE-SMR) were also investigated for comparison reasons. The results of the thermodynamic analysis show that there are significant advantages of both sorption enha Read More
Risk-adjusted Preferences of Utility Companies and Institutional Investors for Battery Storage and Green Hydrogen Investment
Feb 2022
Publication
Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However investments into ESS are often unprofitable in particular for grid-scale battery storage and green hydrogen technologies prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendation Read More
Experimental Study on Tri-fuel Combustion Using Premixed Methane-hydrogen Mixtures Ignited by a Diesel Pilot
Apr 2021
Publication
A comprehensive investigation on diesel pilot spray ignited methane-hydrogen (CH4–H2) combustion tri-fuel combustion (TF) is performed in a single-cylinder compression ignition (CI) engine. The experiments provide a detailed analysis of the effect of H2 concentration (based on mole fraction MH2) and charge-air temperature (Tair) on the ignition behavior combustion stability cycle-to-cycle (CCV) and engine performance. The results indicate that adding H2 Read More
Fuel Cells and Hydrogen Observatory Standards Report
Sep 2021
Publication
Purpose: The Standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized in order to enhance ease of access and usability. The development of sector-relevant standards facilitates and enhances economies of scale interoperability comparability safety and many other issues. Scope: The database presents European and International standards. Standards from Read More
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase t Read More
Hydrogen Production in Methane Decomposition Reactor Using Solar Thermal Energy
Nov 2021
Publication
This study investigates the decomposition of methane using solar thermal energy as a heat source. Instead of the direct thermal decomposition of the methane at a temperature of 1200 ◦C or higher a catalyst coated with carbon black on a metal foam was used to lower the temperature and activation energy required for the reaction and to increase the yield. To supply solar heat during the reaction a reactor suitable for a solar concentrating syst Read More
Hydrogen for Net Zero - A Critical Cost-competitive Energy Vector
Nov 2021
Publication
The report “Hydrogen for Net Zero” presents an ambitious yet realistic deployment scenario until 2030 and 2050 to achieve Net Zero emissions considering the uses of hydrogen in industry power mobility and buildings. The scenario is described in terms of hydrogen demand supply infrastructure abatement potential and investments required and then compared with current momentum and investments in the industry to identify the investment gaps a Read More
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choi Read More
A Perspective on Hydrogen Investment, Deployment and Cost Competitiveness
Feb 2021
Publication
Deployment and investments in hydrogen have accelerated rapidly in response to government commitments to deep decarbonisation establishing hydrogen as a key component in the energy transition.To help guide regulators decision-makers and investors the Hydrogen Council collaborated with McKinsey & Company to release the report ‘Hydrogen Insights 2021: A Perspective on Hydrogen Investment Deployment and Cost Competitiveness’. The repo Read More
Fatigue Crack Growth in Operated Gas Pipeline Steels
Jun 2020
Publication
Regularities of fatigue crack growth for pipeline steels of different strength are presented and the changes in fatigue behavior of these steels after long term operation are analyzed. Threshold values of stress intensity factor range are lower for operated steels comparing to the corresponding values for as received ones. During the testing in the simulated soil solution NS4 a barely noticeable tendency to increase the threshold values of SIF was traced. It was e Read More
A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium—Palladium Nanoparticles
Jun 2021
Publication
The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium–palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to Read More
Effect of Hydrogen and Strain-Induced Martensite on Mechanical Properties of AISI 304 Stainless Steel
Jul 2016
Publication
Plastic deformation and strain-induced martensite (SIM α′) transformation in metastable austenitic AISI 304 stainless steel were investigated through room temperature tensile tests at strain rates ranging from 2 × 10−6 to 2 × 10−2/s. The amount of SIM was measured on the fractured tensile specimens using a feritscope and magnetic force microscope. Elongation to fracture tensile strength hardness and the amount of SIM increased with decreasing the Read More
Optimal Scheduling of Multi-energy Type Virtual Energy Storage System in Reconfigurable Distribution Networks for Congestion Management
Jan 2023
Publication
The virtual energy storage system (VESS) is one of the emerging novel concepts among current energy storage systems (ESSs) due to the high effectiveness and reliability. In fact VESS could store surplus energy and inject the energy during the shortages at high power with larger capacities compared to the conventional ESSs in smart grids. This study investigates the optimal operation of a multi-carrier VESS including batteries thermal energy storage ( Read More
A Model for Hydrogen Detonation Diffraction or Transmission to a Non-confined Layer
Sep 2021
Publication
One strategy for arresting propagating detonation waves in pipes is by imposing a sudden area enlargement which provides a rapid lateral divergence of the gases in the reaction zone and attenuates the leading shock. For sufficiently small tube diameter the detonation decays to a deflagration and the shock decays to negligible strengths. This is known as the critical tube diameter problem. In the present study we provide a closed form model to predict Read More
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that sh Read More
Hydrogen Storage Using a Hot Pressure Swing Reactor
Jun 2017
Publication
Our contribution demonstrates that hydrogen storage in stationary Liquid Organic Hydrogen Carrier (LOHC) systems becomes much simpler and significantly more efficient if both the LOHC hydrogenation and the LOHC dehydrogenation reaction are carried out in the same reactor using the same catalyst. The finding that the typical dehydrogenation catalyst for hydrogen release from perhydro dibenzyltoluene (H18-DBT) Pt on alumina turns into a highly Read More
Phase Field Modelling of Formation and Fracture of Expanding Precipitates
May 2017
Publication
It is a common belief that embedded expanding inclusions are subjected to an internal homogeneous compressive hydrostatic stress. Still cracks that appear in precipitates that occupy a larger volume than the original material are frequently observed. The appearance of cracks has since long been regarded as a paradox. In the present study it is shown that matrix materials that increases its volume even several percent during the precipitation process dev Read More
A Mountain to Climb? Tracking Progress in Scaling Up Renewable Gas Production in Europe
Oct 2019
Publication
In the last couple of years there has been increasing recognition by key players in the European gas industry that to mitigate the risk of terminal decline in the context of a decarbonising energy system there will need to be rapid scale up of decarbonised gas. This has led to several projections of the scale of decarbonised gas which could potentially be supplied by 2030 2040 or 2050. This paper joint with the Sustainable Gas Institute at Imperial College Read More
Energy Transition in France
May 2022
Publication
To address the climate emergency France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production which amounts to 25.5% in 2020 should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibi Read More
Platinum Single-atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction
Jun 2021
Publication
Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled Read More
Techno-economic Analysis of Hydrogen Enhanced Methanol to Gasoline Process from Biomass-derived Synthesis Gas
Mar 2021
Publication
In this paper the implications of the use of hydrogen on product yield and conversion efficiency as well as on economic performance of a hydrogen enhanced Biomass-to-Liquid (BtL) process are analyzed. A process concept for the synthesis of fuel (gasoline and LPG) from biomass-derived synthesis gas via Methanol-to-Gasoline (MtG) route with utilization of carbon dioxide from gasification by feeding additional hydrogen is developed and modeled in Read More
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate cle Read More
Combined Soft Templating with Thermal Exfoliation Toward Synthesis of Porous g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Evolution
Apr 2021
Publication
Insufficient active sites and fast charge carrier recombination are detrimental to photocatalytic activity of graphitic carbon nitride (g-C3N4). In this work a combination of pore creating with thermal exfoliation was employed to prepare porous g-C3N4 nanosheets for photocatalytic water splitting into hydrogen. Hexadecyl trimethyl ammonium chloride (CTAC) as the soft template promoted the formation of porous g-C3N4 during the thermal condensation Read More
Green Hydrogen: A Guide to Policy Making
Nov 2020
Publication
Hydrogen produced with renewable energy sources – or “green” hydrogen – has emerged as a key element to achieve net-zero emissions from heavy industry and transport. Along with net-zero commitments by growing numbers of governments green hydrogen has started gaining momentum based on low-cost renewable electricity ongoing technological improvements and the benefits of greater power-system flexibility.Hydrogen-based fuels prev Read More
Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Nano-NiO/Al2O3 Catalyst
Feb 2022
Publication
Hydrogen production from biomass pyrolysis is economically and technologically attractive from the perspectives of energy and the environment. The two-stage catalytic pyrolysis of pine sawdust for hydrogen-rich gas production is investigated using nano-NiO/Al2O3 as the catalyst at high temperatures. The influences of residence time (0–30 s) and catalytic temperature (500–800 ◦C) on pyrolysis performance are examined in the distribution of pyrolys Read More
Recent Advances in Pd-Based Membranes for Membrane Reactors
Jan 2017
Publication
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys supports deposition/production techniques etc. High flux and cheap membranes yet stable at different operating conditions are required for their exploitation at industrial scale. The integration of membranes in mul Read More
Anchoring of Turbulent Premixed Hydrogen/Air Flames at Externally Heated Walls
Oct 2020
Publication
A joint experimental and numerical investigation of turbulent flame anchoring at externally heated walls is presented. The phenomenon has primarily been studied for laminar flames and micro-combustion while this study focuses on large-scale applications and elevated Reynolds number flows. Therefore a novel burner design is developed and examined for a diverse set of operating conditions. Hydroxyl radical chemiluminescence measurements are empl Read More
Water Photo-Oxidation Reaction on Clean and Doped Two-Dimensional Graphitic C2N
Apr 2020
Publication
In the search for new efficient photo-catalysts for hydrogen production through water splitting the main attention has been paid to tuning the band gap width and its position with respect to vacuum level. However actual electro-catalytic activity for the water oxidation reaction on a catalyst surface is no less important than those quantities. In this work we evaluate from first principles the thermodynamics of the reaction on relatively new candidates for Read More
Indentation and Hydride Orientation in Zr-2.5%Nb Pressure Tube Material
Jun 2019
Publication
In this study indentations were made on Zr-2.5%Nb pressure tube material to induce multi-axial stress field. An I-shaped punch mark was indented on the Pressure tube material with predefined punch load. Later material was charged with 50 wppm of hydrogen. The samples near the punch mark were metallographically examined for hydrides orientation. It was observed that hydrides exhibited preferentially circumferential orientation far away fr Read More
A Review on Recent Advances in Hydrogen Energy, Fuel Cell, Biofuel and Fuel Refining via Ultrasound Process Intensification
Mar 2021
Publication
Hydrogen energy is one of the most suitable green substitutes for harmful fossil fuels and has been investigated widely. This review extensively compiles and compares various methodologies used in the production storage and usage of hydrogen. Sonochemistry is an emerging synthesis process and intensification technique adapted for the synthesis of novel materials. It manifests acoustic cavitation phenomena caused by ultrasound where higher rates of re Read More
HyDeploy Report: Material Effects of Introducing Hydrogen into the UK Gas Supply
Jun 2018
Publication
Introduction of hydrogen into the UK gas main has been reviewed in terms of how materials within the Keele G3 gas distribution network (G3 GDN) on the Keele University network may be affected by contact with natural gas (NG):hydrogen blends up to a limit of 20 % mol/mol hydrogen.This work has formed part of the supporting evidence for a 1 year hydrogen blending trial on the Keele G3 GDN coordinated by the HyDeploy consortium (formed of rep Read More
Suitable Site Selection for Solar‐Based Green Hydrogen in Southern Thailand Using GIS‐MCDM Approach
May 2022
Publication
Climate change mitigation efforts are in dire need of greener and more versatile fuel al‐ ternatives to fossil fuels. Green hydrogen being both renewable and flexible has the potential to offset fossil fuels as the primary fuel source. Countries around the world are planning to develop their green hydrogen industries and accurate potential assessment is vital. This study employed the consolidation of a geographic information system (GIS) and the analytical hier Read More
Mg-based Materials for Hydrogen Storage
Aug 2021
Publication
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities. This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties. Special emphasis is place Read More
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity
May 2021
Publication
In the present work an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques i.e. X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) scanning electron microscopy (SEM) equipped with X-ray dete Read More
Investigation of Structure of AlN Thin Films Using Fourier-transform Infrared Spectroscopy
Feb 2020
Publication
This study focuses on structural imperfections caused by hydrogen impurities in AlN thin films obtained using atomic layer deposition method (ALD). Currently there is a severe lack of studies regarding the presence of hydrogen in the bulk of AlN films. Fourier-transform infrared spectroscopy (FTIR) is one of the few methods that allow detection bonds of light elements in particular - hydrogen. Hydrogen is known to be a frequent contaminant in AlN films grown Read More
Hydrogeochemical Modeling to Identify Potential Risks of Underground Hydrogen Storage in Depleted Gas Fields
Nov 2018
Publication
Underground hydrogen storage is a potential way to balance seasonal fluctuations in energy production from renewable energies. The risks of hydrogen storage in depleted gas fields include the conversion of hydrogen to CH4(g) and H2S(g) due to microbial activity gas–water–rock interactions in the reservoir and cap rock which are connected with porosity changes and the loss of aqueous hydrogen by diffusion through the cap rock brine. These risks le Read More
A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier
Jun 2021
Publication
Global energy sources are being transformed from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind solar and hydrogen. The biggest challenge with hydrogen as a renewable energy carrier is the storage and delivery system’s complexity. Therefore other media such as ammonia for indirect storage are now being considered. Research has shown that at reasonable pressures ammonia is easily contained as a liq Read More
Thermodynamic Modeling of Hydrogen Refueling for Heavy-duty Fuel Cell Buses and Comparison with Aggregated Real Data
Apr 2021
Publication
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises both refuelling infrastructure and vehicles should be deployed together with improved refuelling protocols. Several studies focus on refuelling the light-duty vehicles with 10 kgH2 up to 700 bar however less known effort is reported for refuelling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustra Read More
Feature of Stress Corrosion Cracking of Degraded Gas Pipeline Steels
Aug 2019
Publication
Stress corrosion cracking (SCC) of steels can reduce the structural integrity of gas pipelines. To simulate in-service degradation of pipeline steels in laboratory the method of accelerated degradation consisted in subjecting specimens to electrolytic hydrogenation to loading up the certain plastic deformation and heating of specimen at 250°C was recently developed. The purpose of this paper was to analyse mechanical and SCC behaviour of in-service and i Read More
Unconventional Pearlitic Pseudocolonies Affecting Macro-, Micro- and Nano-structural Integrity of Cold-drawn Pearlitic Steel Wires: Resembling van Gogh, Bernini, Mantegna and Picasso
Dec 2020
Publication
Prestressing steel wires are manufactured by cold drawing during which a preferential orientation is achieved in the matter of pearlitic colonies and lamellae. In addition to this general trend special (unconventional) pearlitic pseudocolonies evolve during the heavy-drawing manufacture process affecting the posterior macro- micro- and nano-structural integrity of the material. This paper discusses the important role of such a special microstructural uni Read More
The Microstructure Study of the Hydrogenated Titanium Specimens Tested at High Temperature Creep for Long-term Tensile Strength
Feb 2020
Publication
Experimental tests of flat titanium samples at a temperature of 450 °C stretched with a constant force up to destruction were carried out. Titanium samples were hydrogenated in the Moscow Aviation Institute laboratory to a hydrogen content of 0.1 % 0.3 % and 0.6 % by weight of the specimen and then tested in the laboratory of Lomonosov Moscow State University. From the experiments the time to failure the localization time of the deformations and the Read More
Novel Biofuel Cell Using Hydrogen Generation of Photosynthesis
Nov 2020
Publication
Energies based on biomaterials attract a lot of interest as next-generation energy because biomaterials are environmentally friendly materials and abundant in nature. Fuel cells are also known as the clean and important next-generation source of energy. In the present study to develop the fuel cell based on biomaterials a novel biofuel cell which consists of collagen electrolyte and the hydrogen fuel generated from photochemical system II (PSII) in pho Read More
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we br Read More
Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP3 Nanowall Arrays for Boosting Hydrogen Production
Jun 2021
Publication
To address the challenge of highly efficient water splitting into H2 successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough curly and porous structures which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected t Read More
Well to Wheel Analysis of Low Carbon Alternatives for Road Traffic
Sep 2015
Publication
Several alternative fuel–vehicle combinations are being considered for replacement of the internal combustion engine (ICE) vehicles to reduce greenhouse gas (GHG) emissions and the dependence on fossil fuels. The International Energy Agency has proposed the inclusion of low carbon alternatives such as electricity hydrogen and biofuels in the transport sector for reducing the GHG emissions and providing a sustainable future. This paper compares t Read More
Deep-Decarbonisation Pathways for UK Industry
Dec 2020
Publication
The Climate Change Committee (CCC) commissioned Element Energy to improve our evidence base on the potential of industrial deep-decarbonisation measures (fuel switching CCS/BECCS measures to reduce methane emissions) and develop pathways for their application. This report summarises the evidence and results of the work including:Evidence on the key constraints and costs for technology and infrastructure deploymentThe methodolo Read More
Towards the Rational Design of Stable Electrocatalysts for Green Hydrogen Production
Feb 2022
Publication
Now it is time to set up reliable water electrolysis stacks with active and robust electro‐ catalysts to produce green hydrogen. Compared with catalytic kinetics much less attention has been paid to catalyst stability and the weak understanding of the catalyst deactivation mechanism restricts the design of robust electrocatalysts. Herein we discuss the issues of catalysts’ stability evaluation and characterization and the degradation mechanism. The sy Read More
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinnin Read More
Storable Energy Production from Wind over Water
Apr 2020
Publication
The current status of a project is described which aims to demonstrate the technical and economic feasibility of converting the vast wind energy available over the globe’s oceans and lakes into storable energy. To this end autonomous high-performance sailing ships are equipped with hydrokinetic turbines whose output is stored either in electric batteries or is fed into electrolysers to produce hydrogen which then is compressed and stored in tanks. In the pr Read More
Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution
Jun 2021
Publication
Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy Read More
Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis
Jun 2017
Publication
Industrial hydrogen production via alkaline water electrolysis (AEL) is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However today electricity from the national grid is widely utilized for industrial applications of AEL. Also the ban on asbestos membranes led to a change in performance patterns making a de Read More
Wittichenite Semiconductor of Cu3BiS3 Films for Efficient Hydrogen Evolution from Solar Driven Photoelectrochemical Water Splitting
Jun 2021
Publication
A highly efficient low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-h Read More
Analysis of the Environmental Degradation Effects on the Cables of “La Arena” Bridge (Spain)
Sep 2017
Publication
After nearly 25 years of service some of the wires of the tendons of “La Arena” bridge (Spain) started to exhibit the effects of environmental degradation processes. “La Arena” is cable-stayed bridge with 6 towers and a reference span between towers of about 100 meters. After a maintenance inspection of the bridge evidences of corrosion were detected in some of the galvanized wires of the cables. A more in-deep analysis of these wires revealed that Read More
A Combined Chemical-Electrochemical Process to Capture CO2 and Produce Hydrogen and Electricity
Sep 2021
Publication
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2 ) to produce energy and chemical compounds. However feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work we present a model of a chemical-ele Read More
Development of a Pneumatic Actuated Low-pressure Direct Injection Gas Injector for Hydrogen-fueled Internal Combustion Engines
Dec 2022
Publication
Mixture formation is one of the greatest challenges for the development of robust and efficient hydrogen-fueled internal combustion engines. In many reviews and research papers authors pointed out that direct injection (DI) has noteworthy advantages over a port fuel injection (PFI) such as higher power output higher efficiency the possibility of mixture stratification to control NOx-formation and reduce heat losses and above all to mitigate combusti Read More
EUA- Bringing Hydrogen Alive
Apr 2021
Publication
The UK is on course to become a global leader in hydrogen technology. Over £3bn is ready to be invested into hydrogen today. The pace of activity is rapid and the opportunities are vast.Join us at our free to attend event where you will gain unique insights into how the Hydrogen industry is progressing together with exclusive access to future plans.The dynamic and lively session will demonstrate the viability of hydrogen as a key component to achieve Net Read More
On Flame Ball-to-Deflagration Transition in Hydrogen-air Mixtures
Sep 2021
Publication
Ultra-lean hydrogen-air combustion is characterized by two phenomena: the difference in upward and downward flame propagation concentration limits and the incomplete combustion. The clear answers on the two basic questions are still absent: What is a reason and what is a mechanism for their manifestation? Problem statement and the principal research topics of the Flame Ball to Deflagration Transition (FBDT) phenomenon in gaseous h Read More
Calibrating a Ductile Damage Model for Two Pipeline Steels: Method and Challenges
Dec 2020
Publication
This work is part of a project that aims to develop a micromechanics based damage law taking into account hydrogen assisted degradation. A 'vintage' API 5L X56N and a 'modern' API 5L X70M pipeline steel have been selected for this purpose. The paper focuses on an experimental calibration of ductile damage properties of the well known complete Gurson model for the two steels in absence of hydrogen. A basic microstructural characterization is provide Read More
Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review
Dec 2020
Publication
Solid-state hydrogen storage covers a broad range of materials praised for their gravimetric volumetric and kinetic properties as well as for the safety they confer compared to gaseous or liquid hydrogen storage methods. Among them AxBy intermetallics show outstanding performances notably for stationary storage applications. Elemental substitution whether on the A or B site of these alloys allows the effective tailoring of key properties such as gravi Read More
Life Cycle Assessment of Fuel Cell Vehicles Considering the Detailed Vehicle Components: Comparison and Scenario Analysis in China Based on Different Hydrogen Production Schemes
Aug 2019
Publication
Numerous studies concerning the life cycle assessment of fuel cell vehicles (FCVs) have been conducted. However little attention has been paid to the life cycle assessment of an FCV from the perspective of the detailed vehicle components. This work conducts the life cycle assessment of Toyota Mirai with all major components considered in a Chinese context. Both the vehicle cycle and the fuel cycle are included. Both comprehensive resources and en Read More
ZnO@ZIF-8 Core-Shell Structure Gas Sensors with Excellent Selectivity to H2
Jun 2021
Publication
As the energy crisis becomes worse hydrogen as a clean energy source is more and more widely used in industrial production and people’s daily life. However there are hidden dangers in hydrogen storage and transportation because of its flammable and explosive features. Gas detection is the key to solving this problem. High quality sensors with more practical and commercial value must be able to accurately detect target gases in the environ Read More
Study of Activity and Super-Capacitance Exhibited by Bifunctional Raney 2.0 Catalyst for Alkaline Water-Splitting Electrolysis
Dec 2020
Publication
Low-cost high-performance coatings for hydrogen production via electrolytic water-splitting are of great importance for de-carbonising energy. In this study the Raney2.0 coating was analysed using various electrochemical techniques to assess its absolute performance and it was confirmed to have an extremely low overpotential for hydrogen evolution of just 28 mV at 10 mA/cm2. It was also confirmed to be an acceptable catalyst for oxygen evolution ma Read More
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Jan 2021
Publication
Climate change is one of the major problems that people face in this century with fossil fuel combustion engines being huge contributors. Currently the battery powered electric vehicle is considered the predecessor while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focu Read More
Internal Film Cooling with Discrete-Slot Injection Orifices in Hydrogen/Oxygen Engine Thrust Chambers
May 2022
Publication
In the present study a hydrogen and oxygen heat-sink engine thrust chamber and the corresponding injection faceplate with discrete slot orifices are devised to study the cooling performance near the faceplate region. Moreover a set of experiments and numerical simulations are conducted to evaluate the effects of various factors on combustion performance and film cooling efficiency. According to the obtained result the circumferential cooling efficiency h Read More
Model of Local Hydrogen Permeability in Stainless Steel with Two Coexisting Structures
Apr 2021
Publication
The dynamics of hydrogen in metals with mixed grain structure is not well understood at a microscopic scale. One of the biggest issues facing the hydrogen economy is “hydrogen embrittlement” of metal induced by hydrogen entering and diffusing into the material. Hydrogen diffusion in metallic materials is difficult to grasp owing to the non-uniform compositions and structures of metal. Here a time-resolved “operando hydrogen microscope” was use Read More
Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures
Jul 2015
Publication
Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally sized micropores and occurs at pressures as low as 0.02 MPa. The quan Read More
Experimental Investigations Relevant for Hydrogen and Fission Product Issues Raised by the Fukushima Accident
Jan 2015
Publication
The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011 caused by an earthquake and a subsequent tsunami resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor contain Read More
Electrification and Sustainable Fuels: Competing for Wind and Sun (complement to the Policy brief)
May 2021
Publication
This study seeks to answer a simple question: will we have enough renewable electricity to meet all of the EU's decarbonisation objectives and if not what should be the priorities and how to address the remaining needs for energy towards carbon neutrality? Indeed if not the policy push for green hydrogen would not be covered by enough green electricity to match the “energy efficiency and electrification first” approach outlined in the system integra Read More
Estimation of Hydrogen Production using Wind Energy in Algeria
Aug 2015
Publication
In response to problems involved in the current crisis of petrol in Algeria with the decrease in the price of the oil barrel the rate of growth in domestic electricity demand and with an associated acceleration of global warming as a result of significantly increased greenhouse gas (GHG) emissions renewable energy seems today as a clean and strategic substitution for the next decades. However the greatest obstacles which face electric energy comes Read More
Hydrogen: Untapped Energy?
Jan 2012
Publication
Hydrogen has potential applications across our future energy systems due particularly to its relatively high energy weight ratio and because it is emission-free at the point of use. Hydrogen is also abundant and versatile in the sense that it could be produced from a variety of primary energy sources and chemical substances including water and used to deliver power in a variety of applications including fuel cell combined heat and power technologi Read More
Water Removal from LOHC Systems
Oct 2020
Publication
Liquid organic hydrogen carriers (LOHC) store hydrogen by reversible hydrogenation of a carrier material. Water can enter the system via wet hydrogen coming from electrolysis as well as via moisture on the catalyst. Removing this water is important for reliable operation of the LOHC system. Different approaches for doing this have been evaluated on three stages of the process. Drying of the hydrogen before entering the LOHC system itself is p Read More
Hydrogen-based Systems for Integration of Renewable Energy in Power Systems: Achievements and Perspectives
Jul 2021
Publication
This paper is a critical review of selected real-world energy storage systems based on hydrogen ranging from lab-scale systems to full-scale systems in continuous operation. 15 projects are presented with a critical overview of their concept and performance. A review of research related to power electronics control systems and energy management strategies has been added to integrate the findings with outlooks usually described in separate literatur Read More
An Investigation of a (Vinylbenzyl) Trimethylammonium and N-Vinylimidazole-Substituted Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Copolymer as an Anion-Exchange Membrane in a Lignin-Oxidising Electrolyser
Jun 2021
Publication
Electrolysis is seen as a promising route for the production of hydrogen from water as part of a move to a wider “hydrogen economy”. The electro-oxidation of renewable feedstocks offers an alternative anode couple to the (high-overpotential) electrochemical oxygen evolution reaction for developing low-voltage electrolysers. Meanwhile the exploration of new membrane materials is also important in order to try and reduce the capital costs of electrolysers Read More
Acoustic and Psychoacoustic Levels from an Internal Combustion Engine Fueled by Hydrogen vs. Gasoline
Feb 2022
Publication
Whereas noise generated by road traffic is an important factor in urban pollution little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried o Read More
A Review on the Properties of Iron Aluminide Intermetallics
Jan 2016
Publication
Iron aluminides have been among the most studied intermetallics since the 1930s when their excellent oxidation resistance was first noticed. Their low cost of production low density high strength-to-weight ratios good wear resistance ease of fabrication and resistance to high temperature oxidation and sulfurization make them very attractive as a substitute for routine stainless steel in industrial applications. Furthermore iron aluminides allow for th Read More
Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers
Mar 2017
Publication
Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS) respectively. The physical properties of the co Read More
A Quantitative Assessment of the Hydrogen Storage Capacity of the UK Continental Shelf
Nov 2020
Publication
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using dat Read More
Electrocatalytic Properties for the Hydrogen Evolution of the Electrodeposited Ni–Mo/WC Composites
May 2021
Publication
The catalytical activity for the hydrogen evolution reaction (HER) of the electrodeposited Ni–Mo/WC composites is examined in 1 M KOH solution. The structure surface morphology and surface composition is investigated using the scanning electron microscopy X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic properties for the HER is evaluated based on the cathodic polarization electrochemical impedance cyclic voltam Read More
Hydrogen for Australia’s Future
Aug 2018
Publication
The Hydrogen Strategy Group chaired by Australia’s Chief Scientist Dr Alan Finkel has today released a briefing paper on the potential domestic and export opportunities of a hydrogen industry in Australia.Like natural gas hydrogen can be used to heat buildings and power vehicles. Unlike natural gas or petrol when hydrogen is burned there are no CO2 emissions. The only by-products are water vapour and heat.Hydrogen is the most abundant element i Read More
Instantaneous Hydrogen Production from Ammonia by Non-thermal Arc Plasma Combining with Catalyst
Jul 2021
Publication
Owing to the storage and transportation problems of hydrogen fuel exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature electron density the hydrogen prod Read More
Hydrothermal Synthesis of Iridium-Substituted NaTaO3 Perovskites
Jun 2021
Publication
Iridium-containing NaTaO3 is produced using a one-step hydrothermal crystallisation from Ta2O5 and IrCl3 in an aqueous solution of 10 M NaOH in 40 vol% H2O2 heated at 240 °C. Although a nominal replacement of 50% of Ta by Ir was attempted the amount of Ir included in the perovskite oxide was only up to 15 mol%. The materials are formed as crystalline powders comprising cube-shaped crystallites around 100 nm in edge length as seen by scanning Read More
Towards Ecological Alternatives in Bearing Lubrication
Jun 2021
Publication
Hydrogen is the cleanest fuel available because its combustion product is water. The internal combustion engine can in principle and without significant modifications run on hydrogen to produce mechanical energy. Regarding the technological solution leading to compact engines a question to ask is the following: Can combustion engine systems be lubricated with hydrogen? In general since many applications such as in turbomachines is it possible Read More
Fuel Cells and Hydrogen Observatory 2019 EU and National Policies Report
Sep 2021
Publication
The policy module of the FCHO presents an overview of EU and national policies across various hydrogen and fuel cell related sectors. It provides a snapshot of the current state of hydrogen legislation and policy. Scope: While FCHO covers 38 entities around the world due to the completeness of the data at the moment of writing this report covers 29 entities. The report reflects data collected January 2019 – December 2019. Key Findings: Hydrogen policie Read More
Aging Effects on Modelling and Operation of a Photovoltaic System with Hydrogen Storage
Jun 2021
Publication
In this work the aging effects on modelling and operation of a photovoltaic system with hydrogen storage in terms of energy production decrease and demand for additional hydrogen during 10 years of the system operation was analysed for the entire energy system for the first time. The analyses were performed with the support of experimental data for the renewable energy system composed of photovoltaic modules fuel cell electrolysers hydr Read More
2020 It's Time To Get Real
Mar 2020
Publication
Gi Editor Sharon Baker-Hallam sits down with Chris Stark CEO of the Committee on Climate Change to talk about this year’s Sir Denis Rooke Memorial Lecture the economic opportunities to be found in going green and why 2020 is a critical year in the ongoing battle against rising global temperatures
Hydrogen Tank Rupture in Fire in the Open Atmosphere: Hazard Distance Defined by Fireball
Feb 2021
Publication
The engineering correlations for assessment of hazard distance defined by a size of fireball after either liquid hydrogen spill combustion or high-pressure hydrogen tank rupture in a fire in the open atmosphere (both for stand-alone and under-vehicle tanks) are presented. The term “fireball size” is used for the maximum horizontal size of a fireball that is different from the term “fireball diameter” applied to spherical or semi-spherical shape fireballs. Ther Read More
HyDeploy Report: Summary of Gas Appliance and Installation Testing
Jun 2018
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Index and hydrogen concentrations up to 28.4 % mol/mol. These tests have demonstrated that the addition of hydrogen does not affect th Read More
A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production
Nov 2015
Publication
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles. A cutting edge technology called a microbial electrolysis cell (MEC) can achieve sustainable and clean hydrogen production from a wide range of renewable biomass and wastewaters. Enhancing the hydrogen production rate and lowering the energy input are the main challenges of MEC technology. MEC reactor design is one of the crucial fact Read More
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major ele Read More
Emerging, Hydrogen-driven Electrochemical Water Purification
Jan 2022
Publication
Energy-efficient technologies for the remediation of water and generation of drinking water is a key towards sustainable technologies. Electrochemical desalination technologies are promising alternatives towards established methods such as reverse osmosis or ultrafiltration. In the last few years hydrogen-driven electrochemical water purification has emerged. This review article explores the concept of desalination fuel cells and capacitive-Faradaic f Read More
Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
May 2021
Publication
Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS) such as high energy densities low leakage rates and big storage volumes risk analysis of UHS is a required step for assessing the suitability of this technology. In this work a preliminary quantitative risk assessment (QRA) was performed by starting from the worst Read More
Mobility from Renewable Electricity: Infrastructure Comparison for Battery and Hydrogen Fuel Cell Vehicles
May 2018
Publication
This work presents a detailed breakdown of the energy conversion chains from intermittent electricity to a vehicle considering battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). The traditional well-to-wheel analysis is adapted to a grid to mobility approach by introducing the intermediate steps of useful electricity energy carrier and on-board storage. Specific attention is given to an effective coupling with renewable electricity sources and as Read More
Large-scale Stationary Hydrogen Storage via Liquid Organic Hydrogen Carriers
Aug 2021
Publication
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach liquid organic molecules have emerged as a favorable storage medium because of their desirable properties such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogena Read More
Techno-economic Assessment of Hydrogen Production from Seawater
Nov 2022
Publication
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hy Read More
Public Acceptance for the Implementation of Hydrogen Self-refueling Stations
Sep 2021
Publication
The utilization of hydrogen energy is important for achieving a low-carbon society. Japan has set ambitious goals for hydrogen stations and fuel cell vehicles focusing on the introduction and dissemination of self-refuelling systems. This paper evaluates public trust in the fuel equipment and self-handling technology related to self-refuelling hydrogen stations and compares it with that for widespread gasoline stations. To this end the results of an online survey o Read More
Economic Analysis of a High-pressure Urban Pipeline Concept (HyLine) for Delivering Hydrogen to Retail Fueling Stations
Nov 2019
Publication
Reducing the cost of delivering hydrogen to fuelling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011 and a German station on the edge of an industrial park h Read More
A Novel Integration of a Green Power-to-ammonia to Power System: Reversible Solid Oxide Fuel Cell for Hydrogen and Power Production Coupled with an Ammonia Synthesis Unit
Mar 2021
Publication
Renewable energy is a key solution in maintaining global warming below 2 °C. However its intermittency necessitates the need for energy conversion technologies to meet demand when there are insufficient renewable energy resources. This study aims to tackle these challenges by thermo-electrochemical modelling and simulation of a reversible solid oxide fuel cell (RSOFC) and integration with the Haber Bosch process. The novelty of the proposed s Read More
Constrained Extended Kalman Filter Design and Application for On-line State Estimation of High-order Polymer Electrolyte Membrane Fuel Cell Systems
Jun 2021
Publication
In this paper an alternative approach to extended Kalman filtering (EKF) for polymer electrolyte membrane fuel cell (FC) systems is proposed. The goal is to obtain robust real-time capable state estimations of a high-order FC model for observer applications mixed with control or fault detection. The introduced formulation resolves dependencies on operating conditions by successive linearization and constraints allowing to run the nonlinear FC model at si Read More
Cogeneration of Green Hydrogen in a Cascade Hydropower Plant
Apr 2021
Publication
Hydrogen is today an indispensable feedstock in various process industries but the method of its production is mostly not in line with accepted environmental guidelines. With emerging electro-energetic systems with a large share of renewable sources hydrogen is also becoming an important energy carrier which with the possibility of storing surplus energy ensures greater stability of power system operation and energy supply. Therefore the use of electricit Read More
No more items...