Estimation of Hydrogen Production using Wind Energy in Algeria
Abstract
In response to problems involved in the current crisis of petrol in Algeria, with the decrease in the price of the oil barrel, the rate of growth in domestic electricity demand and with an associated acceleration of global warming, as a result of significantly increased greenhouse gas (GHG) emissions, renewable energy seems today as a clean and strategic substitution for the next decades. However, the greatest obstacles which face electric energy comes from renewable energy systems are often referred to the intermittency of these sources as well as storage and transport problems, the need for their conversion into a versatile energy carrier in its use, storable, transportable and environmentally acceptable are required. Among all the candidates answering these criteria, hydrogen presents the best answer. In the present work, particular attention is paid to the production of hydrogen from wind energy. The new wind map of Algeria shows that the highest potential wind power was found in Adrar, Hassi-R'Mel and Tindouf regions. The data obtained from these locations have been analyzed using Weibull probability distribution function. The wind energy produced in these locations is exploited for hydrogen production through water electrolysis. The objective of this paper is to realize a technological platform allowing the evaluation of emergent technologies of hydrogen production from wind energy using four wind energy conversion systems of 600, 1250, 1500 and 2000 kW rated capacity. The feasibility study shows that using wind energy in the selected sites is a promising solution. It is shown that the turbine " De Wind D7" is sufficient to supply the electricity and hydrogen with a least cost and a height capacity factor. The minimum cost of hydrogen production of 1.214 $/kgH2 is obtained in Adrar.