On Flame Ball-to-Deflagration Transition in Hydrogen-air Mixtures
Abstract
Ultra-lean hydrogen-air combustion is characterized by two phenomena: the difference in upward and downward flame propagation concentration limits and the incomplete combustion. The clear answers on the two basic questions are still absent: What is a reason and what is a mechanism for their manifestation? Problem statement and the principal research topics of the Flame Ball to Deflagration Transition (FBDT) phenomenon in gaseous hydrogen-air mixtures are presented. The non-empirical concept of the fundamental concentration limits discriminates two basic low-speed laminar combustion patterns - self-propagating locally planar deflagration fronts and drifting locally spherical flame balls. To understand - at what critical conditions and how the baric deflagrations are transforming into iso- baric flame balls? - the photographic studies of the quasi-2-dim flames freely propagating outward radially via thin horizontal channel were performed. For gradual increase of initial hydrogen concentration from 3 to 12 vol.% the three representative morphological types of combustion (star-like, dendrite-like and quasi-homogeneous) and two characteristic processes of reaction front bifurcation were revealed. Key elements of the FBDT mechanism both for 2-dim and 3-dim combustion are the following. Locally spherical ""leading centres"" (drifting flame balls) are the ""elementary building blocks"" of all ultra-lean flames. System of the drifting flame balls is formed due to primary bifurcation of the pre-flame kernel just after ignition. Subsequent mutual dynamics and overall morphology of the ultra-lean flames are governed by competitive non-local interactions of the individual drifting flame balls and their secondary/tertiary/etc. bifurcations, defined by initial stoichiometry."