Skip to content
1900

Economic Analysis of a High-pressure Urban Pipeline Concept (HyLine) for Delivering Hydrogen to Retail Fueling Stations

Abstract

Reducing the cost of delivering hydrogen to fuelling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today, hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011, and a German station on the edge of an industrial park has been supplied with 13,000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure, scalable, intra-city pipeline system referred to here as the “HyLine” system. In the HyLine system, hydrogen would be produced at urban industrial or commercial sites, compressed to 15,000 psi, stored at centralized facilities, delivered via high-pressure pipeline to retail stations, and dispensed directly into FCEVs. Our analysis of retail fuelling station economics in Los Angeles suggests that, as FCEV demand for hydrogen in an area becomes sufficiently dense, pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integrated compression and storage. In the largest-scale fuelling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each, and hydrogen produced via steam methane reforming), HyLine could potentially achieve a profited hydrogen cost of $5.3/kg, which is approximately equivalent to a gasoline cost of $2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge, codes, and standards that would enable a HyLine system to be viable. However, our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fuelling stations, which is not reflected in our analysis.

Funding source: National Renewable Energy Laboratory; Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office
Countries: United States
Loading

Article metrics loading...

/content/journal1575
2019-11-04
2024-12-21
/content/journal1575
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error