- Home
- A-Z Publications
- Publications
Publications
European Hydrogen Safety Training Platform for First Responders- Hyresponse Project
Sep 2013
Publication
The paper presents HyResponse project i.e. a European Hydrogen Safety Training Platform that targets to train First responders to acquire professional knowledge and skills to contribute to FCH permitting process as approving authority. The threefold training program is described: educational training operational-level training on mock-up real scale transport and hydrogen stationary installations and innovative virtual training exercises reproducing entire accident scenarios. The paper highlights how the three pilot sessions for European First Responders in a face to face mode will be organized to get a feedback on the training program. The expected outputs are also presented i.e. the Emergency Response Guide and a public website including teaching material and online interactive virtual training.
Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
Mar 2020
Publication
Titanium-based alloys are susceptible to hydrogen embrittlement (HE) a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H2 environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K with crack propagation rates up to 13 times higher than those observed in air. Possible reasons for such behaviour were discussed in this paper. The relationship between FCG results in high-pressure H2 environment and microstructure was investigated by comparison with already published results of cast and forged Ti-6Al-4V. Coarser microstructure was found to be more sensitive to HE. Moreover the electron beam melting (EBM) materials experienced a crack growth acceleration in-between that of cast and wrought Ti-6Al-4V
Status, Gaps and Recommendations Regarding Standardisation and the Use of Hydrogen in Sustainable Buildings
Sep 2013
Publication
The use of and interpretation of Regulations Codes and Standards is important input when developing hydrogen systems and applications. This paper presents the work related to standardisation undertaken by DNV as part of the EU supported project H2SusBuild. During the H2SusBuild project a renewable (solar and wind) based full scale energy system with components for hydrogen storage hydrogen production by electrolysis and hydrogen consumption by fuel cell and burner was built and integrated into an existing office building in Lavrion Greece. The relevant standards identified and applied the standardisation gaps identified and the recommendations made for further standardisation activities are presented.
Cost Effective Inherent Safety Index for Polymer Electrolyte Membrane Fuel Cell Systems
Sep 2013
Publication
There have been many indices available in the process industries to describe rank or quantify hazards to people properties and environments. Most of the developed methods were meant to be applied to large scale and complex systems of process industries. Development of a swift and simple inherent safety index method which is relevant to small scale less complex membrane fuel cell system particularly the one in which to be applied during an early design stage is essential as an alternative to current comprehensive and yet time-consuming indices. In this work a modified version of PIIS modified prototype index for inherent safety (m-PIIS) was developed with the objectives of identifying indicating and estimating inherent safety of fuel cell system at an early design stage. The developed index was tested at four proton exchange membrane (PEM) fuel cell systems namely high pressure PEMFC system low pressure PEMFC system LH2 PEMFC system and on-board Me-OH PEMFC system. The developed index was also benchmarked against the original PIIS and ISI using the published results for the selection of process routes in MMA production. Results have indicated that m-PIIS has strong positive relationship with PIIS and ISI on most of the reaction step in MMA with the most significant are the C4 TBA and C3 reaction steps. Other reaction steps such as C2/MP C2/PA and ACH showed a strong positive relationship as well.
Hydrogen Roadmap: A Commitment to Renewable Hydrogen - Executive Summary
Oct 2020
Publication
This Hydrogen Roadmap aims to identify the challenges and opportunities for the full development of renewable hydrogen in Spain providing a series of measures aimed at boosting investment action taking advantage of the European consensus on the role that this energy vector should play in the context of green recovery. This Roadmap is therefore aligned with the 2021 Annual Sustainable Growth Strategy published by the European Commission which identifies the future Recovery and Resilience Mechanism as an opportunity to create emblematic areas of action at European level making two of these areas of action (Power up and Recharge and Refuel) an explicit mention of the development of renewable hydrogen in the European Union.
Experimental Study of Ignited Unsteady Hydrogen Releases from a High Pressure Reservoir
Sep 2011
Publication
In order to simulate an accidental hydrogen release from the high pressure pipe system of a hydrogen facility a systematic study on the nature of transient hydrogen jets into air and their combustion behavior was performed at the KIT hydrogen test site HYKA. Horizontal unsteady hydrogen jets from a reservoir of 0.37 dm3 with initial pressures of up to 200 bar have been investigated. The hydrogen jets released via round nozzles 3 4 and 10 mm were ignited with different ignition times and positions. The experiments provide new experimental data on pressure loads and heat releases resulting from the deflagration of hydrogen–air clouds formed by unsteady turbulent hydrogen jets released into a free environment. It is shown that the maximum pressure loads occur for ignition in a narrow position and time window. The possible hazard potential arising from an ignited free transient hydrogen jet is described.
Radiation from Hydrogen Jet Fires Investigated by Time-resolved Spectroscopy
Sep 2013
Publication
Jet fires develop on release of hydrogen from pressurized storage depending on orifice pressures and volumes. Risks arise from flame contact dispersion of hot gases and heat radiation. The latter varies strongly in time at short scales down to milliseconds caused by turbulent air entrainment and fluctuations. These jets emit bands of OH in the UV and water in the NIR and IR spectral range. These spectra enable the temperature measurement and the estimation of the air number of the measuring spot which can be used to estimate the total radiation at least from the bright combustion zones. Compared to video and IR camera frames the radiation enables to estimate species and temperatures distributions and total emissions. Impurities generate continuum radiation and the emission of CO2 in the IR indicates air entrainment which can be compared to CHEMKIN II calculation of the reaction with air.
Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
Oct 2017
Publication
Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds which have fascinating structures compositions and properties. Complex metal hydrides are a rapidly expanding class of materials approaching multi-functionality in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state act as novel battery materials both as electrolytes and electrode materials or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron nitrogen and aluminum e.g. metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.
Simulations of Hydrogen Production by Methanol Steam Reforming
Jan 2019
Publication
Methanol is regarded as an important feedstock for hydrogen production due to its high energy density and superior transportability. A tubular packed-bed reactor performing the methanol steam reforming (MSR) process was modeled by adopting computational fluid dynamics (CFD) software to analyze its performance. Kinetic parameters of the reactions were adjusted according to the literatures and our previous experimental results. The methanol conversion the hydrogen production rate and the CO concentration in the produced mixture were evaluated by considering different levels of the length and temperature of the catalyst bed the steam-to-carbon ratio and the space velocity of the feedstocks. Moreover the correlation between the dimensionless parameter Damköhler number and the methanol conversion was also investigated.
High CO2 Absorption Capacity of Metal-Based Ionic Liquids: A Molecular Dynamics Study
Apr 2020
Publication
The absorption of CO2 is of importance in carbon capture utilization and storage technology for greenhouse gas control. In the present work we clarified the mechanism of how metal-based ionic liquids (MBILs) Bmim[XCln]m (X is the metal atom) enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs which increase the absorption capacity of CO2 in MBILs. Then the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural energetic and dynamical properties the CO2 absorption capacity of MBILs increases in the order Cl− → [ZnCl4]2-→ [CuCl4]2-→ [CrCl4]- → [FeCl4]- revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes such as IL-based gas sensors nano-electrical devices and so on.
International Association for Hydrogen Safety ‘Research Priorities Workshop’, September 2018, Buxton, UK
Sep 2018
Publication
Hydrogen has the potential to be used by many countries as part of decarbonising the future energy system. Hydrogen can be used as a fuel ‘vector’ to store and transport energy produced in low-carbon ways. This could be particularly important in applications such as heating and transport where other solutions for low and zero carbon emission are difficult. To enable the safe uptake of hydrogen technologies it is important to develop the international scientific evidence base on the potential risks to safety and how to control them effectively. The International Association for Hydrogen Safety (known as IA HySAFE) is leading global efforts to ensure this. HSE hosted the 2018 IA HySAFE Biennial Research Priorities Workshop. A panel of international experts presented during nine key topic sessions: (1) Industrial and National Programmes; (2) Applications; (3) Storage; (4) Accident Physics – Gas Phase; (5) Accident Physics – Liquid/ Cryogenic Behaviour; (6) Materials; (7) Mitigation Sensors Hazard Prevention and Risk Reduction; (8) Integrated Tools for Hazard and Risk Assessment; (9) General Aspects of Safety.<br/>This report gives an overview of each topic made by the session chairperson. It also gives further analysis of the totality of the evidence presented. The workshop outputs are shaping international activities on hydrogen safety. They are helping key stakeholders to identify gaps in knowledge and expertise and to understand and plan for potential safety challenges associated with the global expansion of hydrogen in the energy system.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Experimental Investigation of Unconfined Spherical and Cylindrical Flame Propagation in Hydrogen-air Mixtures
Sep 2019
Publication
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
Commercialisation of Energy Storage
Mar 2015
Publication
This report was created to ensure a deeper understanding of the role and commercial viability of energy storage in enabling increasing levels of intermittent renewable power generation. It was specifically written to inform thought leaders and decision-makers about the potential contribution of storage in order to integrate renewable energy sources (RES) and about the actions required to ensure that storage is allowed to compete with the other flexibility options on a level playing field.<br/>The share of RES in the European electric power generation mix is expected to grow considerably constituting a significant contribution to the European Commission’s challenging targets to reduce greenhouse gas emissions. The share of RES production in electricity demand should reach about 36% by 2020 45-60% by 2030 and over 80% in 2050.<br/>In some scenarios up to 65% of EU power generation will be covered by solar photovoltaics (PV) as well as on- and offshore wind (variable renewable energy (VRE) sources) whose production is subject to both seasonal as well as hourly weather variability. This is a situation the power system has not coped with before. System flexibility needs which have historically been driven by variable demand patterns will increasingly be driven by supply variability as VRE penetration increases to very high levels (50% and more).<br/>Significant amounts of excess renewable energy (on the order of TWh) will start to emerge in countries across the EU with surpluses characterized by periods of high power output (GW) far in excess of demand. These periods will alternate with times when solar PV and wind are only generating at a fraction of their capacity and non-renewable generation capacity will be required.<br/>In addition the large intermittent power flows will put strain on the transmission and distribution network and make it more challenging to ensure that the electricity supply matches demand at all times.<br/>New systems and tools are required to ensure that this renewable energy is integrated into the power system effectively. There are four main options for providing the required flexibility to the power system: dispatchable generation transmission and distribution expansion demand side management and energy storage. All of these options have limitations and costs and none of them can solve the RES integration challenge alone. This report focuses on the question to what extent current and new storage technologies can contribute to integrate renewables in the long run and play additional roles in the short term.
H21- Hydrogen Boilers Installed in Demonstration Houses
Nov 2020
Publication
Hydrogen boilers have been developed by Worcester Bosch and Baxi and are being trialled in demonstration houses. They look and feel just like the boilers we use today. Hydrogen produces no carbon when used and a hydrogen gas network could provide the least disruptive route to a net zero carbon future.
Fuel Cells and Hydrogen: Joint Undertaking Programme Review 2017 Final Report
Dec 2018
Publication
The Programme Review Report ensures that the FCH JU programme is aligned with its strategy and objectives. This year the programme review was performed following a new procedure: it was carried out by the European Commission’s in-house science service the Joint Research Committee (JRC). The 2017 review pays particular attention to the added value effectiveness and efficiency of FCH JU activities. The review is structured around six panels under three pillars: transport energy and cross-cutting projects summarising the FCH JU Project Portfolio
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Fuel Cell Codes and Standards Resource
Jan 2021
Publication
Although hydrogen has been used in industry for decades its use as a fuel for vehicles or stationary power generation in consumer environments is relatively new. As such hydrogen and fuel cell codes and standards are in various stages of development. Industry manufacturers the government and other safety experts are working with codes and standards development organizations to prepare review and promulgate technically-sound codes and standards for hydrogen and fuel cell technologies and systems.
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Codes and standards are being adopted revised or developed for vehicles; fuel delivery and storage; fueling service and parking facilities; and vehicle fueling interfaces. Codes and standards are also being adopted revised or developed for stationary and portable fuel cells and interfaces as well as hydrogen generators. A list of current of international codes and standards is available on the Fuel Cells Codes and Standards Resource.
Link to website
Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers
Mar 2024
Publication
Underground hydrogen storage in geological structures is considered appropriate for storing large amounts of hydrogen. Using the geological Konary structure in the deep saline aquifers an analysis of the influence of depth on hydrogen storage was carried out. Hydrogen injection and withdrawal modeling was performed using TOUGH2 software assuming different structure depths. Changes in the relevant parameters for the operation of an underground hydrogen storage facility including the amount of H2 injected in the initial filling period cushion gas working gas and average amount of extracted water are presented. The results showed that increasing the depth to approximately 1500 m positively affects hydrogen storage (flow rate of injected hydrogen total capacity and working gas). Below this depth the trend was reversed. The cushion gas-to-working gas ratio did not significantly change with increasing depth. Its magnitude depends on the length of the initial hydrogen filling period. An increase in the depth of hydrogen storage is associated with a greater amount of extracted water. Increasing the duration of the initial hydrogen filling period will reduce the water production but increase the cushion gas volume.
Interaction of Hydrogen Jets with Hot Surfaces of Various Sizes and Temperatures
Sep 2019
Publication
The formation of hydrogen jets from pressurized sources and ignition has been studied by many projects also when hitting hot devices. In the paper presented at the conference 2 years ago the ignition was caused by glow plug a “point like source” at various temperatures distances of igniter and source and source pressures. In continuation of that work ignition now occurred by 1 or 3 platelets of size 45 x 18 mm at a temperatures of 1223 K. When hitting these hot platelets the resulting flame explosions and flame jets show interesting characteristics in contrast to the point like ignition where the explosions drifts downstream with the jet. Parameters of the experiments vary in initial pressure of the tubular source (10 20 and 40 MPa) distance between the nozzle and the hot surface (3 5 and 7 m) and temperature of the hot surface (1223 K). The initial explosions stabilize already at the stagnation point or the wake of the hot platelets. Furthermore flames propagate upstream and downstream depending on the pressure of the hydrogen reservoir and the distance. The achieved flame velocities vary strongly from 30 to 240 m/s. With all investigated hydrogen pressures strong reactions v > 40 m/s occur at platelet distances of 3 and 5 m. The higher values are mainly achieved with jets with 40 MPa pressure at 3 m distance. In these cases the initial explosion contours show irregular shapes. Various effects are found like explosion separation further independently initiated explosions and two parallel flame jets upstream as well as downstream.
Technology Assessment of Hydrogen Firing of Process Heaters
Apr 2011
Publication
In conjunction with John Zink Co. LLC the Chevron Energy Technology Company conducted a three part study evaluating potential issues with switching refinery process heaters from fuel gas to hydrogen fuel for the purpose of greenhouse gas emissions reduction via CO2 capture and storage.
The focus was on the following areas:
The focus was on the following areas:
- Heater performance
- Burner performance and robustness
- Fuel gas system retrofit requirements
Blind-prediction: Estimating the Consequences of Vented Hydrogen Deflagrations for Homogeneous Mixtures in a 20-foot ISO Container
Sep 2017
Publication
Trygve Skjold,
Helene Hisken,
Sunil Lakshmipathy,
Gordon Atanga,
Marco Carcassi,
Martino Schiavetti,
James R. Stewart,
A. Newton,
James R. Hoyes,
Ilias C. Tolias,
Alexandros G. Venetsanos,
Olav Roald Hansen,
J. Geng,
Asmund Huser,
Sjur Helland,
Romain Jambut,
Ke Ren,
Alexei Kotchourko,
Thomas Jordan,
Jérome Daubech,
Guillaume Lecocq,
Arve Grønsund Hanssen,
Chenthil Kumar,
Laurent Krumenacker,
Simon Jallais,
D. Miller and
Carl Regis Bauwens
This paper summarises the results from a blind-prediction study for models developed for estimating the consequences of vented hydrogen deflagrations. The work is part of the project Improving hydrogen safety for energy applications through pre-normative research on vented deflagrations (HySEA). The scenarios selected for the blind-prediction entailed vented explosions with homogeneous hydrogen-air mixtures in a 20-foot ISO container. The test program included two configurations and six experiments i.e. three repeated tests for each scenario. The comparison between experimental results and model predictions reveals reasonable agreement for some of the models and significant discrepancies for others. It is foreseen that the first blind-prediction study in the HySEA project will motivate developers to improve their models and to update guidelines for users of the models.
A Review for Consistent Analysis of Hydrogen Permeability through Dense Metallic Membranes
Jun 2020
Publication
The hydrogen permeation coefficient (ϕ) is generally used as a measure to show hydrogen permeation ability through dense metallic membranes which is the product of the Fick’s diffusion coefficient (D) and the Sieverts’ solubility constant (K). However the hydrogen permeability of metal membranes cannot be analyzed consistently with this conventional description. In this paper various methods for consistent analysis of hydrogen permeability are reviewed. The derivations of the descriptions are explained in detail and four applications of the consistent descriptions of hydrogen permeability are introduced: (1) prediction of hydrogen flux under given conditions (2) comparability of hydrogen permeability (3) understanding of the anomalous temperature dependence of hydrogen permeability of Pd-Ag alloy membrane and (4) design of alloy composition of non-Pd-based alloy membranes to satisfy both high hydrogen permeability together with strong resistance to hydrogen embrittlement.
3D Real Time Monitoring of H2 in FCV Applications
Sep 2019
Publication
In order to monitor a trace amount of Hydrogen in millisecond portable H2 sensor (Sx) was made by using mass spectrometer. The method of monitoring the hydrogen pulse of millisecond in exhaust gas is the increasing needed. Determining H2 concentration both inside and outside of the Fuel Cell Vehicle (FCV) for the optimized operations is becoming a critical issue. The exhaust gas of Fuel Cell Vehicle H2 consumption flushing and disposal around Fuel cell the real time monitoring of H2 in highly humid conditions is the problematic. To solve this issue the system volume of the sampling route was minimized with the heater and the dehumidifier to avoid condensation of water droplets. And also for an automatic calibration of H2 concentration the small cylinder of specific H2 concentration was mounted into the system.<br/>Our basic experiment started from a flow pattern analysis by monitoring H2 concentration in narrow tube. The flow patter analysis was carried out. When H2 gas was introduced in the N2 flow or air in the tube the highly concentrated H2 front phases were observed. This H2 sensor can provide the real time information of the hydrogen molecules and the clouds. The basic characterization of this sensor showed 0-100% H2 concentrations within milliseconds. Our observations showed the size of the high concentration phase of H2 and the low concentration phase after mixing process. The mixed and unmixed H2 unintended concentration of H2 cloud the high speed small cluster of H2 molecules in purged gas were explored by this system.
A Large-Scale Study on the Effect of Ambient Conditions on Hydrogen Recombiner Induced Ignition
Sep 2019
Publication
Hydrogen recombiners (known in the nuclear industry as passive autocatalytic recombiners-PARs) in general can be utilized for mitigation of hydrogen in controlled areas where there is potential for hydrogen release and ventilation is not practical. Recombiners are widely implemented in the nuclear industry however there are other applications of recombiners outside the nuclear industry that have not yet been explored practically. The most notable benefit of recombiners over conventional hydrogen mitigation measures is their passive capability where power or operator actions are not needed for the equipment to remove hydrogen when it is present.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
One of most significant concerns regarding the use of hydrogen recombiners in industry is their potential to ignite hydrogen at elevated concentrations (>6 vol%). The catalyst heated by the exothermal H2–O2 reaction is known to be a potential ignition source to cause hydrogen burns. An experimental program utilizing a full-size PAR at the Large-Scale Vented Combustion Test Facility (LSVCTF) has been carried out by Canadian Nuclear Laboratories (CNL) to investigate and understand the behaviour of hydrogen combustion induced by a PAR on a large-scale basis. A number of parameters external to the PAR have been explored including the effect of ambient humidity (steam) and temperature. The various aspects of this investigation will be discussed in this paper and examples of results are provided.
Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review
Jan 2022
Publication
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size shape increased surface-to-volume ratio and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties such as significantly enhanced toughness mechanical strength and thermal/electrochemical conductivity. As a result of these advantages nanocomposites have been used in a variety of applications including catalysts electrochemical sensors biosensors and energy storage devices among others. This study focuses on the usage of several forms of carbon nanomaterials such as carbon aerogels carbon nanofibers graphene carbon nanotubes and fullerenes in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years notably in the car industry due to their cost-effectiveness eco-friendliness and long-cyclic durability. Further; we discuss the principles reaction mechanisms and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
Hydrogen Production by Steam Reforming of DME in a Large Scale CFB Reactor. Part I: Computational Model and Predictions
Oct 2015
Publication
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian–Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics gas residence time temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Hydrogen-enhanced Fatigue Crack Growth in Steels and its Frequency Dependence
Jun 2017
Publication
In the context of the fatigue life design of components particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles it is important to understand the hydrogen-induced fatigue crack growth (FCG) acceleration in steels. As such the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further this frequency dependence is debated by introducing some potentially responsible elements along with new experimental data obtained by the authors.
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
This article is part of the themed issue ‘The challenges of hydrogen and metals’.
Link to document download on Royal Society Website
The Effect of Graphite Size on Hydrogen Absorption and Tensile Properties of Ferritic Ductile Cast Iron
Jun 2019
Publication
Ductile cast iron (DCI) is one of prospective materials used for the hydrogen equipment because of low-cost good workability and formability. The wide range of mechanical properties of DCI is obtained by controlling microstructural factors such as graphite size volume fraction of graphite matrix structure and so on. Therefore it is important to find out an optimal microstructural condition that is less susceptible to hydrogen embrittlement. In this study the effects of graphite size on the hydrogen absorption capability and the hydrogen-induced ductility loss of ferritic DCI were investigated.<br/>Several kinds of ferritic DCIs with a different graphite diameter of about 10 µm - 30 µm were used for the tensile test and the hydrogen content measurement. Hydrogen charging was performed prior to the tensile test by exposing a specimen to high-pressure hydrogen gas. Then the tensile test was performed in air at room temperature. The hydrogen content of a specimen was measured by a thermal desorption analyzer.<br/>It was found that the amount of hydrogen stored in DCI was dependent on the graphite size. As the graphite diameter increased the hydrogen content sharply increased at a certain graphite diameter and then it became nearly constant irrespective of increase in graphite diameter. In other words there was the critical graphite diameter that significantly changed the hydrogen absorption capability. The ductility was decreased by hydrogen and the hydrogen-induced ductility loss was dependent on the hydrogen content. Therefore the hydrogen embrittlement of DCI became remarkable when the graphite size was larger than the critical value.
Strategy for Selecting an Optimal Propulsion System of a Liquefied Hydrogen Tanker
Jan 2017
Publication
This study proposed a strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker. Four propulsion system options were conceivable depending on whether the hydrogen BOG (boil-off gas) from the cryogenic cargo tanks was used for fuel or not. These options were evaluated in terms of their economic technological and environmental feasibilities. The comparison scope included not only main machinery but also the BOG handling system with electric generators. Cost-benefit analysis life-cycle costing including carbon tax and an energy efficiency design index were used as measures to compare the four alternative systems. The analytic hierarchy process made scientific decision-making possible. This methodology provided the priority of each attribute through the use of pairwise comparison matrices. Consequently the propulsion system using LNG with hydrogen BOG recovery was determined to be the optimal alternative. This system was appropriate for the tanker that achieved the highest evaluation score.
3D Quantitative Risk Assessment on a Hydrogen Refuelling Station in Shanghai
Sep 2019
Publication
The number of hydrogen refuelling stations worldwide is growing rapidly in recent years. The first large capacity hydrogen refuelling station in China is under construction. A 3D quantitative risk assessment QRA)is conducted for this station. Hazards associated with hydrogen systems are identified. Leakage frequency of hydrogen equipment are analyzed. Jet flame explosion scenarios and corresponding accident consequences are simulated. Risk acceptance criteria for hydrogen refuelling stations are discussed. The results show that the risk of this refuelling station is acceptable. And the maximum lethality frequency is 6.3*10-6. The area around compressors has the greatest risk. People should be avoided as far as possible from the compressor when the compressor does not need to be maintained. With 3D QRA the visualization of the evaluation results will help stakeholders to observe the hazardous areas of the hydrogen refuelling station at a glance.
Numerical Simulation of Combustion of Natural Gas Mixed with Hydrogen in Gas Boilers
Oct 2021
Publication
Hydrogen mixed natural gas for combustion can improve combustion characteristics and reduce carbon emission which has important engineering application value. A casing swirl burner model is adopted to numerically simulate and research the natural gas hydrogen mixing technology for combustion in gas boilers in this paper. Under the condition of conventional air atmosphere and constant air excess coefficient the six working conditions for hydrogen mixing proportion into natural gas are designed to explore the combustion characteristics and the laws of pollution emissions. The temperature distributions composition and emission of combustion flue gas under various working conditions are analyzed and compared. Further investigation is also conducted for the variation laws of NOx and soot generation. The results show that when the boiler heating power is constant hydrogen mixing will increase the combustion temperature accelerate the combustion rate reduce flue gas and CO2 emission increase the generation of water vapor and inhibit the generation of NOx and soot. Under the premise of meeting the fuel interchangeability it is concluded that the optimal hydrogen mixing volume fraction of gas boilers is 24.7%.
Deflagration-to-detonation Transition of H2-CO-Air Mixtures in a Partially Obstructed Channel
Sep 2019
Publication
In this study an explosion channel is used to investigate flame dynamics in homogeneous hydrogencarbon monoxide-air (H2-CO-air) mixtures. The test rig is a small scale 6 m channel at a rectangular cross section of 300x60 mm. Obstacles of a blockage ratio of BR=60% and a spacing of s=300mm are placed in first part of the channel. A 2.05 m long unobstructed part in the rear of the channel allows for investigation of freely propagating flames and detonations. The fuel composition is varied from 100/0 to 50/50 Vol.-% H2/CO mixtures. The overall fuel content ranges from 15 to 40 Vol.-% in air aiming to obtain fast flames and deflagration-to-detonation transition (DDT). Flame speed and dynamic pressure data are evaluated. Results extend data obtained by [1] and can be used for validation of numerical frameworks. Limits for fast flames and DDT in homogeneous H2-CO-air mixtures at the given geometry are presented.
The Influence of Hydrogen Desorption on Micromechanical Properties and Tribological Behavior of Iron and Carbon Steels
Dec 2018
Publication
The influence of the previous electrolytic hydrogenation on the micromechanical properties and tribological behavior of the surface layers of iron and carbon steels has been studied. The concentrations of diffusion-moving and residual hydrogen in steels are determined depending on the carbon content. It is shown that the amount of sorbed hydrogen is determined by the density of dislocations and the relative volume of cementite. After desorption of diffusion-moving hydrogen the microhardness increases and materials plasticity decreases. The change of these characteristics decreases with the increase of carbon content in the steels. Internal stresses increase and redistribute under hydrogen desorption. Fragmentation of ferrite and perlite occurs as a result of electrolytic hydrogenation. Ferrite is characterized by the structure fragmentation and change of the crystallographic orientation of planes. The perlite structure shows the crushing of cementite plates and their destruction. The influence of hydrogen desorption on the microhardness of structural components of ferrite-perlite steels is shown. Large scattering of microhardness is found in perlite due to different diffusion rates of hydrogen because of the unequally oriented cementite plates. It was found that the tendency of materials to blister formation is reduced with the increase of carbon content. The influence of hydrogen on the tribological behaviour of steels under dry and boundary friction has been studied. It is shown that hydrogen desorption intensifies the materials wear. After hydrogen desorption tribological behaviour is determined by the adhesion interaction between the contacting pairs.
Homogeneous Hydrogen Deflagrations in Small Scale Enclosure. Experimental Results
Sep 2017
Publication
University of Pisa performed experimental tests in a 1m3 facility which shape and dimensions resemble a gas cabinet for the HySEA project founded by the Fuel Cells and Hydrogen 2 Joint Undertaking with the aim to conduct pre-normative research on vented deflagrations in real-life enclosures and containers used for hydrogen energy applications in order to generate experimental data of high quality. The test facility named Small Scale Enclosure (SSE) had a vent area of 042m2 which location could be varied namely on the top or in front of the facility while different types of vent were investigated. Three different ignition location were investigated as well and the range of Hydrogen concentration ranged between 10 and 18% vol. This paper is aimed to summarize the main characteristics of the experimental campaign as well as to present its results.
The New Oil? The Geopolitics and International Governance of Hydrogen
Jun 2020
Publication
While most hydrogen research focuses on the technical and cost hurdles to a full-scale hydrogen economy little consideration has been given to the geopolitical drivers and consequences of hydrogen developments. The technologies and infrastructures underpinning a hydrogen economy can take markedly different forms and the choice over which pathway to take is the object of competition between different stakeholders and countries. Over time cross-border maritime trade in hydrogen has the potential to fundamentally redraw the geography of global energy trade create a new class of energy exporters and reshape geopolitical relations and alliances between countries. International governance and investments to scale up hydrogen value chains could reduce the risk of market fragmentation carbon lock-in and intensified geo-economic rivalry.
Hydrogen Explosion Hazards Limitation in Battery Rooms with Different Ventilation Systems
Sep 2019
Publication
When charging most types of industrial lead-acid batteries hydrogen gas is emitted. A large number of batteries especially in relatively small areas/enclosures and in the absence of an adequate ventilation system may create an explosion hazard. This paper describes full scale tests in confined space which demonstrate conditions that can occur in a battery room in the event of a ventilation system breakdown. Over the course of the tests full scale hydrogen emission experiments were performed to study emission time and flammable cloud formation according to the assumed emission velocity. On this basis the characteristics of dispersion of hydrogen in the battery room were obtained. The CFD model Fire Dynamic Simulator (NIST) was used for confirmation that the lack of ventilation in a battery room can be the cause of an explosive atmosphere developing and leading to a potential huge explosive hazard. It was demonstrated that different ventilation systems provide battery rooms with varying efficiencies of hydrogen removal. The most effective type appeared to be natural ventilation which proved more effective than mechanical means.
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Flow of Hydrogen from Buried Leaks
Sep 2019
Publication
The substitution of hydrogen for natural gas within a gas network has implications for the potential rate of leakage from pipes and the distribution of gas flow driven by such leaks. This paper presents theoretical analyses of low-pressure flow through porous ground in a range of circumstances and practical experimental work at a realistic scale using natural gas hydrogen or nitrogen for selected cases. This study considers flow and distribution of 100% hydrogen. A series of eight generic flow regimes have been analysed theoretically e.g. (i) a crack in uncovered ground (ii) a crack under a semi-permeable cover in a high porosity channel (along a service line or road). In all cases the analyses yield both the change in flow rate when hydrogen leaks and the change in distance to which hydrogen gas can travel at a dangerous rate compared to natural gas. In some scenarios a change to hydrogen gas from natural gas makes minimal difference to the range (i.e. distance from the leak) at which significant gas flows will occur. However in cases where the leak is covered by an impermeable membrane a change to hydrogen from natural gas may extend the range of significant gas flow by tens or even hundreds of metres above that of natural gas. Experimental work has been undertaken in specific cases to investigate the following: (i) Flow rate vs pressure curves for leaks into media with different permeability (ii) Effects of the water content of the ground on gas flow (iii) Distribution of surface gas flux near a buried leak
Towards Fire Test Protocol for Hydrogen Storage Tanks
Sep 2019
Publication
The reproducibility of fire test protocol in the UN Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR#13) is not satisfactory. Results differ from laboratory to laboratory and even at the same laboratory when fires of different heat release (HRR) rate are applied. This is of special importance for fire test of tank without thermally activated pressure relief devise (TPRD) the test requested by firemen. Previously the authors demonstrated a strong dependence of tank fire resistance rating (FRR) i.e. time from fire test initiation to moment of tank rupture on the HRR in a fire. The HRR for complete combustion at the open is a product of heat of combustion and flow rate of a fuel i.e. easy to control in test parameter. It correlates with heat flux to the tank from a fire – the higher HRR the higher heat flux. The control of only temperature underneath a tank in fire test as per the current fire test protocol of UN GTR#13 without controlling HRR of fire source is a reason of poor fire test reproducibility. Indeed a candle flame can easily provide a required by the protocol temperature in points of control but such test arrangements could never lead to tank rupture due to fast heat dissipation from such tiny fire source i.e. insufficient and very localised heat flux to the tank. Fire science requires knowledge of heat flux along with the temperature to characterise fire dynamics. In our study published in 2018 the HRR is suggested as an easy to control parameter to ensure the fire test reproducibility. This study demonstrates that the use of specific heat release rate HRR/A i.e. HRR in a fire source divided by the area of the burner projection A enables testing laboratories to change freely a burner size depending on a tank size without affecting fire test reproducibility. The invariance of FRR at its minimum level with increase of HRR/A above 1 MW/m2 has been discovered first numerically and then confirmed by experiments with different burners and fuels. The validation of computational fluid dynamics (CFD) model against the fire test data is presented. The numerical experiments with localised fires under a vehicle with different HRR/A are performed to understand the necessity of the localised fire test protocol. The understanding of fire test underlying physics will underpin the development of protocol providing test reproducibility.
The Influence of H2 Safety Research on Relevant Risk Assessment
Sep 2019
Publication
Hydrogen is a valuable option of clean fuel to keep the global temperature rise below 2°C. However one of the main barriers in its transport and use is to ensure safety levels that are comparable with traditional fuels. In particular liquid hydrogen accidents may not be fully understood (yet) and excluded by relevant risk assessment. For instance as hydrogen is cryogenically liquefied to increase its energy density during transport Boiling Liquid Expanding Vapor Explosions (BLEVE) is a potential and critical event that is important addressing in the hazard identification phase. Two past BLEVE accidents involving liquid hydrogen support such thesis. For this reason results from consequence analysis of hydrogen BLEVE will not only improve the understanding of the related physical phenomenon but also influence future risk assessment studies. This study aims to show the extent of consequence analysis influence on overall quantitative risk assessment of hydrogen technologies and propose a systematic approach for integration of overall results. The Dynamic Procedure for Atypical Scenario Identification (DyPASI) is used for this purpose. The work specifically focuses on consequence models that are originally developed for other substances and adapted for liquid hydrogen. Particular attention is given to the parameters affecting the magnitude of the accident as currently investigated by a number of research projects on hydrogen safety worldwide. A representative example of consequence analysis for liquid hydrogen release is employed in this study. Critical conditions detected by the numerical simulation models are accurately identified and considered for subsequent update of the overall system risk assessment.
Hydrogen Europe Podcast: Hydrogen, The First Element: Why Renewable Hydrogen? Why Now?
Mar 2022
Publication
In the first episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with NEL's CEO and President of Hydrogen Europe Jon Andre Løkke. Starting off on how Jon joined the hydrogen sector the two CEOs investigate the historical moment renewable hydrogen is currently living.
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
Review of Power-to-Gas Projects in Europe
Nov 2018
Publication
Core of the Power-to-Gas (PtG) concept is the utilization of renewable electricity to produce hydrogen via water electrolysis. This hydrogen can be used directly as final energy carrier or can be converted to e.g. methane synthesis gas liquid fuels electricity or chemicals. To integrate PtG into energy systems technical demonstration and systems integration is of mayor importance. In total 128 PtG research and demonstration projects are realized or already finished in Europe to analyze these issues by May 2018. Key of the review is the identification and assessment of relevant projects regarding their field of application applied processes and technologies for electrolysis type of methanation capacity location and year of commissioning. So far main application for PtX is the injection of hydrogen or methane into the natural gas grid for storing electricity from variable renewable energy sources. Producing fuels for transport is another important application of PtX. In future PtX gets more important for refineries to lower the carbon food print of the products.
Transferring the Retail of Hydrogen Economy and Missing Safety Assurance
Sep 2019
Publication
Australian regional communities are moving ahead of governments. Enterprising individuals are pushing ahead to find global solutions to local issues that governments (local or state or federal) have abandoned stalled mothballed or failed to resolve. We are faced with a flaw in retail of hydrogen economy as fatal as Walgett running dry or a million fish killed in Murray-Darling. The challenge in Australian regional communities will be to interpret safety assurance requirements in an appropriate manner even in severe economic swings such as drought bushfire or floods. In this context the efficacious cultural embrace by regional communities of three key program elements is essential - Australian Hydrogen Safety Panel Hydrogen Safety Knowledge Tools and Dissemination Hydrogen Safety First Responder Training. What are the odds of no accident in retailing hydrogen for examples to vehicles? Place is everything in regional communities of Australia because in nature (as in the ocean) there is no spin. This paper examines the safety assurance issues associated with the cultural integration of Hydrogen’s three key program elements in a country Australia that is fed-up with government.
Specific Effects of Hydrogen Concentration on Resistance to Fracture of Ferrite-pearlitic Pipeline Steels
Aug 2019
Publication
The presented work is dedicated to evaluation of strain and fatigue behaviour of the ferrite-pearlite low-alloyed pipeline steels under known hydrogen concentration in a bulk of metal. Tensile test results have shown on the existence of some characteristic value of the hydrogen concentration CH at which the mechanism of hydrogen influence changes namely: below this value the enhanced plasticity (decreasing of the yield stress value) takes place and above – the hydrogen embrittlement occurs. The ambiguous relationship between fatigue crack growth rate and hydrogen concentration CH in the bulk of steels under their cyclic loading in hydrogen-contained environments has been found. There is a certain CH value at which the crack growth resistance of steel increases and the diagram of fatigue crack growth rate shifts to higher values of stress intensity factor. The generalised diagram of hydrogen concentration effect on strength behaviour of low-alloyed ferrite-pearlite pipeline steels is presented and discussed with the aim of evaluation of different mechanisms of hydrogen effect conditions of their realization and possible co-existence.
Experimental Study of Light Gas Dispersion in a Channel
Sep 2019
Publication
Usage of hydrogen as fuel gives rise to possible accidental risks due to leakage and dispersion. A risk from hydrogen leak is the formation of a large volume of the hydrogen-air mixture which could be ignited and leading up to a severe explosion. Prevention and control of formation and ignition of combustible hydrogen cloud necessitate sufficient knowledge of mechanisms of the hydrogen leak dispersion ignition and over-pressures generated during combustion. This paper aims to investigate the momentum-controlled jet the buoyancy-controlled wave and the parameters influencing hydrogen concentration distribution in an elongated space. It demonstrates experimental results and analysis from helium and hydrogen dispersion in a channel. A set of experiments were carried out for the release of helium and hydrogen jets in a 3 m long channel to record their concentrations in the cloud by concentration sensors at different horizontal and vertical positions. Flow visualization technique was applied using shadowgraph to image the mixing process next to the release point and the helium- hydrogen-air cloud shape at the middle of the channel. Moreover results were used for comparison of helium and hydrogen concentration gradients. The results of the experiments show that swift mixing occurs at higher flow rates smaller nozzle sizes and downward release direction. Higher concentration recorded in the channel with negative inclination. Results also confirmed that hydrogen/helium behavior pattern in the channel accords with mutual intrusion theory about gravity currents.
Annual Science Review 2020
Mar 2020
Publication
HSE maintains a national network of doctors appointed doctors and approved medical examiners of divers who are appointed to deliver certain vital functions under our regulatory framework.1 Over the last year or so we have been reaching out to them and offering training and networking opportunities so that we can learn from each other. Their intelligence from real workplaces helps ensure that our medical approach is grounded by what actually happens and this helped us ensure that our health and work strategy took account of their views. I think that it is increasingly important to share our approaches and our research outcomes on the global stage in an attempt to learn from other researchers around the world. A good example is the work described in this report on the artificial stone issue. I have been lucky enough to work with the Australian research group who identified an epidemic of silicosis from this exposure in their country and helped to facilitate some cross-comparison of materials with our hygienists and measurement scientists. The dialogue continues and I hope that by doing so we can help to prevent such an epidemic from occurring in the UK.<br/>All HSE research findings are published as soon as we are able to do this and this demonstrates both my and Andrew Curran’s commitment to ensure that we publish the evidence we generate to make workplaces healthier for all.
No more items...