- Home
- A-Z Publications
- Publications
Publications
Comparison of NFPA and ISO Approaches for Evaluating Separation Distances
Sep 2011
Publication
The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk code and standard development organizations (SDOs) are utilizing risk-informed concepts in developing hydrogen codes and standards. Two SDOs the National Fire Protection Association (NFPA) and the International Organization for Standardization (ISO) through its Technical Committee (TC) 197 on hydrogen technologies have been developing standards for gaseous hydrogen facilities that specify the facilities have certain safety features use equipment made of material suitable for a hydrogen environment and have specified separation distances. Under Department of Energy funding Sandia National Laboratories (SNL) has been supporting efforts by both of these SDOs to develop the separation distances included in their respective standards. Important goals in these efforts are to use a defensible science-based approach to establish these requirements and to the extent possible harmonize the requirements. International harmonization of regulations codes and standards is critical for enabling global market penetration of hydrogen and fuel cell technologies.
CFD and VR for Risk Communication and Safety Training
Sep 2011
Publication
There are new safety challenges with an increased use of hydrogen e.g. that people may not see dangerous jet flames in case of an incident. Compared to conventional fuels hydrogen has very different characteristics and physical properties and is stored at very high pressure or at very low temperatures. Thus the nature of hazard scenarios will be very different. Consequence modelling of ventilation releases explosions and fires can be used to predict and thus understand hazards. In order to describe the detailed development of a hazard scenario and evaluate ways of mitigation 3D Computational Fluid Dynamics (CFD) models will be required. Even with accurate modelling the communication of risk can be challenging. For this visualization in virtual reality (VR) may be of good help in which the CFD model predictions are presented in a realistic 3D environment with the possibility to include sounds like noise from a high pressure release explosion or fire. In cooperation with Statoil Christian Michelsen Research (CMR) and GexCon have developed the VRSafety application. VRSafety can visualize simulation results from FLACS (and another CFD-tool KFX) in an immersive VR-lab or on a PC. VRSafety can further be used to interactively control and start new CFD-simulations during the sessions. The combination of accurate CFD-modelling visualization and interactive use through VRSafety represents a powerful toolbox for safety training and risk communication to first-responders employees media and other stakeholders. It can also be used for lessons learned sessions studying incidents and accidents and to demonstrate what went wrong and how mitigation could have prevented accidents from happening. This paper will describe possibilities with VRSafety and give examples of use.
Experimental Study on High Pressure Hydrogen Jets Coming Out of Tubes of 0.1–4.2 m in Length
Sep 2011
Publication
Wide use of hydrogen faces significant studies to resolve hydrogen safety issues in industries worldwide. However widely acceptable safety level standards are not achieved in the present situation yet. The present paper deals with hydrogen leaks from a tube to ignite and explode in atmosphere. The experiments using a shock tube are performed to clarify the auto-ignition property of high pressure hydrogen jet spouting from a tube. In order to improve experimental repeatability and reliability the shock tube with a plunger system is applied where the PET diaphragm is ruptured by a needle in order to control a diaphragm burst pressure (hydrogen pressure). As a result it becomes possible to control the diaphragm burst pressure to obtain a local minimum value. The most important result obtained in the preset study is that the minimum diaphragm burst pressure for auto-ignition is found between 1.0 and 1.2 m of tube length using a longer tube than the one used in the previous study. This minimum tube size is not found elsewhere to suggest that the tube length has a limit size for auto-ignition. Furthermore auto-ignition and Mach disk at the tube exit are observed using a high speed camera which is set at the frame speed of 1x105 fps when the ignited hydrogen jet is spouted out the tube.
Sizing, Optimization, and Financial Analysis of a Green Hydrogen Refueling Station in Remote Regions
Jan 2022
Publication
Hydrogen (H2 ) can be a promising energy carrier for decarbonizing the economy and especially the transport sector which is considered as one of the sectors with high carbon emissions due to the extensive use of fossil fuels. H2 is a nontoxic energy carrier that could replace fossil fuels. Fuel Cell Electric Vehicles (FCEVs) can decrease air pollution and reduce greenhouse gases when H2 is produced from Renewable Energy Sources (RES) and at the same time being accessible through a widespread network of Hydrogen Refueling Stations (HRSs). In this study both the sizing of the equipment and financial analysis were performed for an HRS supplied with H2 from the excess electrical energy of a 10 MW wind park. The aim was to determine the optimum configuration of an HRS under the investigation of six different scenarios with various numbers of FCEVs and monthly demands as well as ascertaining the economic viability of each examined scenario. The effect of the number of vehicles that the installation can refuel to balance the initial cost of the investment and the fuel cost in remote regions was investigated. The results showed that a wind-powered HRS could be a viable solution when sized appropriately and H2 can be used as a storage mean for the rejected wind energy. It was concluded that scenarios with low FCEVs penetration have low economic performance since the payback period presented significantly high values.
Experimental Study of the Spontaneous Ignition of Partly Confined Hydrogen Jets
Sep 2011
Publication
The current study addresses the spontaneous ignition of hydrogen jets released into a confined oxidizer environment experimentally. The experiments are conducted in a shock tube where hydrogen gas is shock-accelerated into oxygen across a perforated plate. The operating conditions and hole dimension of the plate were varied in order to identify different flow field and ignition scenarios. Time resolved Schlieren visualization permitted to reconstruct the gasdynamic evolution of the release and different shock interactions. Time resolved self-luminosity records permitted us to record whether ignition was achieved and also to record the dimension of the turbulent mixing layer. The ignition limits determined experimentally in good agreement with the 1D diffusion ignition model proposed by Maxwell and Radulescu. Nevertheless the experiments demonstrated that the mixing layer is two to three orders of magnitude thicker than predicted by molecular diffusion which can be attributed to the observed mixing layer instabilities and shock-mixing layer interactions which provide a much more intense mixing rate than anticipated from previous and current numerical predictions. These observations further clarify why releases through partly confined geometries are more conducive to jet ignition of the jets.
Burning Velocity and Markstein Length Blending Laws for Methane/Air and Hydrogen/Air Blends
Sep 2016
Publication
"Because of the contrasting chemical kinetics of methane and hydrogen combustion the development of blending laws for laminar burning velocity ul and Markstein length for constituent mixtures of CH4/air and H2/air presents a formidable challenge. Guidance is sought through a study of analytical expressions for laminar burning velocity. For the prediction of burning velocities of blends six blending laws were scrutinised. The predictions were compared with the measured burning velocities made by Hu et al. under atmospheric conditions. These covered equivalence ratios ranging from 0.6 to 1.3 and the full fuel range for H2 addition to CH4. This enabled assessments to be made of the predictive accuracy of the six laws. The most successful law is one developed in the course of the present study involving the mass fraction weighting of the product of ul density heat of reaction and specific heat divided by the thermal conductivity of the mixture. There was less success from attempts to obtain a comparably successful blending law for the flame speed Markstein length Lb despite scrutiny of several possibilities. Details are given of two possible approaches one based on the fractional mole concentration of the deficient reactant. A satisfactory empirical law employs mass fraction weighting of the product ulLb.
The Crucial Role of the Lewis Number in Jet Ignition
Sep 2011
Publication
During the early phase of the transient process following a hydrogen leak into the atmosphere a contact surface appears separating hot air from cold hydrogen. Locally the interface is approximately planar. Diffusion occurs potentially leading to ignition. This process was analyzed by Lin˜a´n and Crespo (1976) for Lewis number unity and Lin˜a´n and Williams (1993) for Lewis number less than unity. In addition to conduction these processes are affected by expansion due to the flow which leads to a temperature drop. If chemistry is very temperature-sensitive then the reaction rate peaks close to the hot region where relatively little fuel is present. Indeed the Arrhenius rate drops rapidly as temperature drops much more so than fuel concentration. However the small fuel concentration present close to the airrich side depends crucially upon the balance between fuel diffusion and heat diffusion hence the fuel Lewis number. For Lewis number unity the fuel concentration present due to diffusion is comparable to the rate of consumption due to chemistry. If the Lewis number is less than unity fuel concentration brought in by diffusion is large compared with temperature-controlled chemistry. For a Lewis number greater than unity diffusion is not strong enough to bring in as much fuel as chemistry would be able to burn and combustion is controlled by fuel diffusion. In the former case combustion occurs faster leading to a localized ignition at a finite time determined by the analysis. As long as the temperature drop due to the expansion associated with the multidimensional nature of the jet does not lower significantly the reaction rate up to that point ignition in the jet takes place. For fuel Lewis number greater than unity first the reaction rate is much lower. Second chemistry does not lead to a defined ignition. Eventually expansion will affect the process and ignition does not take place. In summary it appears that the reason why hydrogen is the only fuel for which jet ignition has been observed is a Lewis number effect coupled with a high speed of sound hence a high initial temperature discontinuity.
Safety Assessment of Unignited Hydrogen Discharge from Onboard Storage in Garages with Low Levels of Natural Ventilation
Sep 2011
Publication
This study is driven by the need to understand requirements to safe blow-down of hydrogen onboard storage tanks through a pressure relief device (PRD) inside a garage-like enclosure with low natural ventilation. Current composite tanks for high pressure hydrogen storage have been shown to rupture in 3.5–6.5 min in fire conditions. As a result a large PRD venting area is currently used to release hydrogen from the tank before its catastrophic failure. However even if unignited the release of hydrogen from such PRDs has been shown in our previous studies to result in unacceptable overpressures within the garage capable of causing major damage and possible collapse of the structure. Thus to prevent collapse of the garage in the case of a malfunction of the PRD and an unignited hydrogen release there is a clear need to increase blow-down time by reducing PRD venting area. Calculations of PRD diameter to safely blow-down storage tanks with inventories of 1 5 and 13 kg hydrogen are considered here for a range of garage volumes and natural ventilation expressed in air changes per hour (ACH). The phenomenological model is used to examine the pressure dynamics within a garage with low natural ventilation down to the known minimum of 0.03 ACH. Thus with moderate hydrogen flow rate from the PRD and small vents providing ventilation of the enclosure there will be only outflow from the garage without any air intake from outside. The PRD diameter which ensures that the pressure in the garage does not exceed a value of 20 kPa (accepted in this study as a safe overpressure for civil structures) was calculated for varying garage volumes and natural ventilation (ACH). The results are presented in the form of simple to use engineering nomograms. The conclusion is drawn that PRDs currently available for hydrogen-powered vehicles should be redesigned along with either a change of requirements for the fire resistance rating or innovative design of the onboard storage system as hydrogen-powered vehicles are intended for garage parking. Further research is needed to develop safety strategies and engineering solutions to tackle the problem of fire resistance of onboard storage tanks and requirements to PRD performance. Regulation codes and standards in the field should address this issue.
Determination of Characteristic Parameters for the Thermal Decomposition of Epoxy Resin/carbon Fibre Composites in Cone Calorimeter
Sep 2011
Publication
The thermal degradation of two epoxy resin/carbon fiber composites which differ by their volume fractions in carbon fiber (56 and 59 vol%.) was investigated in cone calorimeter under air atmosphere with a piloted ignition. The external heat flux of cone calorimeter was varied up to 75 kW.m-2 to study the influence of the carbon fiber amount on the thermal decomposition of those composites. Thus main parameters of the thermal decomposition of two different composites were determined such as: mass loss mass loss rate ignition time thermal response parameter ignition temperature critical heat flux thermal inertia and heat of gasification. As a result all the parameters that characterize the thermal resistance of composites are decreased when the carbon fiber volume fraction is increased.
Simulation of Shock-Initiated Ignition
Sep 2009
Publication
The scenario of detonative ignition in shocked mixture is significant because it is a contributor to deflagration to detonation transition for example following shock reflections. However even in one dimension simulation of ignition between a contact surface or a flame and a shock moving into a combustible mixture is difficult because of the singular nature of the initial conditions. Initially as the shock starts moving into reactive mixture the region filled with reactive mixture has zero thickness. On a fixed grid the number of grid points between the shock and the contact surface increases as the shock moves away from the latter. Due to initial lack of resolution in the region of interest staircasing may occur whereby the resulting plots consist of jumps between few values a few grid points and these numerical artifacts are amplified by the chemistry which is very sensitive to temperature leading to unreliable results. The formulation is transformed replacing time and space by time and space over time as the independent variables. This frame of reference corresponds to the self-similar formulation in which the non-reactive problem remains stationary and the initial conditions are well-resolved. Additionally a solution obtained from short time perturbation is used as initial condition at a time still short enough for the perturbation to be very accurate but long enough so that there is sufficient resolution. The numerical solution to the transformed problem is obtained using an essentially non-oscillatory algorithm which is adequate not only for the early part of the process but also for the latter part when chemistry leads to appearance of a shock and eventually a detonation wave is formed. A validation study was performed and the results were compared with the literature for single step Arrhenius chemistry. The method and its implementation were found to be effective. Results are presented for values of activation energy ranging from mild to stiff.
Development of an Italian Fire Prevention Technical Rule For Hydrogen Pipelines
Sep 2011
Publication
This paper summarizes the current results of the theoretical and experimental activity carried out by the Italian Working Group on the fire prevention safety issues in the field of the hydrogen transport in pipelines. From the theoretical point of view a draft document has been produced beginning from the regulations in force on the natural gas pipelines; these have been reviewed corrected and integrated with the instructions suitable to the use of hydrogen. From the experimental point of view an apparatus has been designed and installed at the University of Pisa; this apparatus has allowed the simulation of hydrogen releases from a pipeline with and without ignition of hydrogen-air mixture. The experimental data have helped the completion of the above-mentioned draft document with the instructions about the safety distances. The document has been improved for example pipelines above ground (not buried) are allowed due to the knowledge acquired by means of the experimental campaign. The safety distances related to this kind of piping has been chosen on the base of risk analysis. The work on the text contents is concluded and the document is currently under discussion with the Italian stakeholders involved in the hydrogen applications.
The Status and Prospects of Hydrogen and Fuel Cell Technology in the Philippines
Jan 2022
Publication
As a developing country the Philippines must balance its rapid industrialization efforts with the realities and consequences of climate change on the country. A feasible option to achieve this is increasing the share of renewables in power generation coupled with energy storage technology. This paper examines the present situation and opportunities for development of hydrogen and fuel cell technology in the Philippines as promising alternatives with proven applications in niche energy demand sectors aside from renewables integration. Although the Philippines is considered a latecomer there is significant renewable resource potential available local experts and trained talents and enabling legislations in the country that provide opportunities in harnessing fuel cell technologies for the transition to energy self-sufficient and low-carbon society. Current advancement of the technology in the country is limited to an initial 5-year roadmap focused on component development from cheap and local materials. Provisions for large-scale hydrogen infrastructure have not yet been realized which is comparable to the early stages of development in other countries that are also pursuing fuel cell technology. Strong industry-academe partnerships should be pursued through a specific legislated agency to ensure future development of this technology for the country’s benefit. Lastly applications in distributed power generation poised to be a lucrative direction as demonstration and validation with other potential uses such as transportation remains a challenge.
Risk Reduction Potential of Accident Prevention and Mitigation Features
Sep 2011
Publication
Quantitative Risk Assessment (QRA) can help to establish a set of design and operational requirements in hydrogen codes and standards that will ensure safe operation of hydrogen facilities. By analyzing a complete set of possible accidents in a QRA the risk drivers for these facilities can be identified. Accident prevention and mitigation features can then be analyzed to determine which are the most effective in addressing these risk drivers and thus reduce the risk from possible accidents. Accident prevention features/methods such as proper material selection and preventative maintenance are included in the design and operation of facilities. Accident mitigation features are included to reduce or terminate the potential consequences from unintended releases of hydrogen. Mitigation features can be either passive or active in nature. Passive features do not require any component to function in order to prevent or mitigate a hydrogen release. Examples of passive mitigation features include the use of separation distances barriers and flow limiting orifices. Active mitigation features initiate when specific conditions occur during an accident in order to terminate an accident or reduce its consequences. Examples of active mitigation features include detection and isolation systems fire suppression systems and purging systems. A concept being pursued by the National Fire Protection Association (NFPA) hydrogen standard development is to take credit for prevention and mitigation features as a means to reduce separation distances at hydrogen facilities. By utilizing other mitigation features the risk from accidents can be decreased and risk-informed separation distances can be reduced. This paper presents some preliminary QRA results where the risk reduction potential for several active and passive mitigation features was evaluated. These measures include automatic leak detection and isolation systems the use of flow limiting orifices and the use of barriers. Reducing the number of risk-significant components in a system was also evaluated as an accident prevention method. In addition the potential reduction in separation distances if such measures were incorporated at a facility was also determined.
Green H2 Production by Water Electrolysis Using Cation Exchange Membrane: Insights on Activation and Ohmic Polarization Phenomena
Dec 2021
Publication
Low-temperature electrolysis by using polymer electrolyte membranes (PEM) can play an important role in hydrogen energy transition. This work presents a study on the performance of a proton exchange membrane in the water electrolysis process at room temperature and atmospheric pressure. In the perspective of applications that need a device with small volume and low weight a miniaturized electrolysis cell with a 36 cm2 active area of PEM over a total surface area of 76 cm2 of the device was used. H2 and O2 production rates electrical power energy efficiency Faradaic efficiency and polarization curves were determined for all experiments. The effects of different parameters such as clamping pressure and materials of the electrodes on polarization phenomena were studied. The PEM used was a catalyst-coated membrane (Ir-Pt-Nafion™ 117 CCM). The maximum H2 production was about 0.02 g min−1 with a current density of 1.1 A cm−2 and a current power about 280 W. Clamping pressure and the type of electrode materials strongly influence the activation and ohmic polarization phenomena. High clamping pressure and electrodes in titanium compared to carbon electrodes improve the cell performance and this results in lower ohmic and activation resistances.
Safety Cost of a Large Scale Hydrogen System for Photovoltaic Energy Regulation
Sep 2011
Publication
Hydrogen can be used as a buffer for storing intermittent electricity produced by solar plants and/or wind farms. The MYRTE project in Corsica France aims to operate and test a large scale hydrogen facility for regulating the electricity produced by a 560 kWp photovoltaic plant.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Due to the large quantity of hydrogen and oxygen produced and stored (respectively 333 kg and 2654 kg) this installation faces safety issues and safety regulations constraints that can lead to extra costs. These extra costs may concern detectors monitoring barrier equipments that have to be taken into account for evaluating the system‘s total cost.
Relying on the MYRTE example that is an R&D platform the present work consists in listing the whole environmental and safety regulations to be applied in France on both Hydrogen and Oxygen production and storage. A methodology has been developed [1] [2] for evaluating safety extra costs. This methodology takes into account various hydrogen storage technologies (gaseous and solid state) and is applicable to other ways of storage (batteries etc.) to compare them. Results of this work based on a forecast of the operating platform over 20 years can be used to extrapolate and/or optimize future safety costs of next large scale hydrogen systems for further PV or wind energy storage applications.
Incident Reporting- Learning from Experience
Sep 2007
Publication
Experience makes a superior teacher. Sharing the details surrounding safety events is one of the best ways to help prevent their recurrence elsewhere. This approach requires an open non-punitive environment to achieve broad benefits. The Hydrogen Incident Reporting Tool (www.h2incidents.org) is intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen and hydrogen systems. Its intended audience includes those involved in virtually any aspect of hydrogen technology systems and use with an emphasis towards energy and transportation applications. The database contains records of safety events both publicly available and/or voluntarily submitted. Typical records contain a general description of the occurrence contributing factors equipment involved and some detailing of consequences and changes that have been subsequently implemented to prevent recurrence of similar events in the future. The voluntary and confidential nature and other characteristics surrounding the database mean that any analysis of apparent trends in its contents cannot be considered statistically valid for a universal population. A large portion of reported incidents have occurred in a laboratory setting due to the typical background of the reporting projects for example. Yet some interesting trends are becoming apparent even at this early stage of the database’s existence and general lessons can already be taken away from these experiences. This paper discusses the database and a few trends that have already become apparent for the reported incidents. Anticipated future uses of this information are also described. This paper is intended to encourage wider participation and usage of the incidents reporting database and to promote the safety benefits offered by its contents.
Experimental Investigation of Flame and Pressure Dynamics after Spontaneous Ignition in Tube Geometry
Sep 2013
Publication
Spontaneous ignition processes due to high pressure hydrogen releases into air are known phenomena. The sudden expansion of pressurized hydrogen into a pipe filled with ambient air can lead to a spontaneous ignition with a jet fire. This paper presents results of an experimental investigation of the visible flame propagation and pressure measurements in 4 mm extension tubes of up to 1 m length attached to a bulk vessel by a rupture disc. Transparent glass tubes for visual observation and shock wave pressure sensors are used in this study. The effect of the extension tube length on the development of a stable jet fire after a spontaneous ignition is discussed.
Numerical Study of Spontaneous Ignition of Pressurized Hydrogen Release into Air
Sep 2007
Publication
Numerical simulations have been carried out for spontaneous ignition of pressurized hydrogen release directly into air. Results showed a possible mechanism for spontaneous ignition due to molecular diffusion. To accurately calculate the molecular transport of species momentum and energy in a multi-component gaseous mixture a mixture-averaged multi-component approach was employed in which thermal diffusion is accounted for. To reduce false numerical diffusion extremely fine meshes were used along with the ALE (Arbitrary Lagrangian-Eulerian) method. The ALE method was employed to track the moving contact surface with moving clustered grids. A detailed kinetic scheme with 21 elementary steps and 8 reactive chemical species was implemented for combustion chemistry. The scheme gives due consideration to third body reactions and reaction-rate pressure-dependant “fall-off” behavior. The autoignition of pressurized hydrogen release was previously observed in laboratory tests [2-3] and suspected as possible cause of some accidents. The present numerical study successfully captured this scenario. Autoignition was predicted to first take place at the tip region of the hydrogen-air contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air at the contact surface through molecular diffusion. The initial flame thickness is extremely thin due to the limiting molecular diffusion. The combustion region extends downward along the contact surface as it moves downstream. As the hydrogen jet developed downstream the front contact surface tends to be distorted by the developed flow of the air. Turbulence plays an important role in mixing at the region of the distorted contact surface. This is thought to be a major factor for the initial laminar flame to turn into a final stable turbulent flame.
Ignition of Flammable Hydrogen & Air Mixtures by Controlled Glancing Impacts in Nuclear Waste Decommissioning
Sep 2013
Publication
Conditions are examined under which mechanical stimuli produced by striking controlled blows can result in sparking and ignition of hydrogen in air mixtures. The investigation principally concerns magnesium thermite reaction as the ignition source and focuses on the conditions and thermomechanical parameters that are involved in determining the probability of ignition. It is concluded that the notion of using the kinetic energy of impact as the main criterion in determining whether an ignition event is likely or not is much less useful than considering the parameters which determine the maximum temperature produced in a mechanical stimuli event. The most influential parameter in determining ignition frequency or probability is the velocity of sliding movement during mechanical stimuli. It is also clear that the kinetic energy of a moving hammer head is of lesser importance than the normal force which is applied during contact. This explains the apparent discrepancy in previous studies between the minimum kinetic energy thought to be necessary to allow thermite sparking and gas ignition to occur with drop weight impacts and glancing blow impacts. In any analysis of the likelihood of mechanical stimuli to cause ignition the maximum surface temperature generated should be determined and considered in relation to the temperatures that would be required to initiate hot surface reactions sufficient to cause sparking and ignition.
Methanol Reforming Processes for Fuel Cell Applications
Dec 2021
Publication
Hydrogen production through methanol reforming processes has been stimulated over the years due to increasing interest in fuel cell technology and clean energy production. Among different types of methanol reforming the steam reforming of methanol has attracted great interest as reformate gas stream where high concentration of hydrogen is produced with a negligible amount of carbon monoxide. In this review recent progress of the main reforming processes of methanol towards hydrogen production is summarized. Different catalytic systems are reviewed for the steam reforming of methanol: mainly copper- and group 8–10-based catalysts highlighting the catalytic key properties while the promoting effect of the latter group in copper activity and selectivity is also discussed. The effect of different preparation methods different promoters/stabilizers and the formation mechanism is analyzed. Moreover the integration of methanol steam reforming process and the high temperature–polymer electrolyte membrane fuel cells (HT-PEMFCs) for the development of clean energy production is discussed.
No more items...